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Abstract 

Development of naïve peripheral B cells into terminally differentiated plasma cells is a highly controlled process 

guided by epigenetic mechanisms. Here we identified a central role for the histone H3K79 methyltransferase 

DOT1L in controlling B cell development. Upon deletion of Dot1L early in the B-cell lineage, naïve and activated B 

cells prematurely acquired plasma cell features and failed to establish germinal centers (GC) and normal humoral 

immune responses in vivo. Transcriptome analyses revealed that DOT1L promotes expression of oncogenic, pro-

proliferative and pro-GC transcription factors. Simultaneously, DOT1L indirectly promotes repression of anti-

proliferative targets of the Polycomb Repressor Complex 2. Our findings show that DOT1L fine tunes the 

transcriptional and epigenetic landscape in B cells. In doing so it establishes a critical epigenetic barrier warranting 

B cell naivety and prohibiting their premature differentiation towards plasma cells.  
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INTRODUCTION 

Epigenetic mechanisms warrant that one genome can upkeep multiple cellular identities1. This is directed by 

external and internal signals that instruct cells in adapting specific identities and functions2. These signals lead to 

the establishment of stage- and tissue-specific patterns of a variety of epigenetic alterations, including post-

translational histone modifications that together with transcriptional regulators determine the gene expression 

program of a cell3-6. To maintain cellular identity and function, it is essential that specific writer-, reader-, and 

eraser-proteins ensure that epigenetic marks can be timely installed, interpreted, and eventually de-installed7,8.  As 

a result, the epigenome is dynamic and permits cells to acquire new identities and functions.  

 

We previously identified DOT1L as a conserved epigenetic writer that catalyzes mono-, di-, or tri-methylation of 

lysine 79 of histone H3 (H3K79me)9,10, that resides away from histone tails containing a plethora of other 

modifications11. DOT1L-mediated H3K79me is associated with active transcription but its function in gene 

expression remains unclear12-14. DOT1L has gained wide attention as a specific drug target in the treatment of 

Mixed Lineage Leukemia (MLL) characterized by rearrangements of the MLL gene. In MLL cells, MLL-fusion proteins 

recruit DOT1L, leading to hypermethylation of H3K79 and increased expression of MLL-target genes, thereby 

introducing a druggable dependency on DOT1L activity15-21. In addition, we recently observed a similar dependency 

in a mouse model of thymic lymphoma caused by loss of the histone deacetylase HDAC122. While DOT1L is 

emerging as an appealing drug target, the role of DOT1L in gene regulation during normal lymphocyte 

development is not known.  

 

Analysis of publicly-available RNA-sequencing data shows that Dot1L expression is regulated during B cell 

development (see below). B lymphocytes are key players of the adaptive immune system. An active humoral 

immune response is characterized by the activation of clonally selected, antigen-primed B cells within secondary 

lymphoid organs. This results in the formation of a specific micro-environment, known as the germinal center (GC) 

23,24. Rapidly proliferating GC B cells pass through the process of somatic hypermutation that lays the molecular 

basis of antibody affinity maturation25-29. Ultimately, B cells selected on the basis of antibody affinity may 
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differentiate either into memory B cells to establish long-term immunological memory or via a plasma blast stage 

into terminally differentiated, antibody secreting plasma cells.  

 

Development and functionality of B lymphocytes is associated with dynamic changes in the epigenetic landscape30. 

Recent studies indicate that specific alterations in B cell function and identity are intimately linked with well-

established histone modifications such H3K4 trimethylation (H3K4me3) related with active gene promoters31,32, 

and H3K27me3 associated with gene repression33. Furthermore, the H3K27 methyltransferase EZH2, the catalytic 

component of the Polycomb repressor complex 2 (PRC2) has been shown to have an essential role in establishing 

GC B cells34.  

 

Here we determined the role of the H3K79 methyltransferase DOT1L in normal murine B cell development by 

deleting Dot1L early in the B cell lineage and investigating specific dependencies of B lineage cells on DOT1L. Our 

findings show that DOT1L fine-tunes the core transcriptional and epigenetic landscape of B cells and in doing so 

establishes a critical epigenetic barrier towards terminal plasma cell differentiation.  
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RESULTS  

Effective deletion of Dot1L in B-cell lineage cells  

Given the DOT1L-dependencies in leukemia16,17,35,36 and lymphoma22, we quantified the expression of Dot1L during 

normal B cell development using publicly available data37. In doing so, we observed that Dot1L is transcriptionally 

regulated in B cell subsets and highly expressed in GC B cells (Fig. 1a). To determine the relevance of this regulation 

in controlling the development and differentiation of B lineage cells, we inactivated Dot1L during early B cell 

development by crossing the Mb1-Cre knock-in allele into a Dot1Lfl/fl background. DOT1L is the sole enzyme 

responsible for H3K79me; knock-out of Dot1L has been shown to lead to complete loss of H3K79me13,22,38,39. 

However, loss of H3K79 methylation requires dilution of modified histones by replication-dependent and –

independent mechanisms of histone exchange40-42. Dot1L was specifically and efficiently deleted in B cells, as 

confirmed by intracellular staining for H3K79me2 in proB, preB, immature B cells, and mature B cells. While some 

proB cells retained H3K79me2, preB cells and all stages beyond, lacked detectable levels of H3K79me2 (Fig. 1b). As 

a control, the methylation mark remained unchanged between DOT1L-proficient and -deficient mature T cells (Fig. 

1B). We refer to Mb1-Cre+/-;Dot1Lfl/fl and Mb1-Cre+/-;Dot1Lwt/wt B cells as Dot1L KO and WT cells, respectively. 

 

DOT1L-deficiency inhibits development of preB cells  

To study the impact of Dot1L ablation on the development of B cells in the bone marrow, we determined the 

cellularity of specific developmental subsets in the DOT1L proficient and deficient settings. Early ablation of Dot1L 

resulted in an overall 1.6-fold reduction of bone marrow B lineage cells. This reduction appeared to be caused 

primarily by an early differentiation block at the proB to preB cell stage, preB cell were reduced 1.8-fold in the 

Dot1L KO as compared to WT and proB cells were increased by 2.0-fold. In line with this partial developmental 

inhibition, the cellularity of all subsequent stages of development including immature B and mature B cells were 

significantly reduced in the bone marrow (Fig. 1c and see Supplementary Fig. 1a). Reduced preB cells could be a 

result of impaired VDJ recombination in absence of DOT1L-dependent pro-recombinogenic H3K79me marks43,44, an 

observation that requires further investigation. Regardless of this partial developmental block, B cells could mature 

in the absence of DOT1L providing a H3K79-methylation free system to study B cells differentiation. Given the high 
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expression of Dot1L in GC B cells, we decided to investigate the impact of DOT1L ablation on the development of 

GC B cells. 

 

Lack of DOT1L prohibits differentiation of germinal-center B cells 

In the spleen of Mb1-Cre+/-;Dot1Lfl/fl mice, B cell cellularity decreased 3.5-fold while T cell numbers remained 

unaffected, resulting in a 2.0-fold decreased overall cellularity (Fig. 2a and 2b). Among the various peripheral B cell 

subsets, the strongest reduction was found in marginal zone B cells and GC B cells to the extent that they were 

nearly absent (Fig. 2c-i and see Supplementary Fig. 1b). The reduction of GC B cells was of particular interest given 

the high levels of Dot1L mRNA expression in this subset (Fig. 1a and 2i), and strongly suggested that the formation 

of germinal centers critically depends on DOT1L. Indeed, in situ histological analyses also revealed the absence of 

GCs in the spleen of Dot1L KO mice (Fig. 2j and 2k). Similarly, lack of DOT1L resulted in a marked reduction of GC B 

cells in Peyer’s patches (see Supplementary Fig. 2).  

 

Dot1L deletion impairs class switch recombination and proliferation in vitro 

An important feature of humoral immunity is the ability of B cells to undergo class switch recombination (CSR). To 

investigate the role of DOT1L in CSR, naïve B cells were isolated from the spleen and stimulated in vitro with LPS 

alone or in combination with IL-4, to induce switching to IgG3 or IgG1, respectively. Compared to Dot1L-proficient 

B cells, the lack of Dot1L was associated with a strong impairment in switching to both IgG3 and IgG1 (Fig. 3a, 3b, 

see Supplementary Fig. 3a and see Supplementary Fig. 3b). Similar observations were made using the T-cell 

dependent mimetic anti-CD40 and IL-4 as stimuli (Fig. 3c and see Supplementary Fig. 3c). RNA-Seq analysis of KO 

and WT B cells activated with LPS and IL-4 argued against a potential failure of KO B cells in expressing specific 

components of the CSR machinery (see Supplementary Table 1). Of note, the proliferative response of KO B cells 

was also strongly impaired upon CD40+IL-4 in vitro stimulation, as revealed by tracing the dilution of a 

fluorescence label (Fig. 3d). The virtual absence of GC B cells, impaired proliferative response, and the reduced CSR 

potential of DOT1L-deficient B cells implicated a severe defect of Mb1-Cre+/-;Dot1Lfl/fl mice in establishing effective 

humoral immunity. 
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DOT1L-deficient B cells fail to mount efficient immune responses but acquire premature plasma cell features  

To determine the immune responsiveness of Dot1L-deficient B cells, Mb1-Cre+/-;Dot1Lfl/fl and Mb1-Cre+/-;Dot1Lwt/wt 

mice were challenged with an acute lymphocytic choriomeningitis virus (LCMV) infection. During the LCMV 

infection Dot1L-deficient B cells failed to establish GC B cells but interestingly acquired plasma cell markers (Fig. 4a 

and 4b). However, despite an increased plasma cell formation, these mice failed to mount normal IgM serum titers 

against LCMV (Fig. 4c). The failure to establish GCs in response to LCMV appeared in line with the very low LCMV-

specific IgG serum titers (Fig. 4c). Independently, the inability of Mb1-Cre+/-;Dot1Lfl/fl mice to mount efficient 

antibody responses to T-cell dependent antigen was confirmed using the 4-hydroxy-3-nitrophenylacetyl 

conjugated to chicken gamma globulin (NP-CGG) in alum as immunogen (Fig. 4d). These data suggest that a DOT1L 

deficiency in the B cell lineage prohibits GC B cell differentiation and favors differentiation towards plasma cells. 

Remarkably, in vitro activation of naïve DOT1L-KO B cells with LPS and IL-4 confirmed a significantly increased 

plasma cell differentiation as compared to DOT1L-WT (see Supplementary Fig. 4a). However, these cells failed to 

downregulate B220 (see Supplementary Fig. 4b), which is considered as a hallmark of post-mitotic plasma cells. 

This might indicate an incomplete differentiation of Dot1L-KO plasma cells45. Apparently, in the absence of H3K79 

methylation naïve B cells skip the GC stage and start to gain prematurely plasma cell features. 

 

DOT1L supports a pro-proliferative, MYC-high GC stage and prohibits premature plasma cell differentiation 

To unravel the underlying molecular mechanisms that prohibit Dot1L-KO GC B cell differentiation and stimulate 

plasma cell formation we opted for an unbiased approach and performed RNA-Seq analyses of naïve and in vitro 

activated (LPS and IL-4) B cells under Dot1L-proficient and -deficient conditions. Among the differentially-

expressed genes, the genes encoding the pro-GC transcription factor BACH2 and the pro-proliferative transcription 

factor MYC28,46,47 were downregulated in activated DOT1L-deficient B cells; at the same time the pan-plasma cell 

transcription factor Prdm1 encoding BLIMP148,49 was found upregulated (Fig. 5a and 5b). This agrees with the 

observed absence of GC B cells and increased plasma cell formation in KO cells. In addition, analysis of a published 

plasma-cell gene signature 37, revealed that the transcriptome of activated Dot1L-deficient B cells was indeed 

strongly enriched for plasma-cell associated transcripts (Fig. 5c). Simultaneously, MYC-target gene transcripts were 

strongly reduced (Fig. 5d). Together, these observations indicate that DOT1L-mediated H3K79 methylation licenses 
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a transient entrance into a pro-proliferative, MYC-high GC stage and is required to prevent premature 

differentiation of activated B cells towards non-proliferative terminally differentiated plasma cells. Interestingly, 

transcriptomic data from ex vivo isolated naïve Dot1L-deficient B cells revealed some enrichment for B cell 

activation and plasma-cell associated genes, suggesting that already antigen-inexperienced B cells are pre-

activated and prematurely differentiated in the absence of DOT1L (see Supplementary Fig. 5a). 

 

DOT1L-mediated H3K79 methylation is associated with gene activity in B cells 

To link the phenotypes of loss of DOT1L to its role as an epigenetic regulator in B cells, we generated genome-wide 

maps of DOT1L-mediated H3K79me2 in naïve and activated WT B cells by ChIP-Seq. We chose to analyze the 

H3K79me2 mark because it is known to mark the region downstream of the transcriptional start site of transcribed 

genes and positively correlate with gene activity12,13,50,51.  While H3K79me1 shows the same trends, it has a 

broader distribution, and H3K79me3 is detectable only at limited levels12,22,51. Surprisingly, more than 83 percent 

of the differentially expressed genes was found upregulated in the absence of DOT1L; only a small subset was 

downregulated (Fig. 5a and see Supplementary Fig. 5b). Furthermore, the upregulation was biased towards more 

lowly expressed genes. The observed upregulation of genes in Dot1L-KO B cells was unexpected given the fact that 

H3K79me2 generally correlates with transcriptional activity12,14,20,50,52-55. However, repressive functions of DOT1L 

have been proposed as well56-59. Comparing H3K79me2 ChIP values in WT cells with the gene expression changes 

caused by loss of DOT1L revealed that the genes upregulated in Dot1L-KO B cells were mostly hypomethylated in 

WT cells, indicating that they are likely indirectly affected by the loss of DOT1L (Fig. 6a and 6b). In contrast, genes 

downregulated in Dot1L-KO B cells were generally highly expressed and H3K79 methylated in WT B cells, indicating 

that this gene set harbors the genes directly dependent on DOT1L. These findings show that DOT1L-mediated 

H3K79me2 is a mark of many active genes, but suggest that only a small fraction of these genes requires 

H3K79me2 for maintenance of gene expression, since only a subset of the active genes was downregulated in 

Dot1L KO.  

 

DOT1L indirectly supports repression of PRC2 target genes 
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The large number of genes found upregulated in Dot1L-KO B cells indicated that DOT1L positively regulates the 

expression of a transcriptional repressor whose target genes are derepressed in absence of DOT1L. To identify 

such candidate repressors, we investigated the relatively small fraction of genes downregulated in naïve Dot1L-KO 

B cells. Unbiased identification of upstream transcriptional regulators by Ingenuity pathway analyses (IPA) pointed 

towards nine potential regulators (Table 1). To further narrow down the list, we filtered for genes that are (i) 

H3K79-dimethylated by DOT1L, (ii) encode transcriptional repressors, and (iii) play a role in B cell 

differentiation/proliferation and GC formation. This led to the identification of the histone H3K27 

methyltransferase EZH2 as a prime candidate (Table 1). We verified that Ezh2 expression was reduced in DOT1L KO 

B cells (Fig. 6c) and that the gene is H3K79-dimethylated in WT cells (Fig. 6d), indicating that the expression of Ezh2 

might be directly supported by DOT1L activity (Fig. 6c and 6d). Of note, the expression of Ezh2 and Dot1L was 

found co-regulated in B cell subsets (Fig. 6e).  

 

We next investigated the physiological relevance of the connection between DOT1L and EZH2. First, Ezh2-KO and 

Dot1L-KO B cells have overlapping phenotypes34,60-63, 85. Second, we took advantage of publicly available RNA-Seq 

data 61 from Ezh2 -KO plasma cells to identify genes that require EZH2 for being repressed (see Supplementary Fig. 

6a). Using this as a signature of EZH2-dependent genes, we found that many of the genes de-repressed in Ezh2-KO 

cells were also found de-repressed in activated Dot1L-KO B cells (see Supplementary Fig. 6b). Surprisingly, many of 

these genes were found de-repressed also in naïve Dot1L-KO B cells, suggesting that lack of DOT1L renders these 

cells prematurely differentiated (see Supplementary Fig. 6b). As a specific example, we checked the expression of a 

known PRC2-target gene Cdkn1a (p21)62,64,65, and found that it was upregulated in activated Dot1L-KO B cells (Fig. 

6c). Third, we analyzed the level of H3K27me3 and H3K79me2 in the set of genes that was de-repressed in Dot1L 

KO using our H3K79me2 ChIP-Seq data and publicly available H3K27me3 ChIP-Seq data from naïve B cells66. The 

analysis revealed that this gene set was enriched for H3K27me3 in WT cells compared to expression-matched non-

differentially expressed genes (Fig. 6f). Together, these findings suggest that in B cells, DOT1L supports the 

repression of PRC2 target genes, thus uncovering a previously unknown connection between two conserved 

histone methyltransferases associated with activation and repression, respectively.   
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DISCUSSION  

B lymphocytes are key cellular components of the adaptive immune system and their functional deregulation is 

associated with immune deficiencies and autoimmunity67,68. Several well-coordinated processes during B cell 

differentiation coincide with specific adaptations of the epigenome69-71. Given the critical contribution of B cells to 

the immune system, it is important to understand the molecular mechanisms underlying their epigenetic 

programming. We observed that the H3K79 methyltransferase DOT1L is regulated in B cell development and has a 

central role in B cell physiology.  

 

GC B cell differentiation was found to be critically dependent on DOT1L activity. Among mature B cells, GC B cells 

express the highest levels of Dot1L and they were strongly reduced in Dot1L-KO mice. Upon activation in vitro or 

immune challenge in vivo, Dot1L-KO B cells failed to proliferate, differentiate into GC B cells, and establish effective 

immune responses. Rather, we found indications of accelerated plasma cell differentiation in Dot1L-KO mice, both 

in vitro and in vivo. RNA-Seq data generated from naïve and in vitro activated Dot1L-KO and WT B cells confirmed 

the strong enrichment of genes associated with plasma cell differentiation among the genes up-regulated in Dot1L 

KO. The data also revealed that DOT1L supports MYC activity, which B cells need to differentiate effectively into 

pro-proliferative GC B cells28. Recent studies have also shown that inhibition of DOT1L leads to reduced Myc 

expression in multiple myeloma72 and in MYC-driven B cell lymphoma73. Furthermore, in neuroblastoma 

H3K79me2 methylation has been shown to be a strict prerequisite for Myc-induced transcriptional activation, 

indicating a mutual interaction between DOT1L and MYC74. In addition to the crucial role in GC formation we also 

identify DOT1L as a critical factor in maintaining MZ B cells. Exploring the strong reduction of MZ B cells upon loss 

of Dot1L should provide additional insights regarding the contribution of DOT1L in orchestrating normal B cell 

physiology.  

 

In addition to supporting MYC activity, our findings show that DOT1L supports the repression of target genes of 

PRC2. The observation that Ezh2 is normally H3K79-dimethylated and downregulated in Dot1L-KO B cells, and that 

Dot1L and Ezh2 are co-regulated in B cells indicates that DOT1L may promote repression of PRC2 targets by 

maintaining expression of Ezh2. A direct stimulatory effect of H3K79me on H3K27me3 synthesis is not likely to be 
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involved since the modifications occur in distinct locations in the genome and are associated with opposite 

transcriptional states. Finally, besides MYC and PRC2, additional factors controlled by DOT1L may impart its effect 

on B cells. For example, it will be interesting to determine the role of other candidate transcriptional regulators 

regulated by DOT1L (Table 1).  

 

Our finding regarding the central role of DOT1L in lymphocyte biology is also supported by our study in the T cell 

lineage (Kwesi-Maliepaard et al.). First, in both lineages, DOT1L is required to establish an epigenetic barrier in 

naïve lymphocytes to prohibit their premature differentiation. Second, in spite of gaining many advanced features 

related to differentiation, both lineages displayed a compromised immune response. Third, in B and T cells DOT1L 

promotes repression of PRC2 targets normally associated with differentiation.  

 

In summary, in lymphocytes, DOT1L has a central role in maintaining a naive lymphocyte pool and guiding dynamic 

epigenetic states controlling differentiation and ensuring functional immune responses.  
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Methods 

 

Mice 

Mb1-Cre+/-;Dot1Lfl/fl mice were derived by crossing the Dot1Ltm1a(KOMP)Wtsi line - generated by the Wellcome 

Trust Sanger Institute (WTSI) and obtained from the KOMP Repository (www.komp.org) - with the MB1-Cre strain 

kindly provided by M. Reth87. Mice from this newly created Mb1-Cre+/-;Dot1L strain were maintained under specific 

pathogen free (SPF) conditions at the animal laboratory facility of the Netherlands Cancer Institute (NKI; 

Amsterdam, Netherlands). Mice used for experiments were between 6-8 weeks old and of both genders. All 

experiments were approved by the Animal Ethics Committee of the NKI and performed in accordance with the 

Dutch Experiments on Animals Act and the Council of Europe. 

 

Genotyping PCR 

Mice were genotyped for Dot1L using the forward primer (Dot1L: FWD, GCAAGCCTACAGCCTTCATC) and reverse 

primer 1 (Dot1L:REV1, CACCGGATAGTCTCAATAATCTCA) to identify WT allele; Dot1Lwt (642 Bps) while the floxed 

allele; Dot1Lfl (1017 Bps) was identified by using Dot1L: FWD and reverse primer 2 (Dot1L:REV2, 

GAACCACAGGATGCTTCAG). WT allele (418 Bps) for Mb1 was detected by using forward primer (Mb1-FWD1: 

CTGCGGGTAGAAGGGGGTC) and reverse primer (Mb1-REV1: CCTTGCGAGGTCAGGGAGCC) while Cre (219 Bps) was 

detected by using forward primer (Mb1-FWD2: GTGCAAGCTGAACAACAGGA) and reverse primer (Mb1-REV2: 

AAGGAGAATGTGGATGCTGG).  

 

Flow cytometry 

Single cell suspensions were made from bone marrow, spleen and Peyer’s patches. Bone marrow, spleen and 

blood samples were subjected to erythrocyte lysis. Distinct cellular populations were identified using combination 

of fluor-conjugated antibodies against surface markers (Table 2). Cells were stained with fluorescently labeled 

antibodies (Table 3). For intracellular staining cells were fixed and permeabilized using the Transcription Factor 

Buffer kit (Becton Dickinson, BD). Antibodies for intracellular staining were diluted in Perm/Wash buffer. For 

H3K79me2 staining, cells were first stained with surface markers and fixed and permeabilized as described before. 
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After fixation and permeabilization cells were washed with Perm/Wash containing 0.25% SDS. H3K79me2 specific 

antibody (Millipore) was diluted 1:200 into Perm/Wash + 0.25% SDS and cells were incubated for 30 min. Cells 

were washed with Perm/Wash and incubated with the secondary antibodies Donkey anti-Rabbit AF555 (Thermo 

Scientific) or Goat-anti-Rabbit AF488 (Invitrogen) 1:1000 in Perm/Wash. Flow cytometry was performed using the 

LSR Fortessa (BD Biosciences) and data were analyzed with FlowJo software (Tree Star inc.). Histograms were 

smoothed. 

 

Immunization 

Adult mice were inoculated intravenously with sub-lethal dose 2x105 PFU (Plaque forming units) of lymphocytic 

choriomeningitis virus strain Armstrong. Serum was collected prior to immunization and 14 days post immune 

challenge. For NP-CGG immunization mice were injected intraperitoneally with 100 g of alumprecipitated NP-CGG 

[(4-hydroxy-3-nitrophenyl) acetyl coupled to chicken γ–globulin, BIOSEARCHTM TECHNOLOGIES] in a 200 l of NP-

CGG alum solution. To determine the serum titers of NP-specific IgM and IgG1, mice were bled from the tail vein 

on day 0,7,14,21,28, and 35.  

 

Class switch recombination and Proliferation 

Single cells suspensions were prepared from the spleen of 6-8-week-old mice. Following erythrocyte lysis, naïve 

splenic B cells were enriched by the depletion of CD43 expressing cell using biotinylated anti-CD43 antibody (Clone 

S7, BD Biosciences), BD IMag Streptavidin Particles Plus and the IMag® system (BD Biosciences), as described by 

the manufacturer. To measure their proliferative capacity, naïve B cells were labeled for 10 min at 37°C with 5 μM 

Cell Trace Violet (CTV, Life Technologies, InvitrogenTM) in IMDM medium containing 2% FCS,100 mM pen/strep and 

100 mM β-mercaptoethanol. After washing, cells were cultured in complete IMDM medium (IMDM supplemented 

with 8% FCS, 100 mM pen/strep and 100 mM β-mercaptoethanol) at a density of 105 cells/well in 24 well plates. 

CSR to IgG3 and IgG1 was induced in T cell independent manner by exposure to 5 μg/ml of Lipopolysaccharide 

(Escherichia Coli LPS, 055:B5, Sigma) or LPS+rIL-4. rIL4 was used at a concentration of 10 ng/ml. Cells were exposed 

to anti-CD40 (1ug/ml, BD Clone HM40-3) and rIL-4 (10 ng/ml) to induce IgG1 switching in a T cell dependent 
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manner. Four days later, the cells were harvested and stained with CD19, IgM, and IgG3 (LPS cultures) or IgG1 

(LPS/rIL4 cultures or anti-CD40/rIL-4) to determine CSR frequency along with CTV dilution as an indicator of cell 

multiplication.  

 

ELISA 

LCMV-specific serum IgM and IgG levels were measured by ELISA. In short, Nunc-Immuno Maxisorp plates (Fisher 

Scientific) were coated overnight at 4°C with virus in bicarbonate buffer. Plates were subsequently incubated for 

1h with blocking buffer (PBS/5% milk powder (Fluka Biochemika)). Sera from mice were diluted in PBS/1% milk 

powder and incubated for 1h at 37°C. Next, HRP-conjugated IgG and IgM antibodies (Southern Biotech) were 

diluted 1:4000 in PBS/1% milk powder and incubated 1h at 37°C. Plates were developed with TMB substrate 

(Sigma Aldrich), and the color reaction was stopped by the addition of 1 M H2SO4. Optical density was read at 450 

nm (OD450) using a Microplate reader (Model 680, Bio-Rad).  

To quantify NP-specific serum antibodies, plates were coated with 2 μg/ml NP30-BSA. Serum was added at a 

starting dilution of 1:100 followed by 3-fold serial dilutions and incubated at room temperature for 2 hours. Bound 

serum antibodies were detected with polyclonal biotinylated goat anti-mouse IgM or anti-IgG1 (Southern Biotech), 

streptavidin-alkaline phosphatase conjugate (Roche) and chromogenic substrate 4- nitrophenyl phosphate (Sigma). 

Purified monoclonal antibodies (B1-8μ and 18-1-16y1) were used as standards for quantification. 

 

Lectin histochemistry  

Lymphoid tissues such as spleens and lymph nodes were fixed in EAF (ethanol, acetic acid, formaldehyde, saline) 

for 24 hours and subsequently embedded in paraffin. 4 um-thick sections were stained with the lectin Peanut 

Agglutinin (PNA, Vector Laboratories) at 1:1500 dilution to reveal germinal centers. The sections were 

counterstained with hematoxyline. 

 

Sorting and in vitro activation for RNA and ChIP-Seq  

For RNA sequencing, cells were first depleted for CD43+ cells and either subjected to MACS sorting for CD19+ cells 

as naïve B cells or activated for two days with LPS and IL-4. Following activation, the cells were enriched for CD19+ 
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by MACS according to the manufacturer instructions. For ChIP-Seq, CD43- cells were either FACS sorted for CD19+ 

as naïve B cell pool or activated for three days with LPS and IL-4 and subjected to FACS sorting for CD19+ 

expression. 

 

RNA-Seq sample preparation 

MACS sorted CD19+ cells were resuspended in Trizol (Ambion Life Technologies) and total RNA was extracted 

according to the manufacturer’s protocol. Quality and quantity of the total RNA was assessed by the 2100 

Bioanalyzer using a Nano chip (Agilent). Only RNA samples having an RNA Integrity Number (RIN) > 8 were 

subjected to library generation. 

 

RNA-Seq library preparation 

Strand-specific cDNA libraries were generated using the TruSeq Stranded mRNA sample preparation kit (Illumina) 

according to the manufacturer’s protocol. The libraries were analyzed for size and quantity of cDNAs on a 2100 

Bioanalyzer using a DNA 7500 chip (Agilent), diluted and pooled in multiplex sequencing pools. The libraries were 

sequenced as 65 base single reads on a HiSeq2500 (Illumina). 

 

RNA-Seq preprocessing 

Strand-specific RNA reads (11-33 million reads per sample), 65 bp single-end, were aligned against the mouse 

reference genome (Ensembl build 38) using Tophat (version 2.1, bowtie version 1.1). Tophat was supplied with a 

Gene Transfer File (GTF, Ensembl version 77) and was supplied with the following parameters: `--prefilter-multihits 

–no-coverage-search –bowtie1 –library-type fr-firststrand`. In order to count the number of reads per gene, a 

custom script which is based on the same ideas as HTSeq-count has been used. A list of the total number of 

uniquely mapped reads for each gene that is present in the provided Gene Transfer Format (GTF) file was 

generated. Genes that have no expression across all samples within the dataset were removed. Analysis was 

restricted to genes that have least 2 counts per million (CPM) value in all samples in specific contrasts, to exclude 

very low abundance genes. Differential expression analysis was performed in R language (version 3.5.1) on only 

relevant samples using edgeR package and default arguments with the design set to either Dot1LKO status, 
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Ezh2KO status or cell type. Genes were considered to be differentially expressed when the False discovery rate 

(FDR) was below 0.05 after the Benjamini-Hochberg multiple testing correction. Sets of differentially expressed 

genes in indicated conditions were called ‘gene signatures. MA plots were generated after differential expression 

analysis carried by edgeR package88,89. Read counts were corrected for gene length based on the longest transcript 

of the gene followed by normalization for the library size and shown as transcript per million (TPM). Counts are 

shown as counts per million after trimmed mean of M-values (TMM) normalization using the edgeR R package. For 

analyses where we performed expression matching, we chose genes with an absolute log2 fold changes less than 

0.1 and false discovery rate corrected p-values above 0.05 that were closest in mean expression to each of the 

genes being matched without replacement. The RNA-Seq datasets reported in this article have been deposited at 

the National Center for Biotechnology Information under the accession number GSE138909. 

 

Gene set enrichment analysis (GSEA)  

GSEA was carried out after differential expression analysis. Gene set enrichment was shown as barcode plot where 

the genes were ranked according to the log2 fold change between the compared conditions. Statistical significance 

for the enrichment of gene set was determined by Fast approximation to mroast (FRY) gene set test 90 from limma 

package and two-sided directional p value less than 0.05 was considered significant.  

 

Functional enrichment analysis  

Functional enrichment analysis was carried by ‘g:GOST’ tool with default arguments from ‘g:Profiler2’ package and 

performed in R language (version 3.5.1).  

 

ChIP-Seq sample preparation 

Sorted cells were centrifuged at 500 rcf. The pellet was resuspended in IMDM containing 2% FCS and 

formaldehyde (Sigma) was added to a final concentration of 1%. After 10 min incubation at RT glycine (final 

concentration 125 mM) was added and incubated for 5 min. Cells were washed twice with ice-cold PBS containing 

Complete, EDTA free, protein inhibitor cocktail (PIC) (Roche). Cross-linked cell pellets were stored at -80oC. Pellets 

were resuspended in cold Nuclei lysis buffer (50mM Tris-HCl pH 8.0, 10mM EDTA pH8.0, 1%SDS) + PIC and 
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incubated for at least 10 min. Cells were sonicated with PICO to an average length of 200-500bp using 30s on/ 30s 

off for 3 min. After centrifugation at high speed debris was removed and 9x volume of ChIP dilution buffer (50mM 

Tris-HCl pH8, 0.167M NaCl, 1.1% Triton X-100, 0.11% sodium deoxycholate) + PIC and 5x volume of RIPA-150 

(50mM Tris-HCl pH8, 0.15M NaCl, 1mM EDTA pH8, 0.1% SDS, 1% Triton X-100, 0.1% sodium deoxycholate) + PIC 

was added. Shearing efficiency was confirmed by reverse crosslinking the chromatin and checking the size on 

agarose gel. Chromatin was pre-cleared by adding ProteinG Dynabeads (Life Technologies) and rotation for 1 hour 

at 4oC. After the beads were removed 2μl H3K79me1, 2μl H3K79me2 (NL59, Merck Millipore) and 1μl H3K4me3 

(ab8580, Abcam) were added and incubated overnight at 4oC. ProteinG Dynabeads were added to the IP and 

incubated for 3 hours at 4oC. Beads with bound immune complexes were subsequently washed with RIPA-150, 2 

times RIPA-500 (50mM Tris-HCl pH8, 0.5M NaCl, 1mM EDTA pH8, 0.1% SDS, 1% Triton X-100, 0.1% sodium 

deoxycholate), 2 times RIPA-LiCl (50mM Tris-HCl pH8, 1mM EDTA pH8, 1% Nonidet P-40, 0.7% sodium 

deoxycholate, 0.5M LiCl2) and TE. Beads were resuspended in 150 μl Direct elution buffer (10mM Tris-HCl pH8, 

0.3M NaCl, 5mM EDTA pH8, 0.5%SDS) and incubated overnight at 65oC and input samples were included. 

Supernatant was transferred to a new tube and 1μl RNase A (Sigma) and 3 μl ProtK (Sigma) were added per sample 

and incubated at 55oC for 1 hour. DNA was purified using Qiagen purification columns.  

 

ChIP-Seq Library preparation 

Library preparation was done using KAPA LTP Library preparation kit using the manufacturer’s protocol with slight 

modifications. Briefly, after end-repair and A-tailing adaptor were ligated followed by Solid Phase Reversible 

Immobilization (SPRI) clean-up. Libraries were amplified by PCR and fragments between 250-450 bp were selected 

using AMPure XP beads (Beckman Coulter). The libraries were analyzed for size and quantity of DNAs on a 2100 

Bioanalyzer using a High Sensitivity DNA kit (Agilent), diluted and pooled in multiplex sequencing pools. The 

libraries were sequenced as 65 base single reads on a HiSeq2500 (Illumina). 

 

ChIP-Seq preprocessing 

ChIP-Seq samples were mapped to mm10 (Ensembl GRCm38) using BWA-MEM with the option ‘-M’. Duplicate 

reads were removed using MarkDuplicates from the Picard toolset with `VALIDATION_STRINGENCY=LENIENT` and 
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`REMOVE_DUPLICATES=true` as arguments. Bigwig tracks were generated from these bam files by using 

bamCoverage from deepTools using the following arguments: `-of bigwig –binsize 25 –normalizeUsing RPGC –

ignoreForNormalization chrM –effectiveGenomeSize 2652783500`. Bigwig files were loaded into R using the 

`import.bw()` function from the rtracklayer R package for visualisation of heatmaps and genomic tracks. TSSs for 

heatmaps were taken from Ensembl GRCm38.77 gene models by taking the first base pair of the 5’ UTR of 

transcripts. When such annotation was missing, the most 5’ position of the first exon was taken. The ChIP-Seq 

datasets reported in this article have been deposited at the National Center for Biotechnology Information under 

the accession number GSE138906. 

 

Statistics  

Statistical analyses were performed using Prism 7 (Graphpad). Data are presented as mean ±SD except for Fig. 4D 

where it is presented as mean± SEM. The unpaired Student’s t-test with two-tailed distributions was used to 

calculate the p-value. A p-value < 0.05 was considered statistically significant.  
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Figure legends 

Figure 1: Expression levels, efficient deletion of Dot1L in B cells and its effect on cellularity of B lineage subsets in 

the bone marrow.  

a) Expression of Dot1L in different B-cell populations 37. B1: B1 cells, MZB: Marginal Zone B, FOB: Follicular B, GCB: 

Germinal Center B, SPLPB: spleen plasma blast, SPLPC: spleen plasma cells and Bone Marrow (BMPC: Bone marrow 

plasma cells). Expression is shown as transcript per million (TPM). Note, SPLPB and BMPC lack SD as replicates 

were lacking. b) Intracellular flow-cytometry staining for H3K79me2 in bone marrow B-cell subsets as well as 

splenic B and T cells from MB1Cre;Dot1Lwt/wt (WT) and MB1Cre;Dot1Lfl/fl (KO) mice. Results represent the data from 

two independent experiments. c) Absolute number of total nucleated cells from bone marrow B-cell subsets; p-

value from Student t-test is indicated. 

 

Figure 2: Dot1L ablation affects the cellularity of mature peripheral B cell populations with a strong reduction in 

Marginal Zone and Germinal Center B cells.  

(a-h) Absolute number of total nucleated splenocytes, splenic B-and T cells and indicated mature B cell subsets in 

MB1Cre;Dot1Lwt/wt (WT) and MB1Cre;Dot1Lfl/fl (KO) mice; p-value from Student t-test is indicated. Error bars 

indicate mean with range. (i) Number of germinal center B cells (PNAhigh, CD95+) and their flow cytometric analysis 

from the spleen of unchallenged WT and KO mice; p-value from t-test is indicated. Error bars indicate mean ±SD (j 

and k). The quantification and identification of germinal centers lectin histochemistry of Peanut agglutinin (PNA) in 

spleens from WT and KO mice. The scale bar: 20 m. Error bars indicate mean with ±SD. 

 

Figure 3: DOT1L is essential for efficient CSR and proliferation.  

(a-b) Analysis of DOT1L-proficient (WT) and DOT1L-deficient (KO) naïve B cells activated for four days with LPS 

alone (IgG3 switching) or with LPS and IL-4 (IgG1 switching); p-value from Student t-test is indicated. Error bars 

indicate mean ±SD. c) Analysis of DOT1L-proficient (WT) and -deficient (KO) B cells, activated for four days with 

anti-CD40 and IL-4 (IgG1 switching) B cells. The graph indicates the statistical analysis (Student t test) of the 

percentages of B cells that switched to IgG1 in WT and KO; p-value from t-test is indicated. Error bars indicate 
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mean ±SD. d) Naïve B cells were labeled with cell trace violet (CTV) and stimulated for four days with anti-CD40 

and IL-4. CTV dilution was measured by flow cytometry. Results from three independent WT and KO mice are 

depicted. 

 

Figure 4: DOT1L-deficient B cells fail to mount an efficient immune response but show signs of plasma-cell 

differentiation upon challenge.  

a) Representative flow cytometry plots of splenic GC B cells 14 days after LCMV Armstrong infection in WT and 

Dot1L-KO mice and their statistical analyses. Error bars indicate mean with ±SD. b Representative flow cytometry 

plots of plasma cells B from the spleen at 14 days after LCMV infection and their statistical analyses. Error bars 

indicate mean with ±SD. c) LCMV-specific IgM and IgG titers in the serum of WT and KO mice before (D0) and 14 

days after (D14) infection; number indicates p-value of a Student t-test. Error bars indicate mean with ±SD. d) WT 

and KO mice were challenged with the model antigen 4-hydroxy-3-nitrophenylacetyl conjugated to chicken gamma 

globulin (NP-CGG). NP-specific IgG1 and IgM titers were quantified by ELISA from the serum isolated at the 

indicated days following immune challenge. Error bars indicate mean with ± standard error of mean (SEM). 

 

Figure 5: Transcriptome analysis of in-vitro activated B cells shows accelerated plasma-cell differentiation and 

compromised activation of MYC-target genes in the absence of DOT1L.  

a) MA-Plot of normalized RNA-Seq data showing differentially expressed genes (FDR < 0.05) between Dot1L-KO 

and WT B cells after two days of in vitro activation with LPS+IL-4. b Differential expression of Bach2, Prdm1 

(encoding BLIMP-1), CD138 and Myc transcripts are indicated as CPM after TMM normalization from WT and KO. 

Error bars indicate mean ±SD. c) BARCODE plot showing the enrichment of plasma-cell signature genes in KO as 

compared to WT activated B cells. d) BARCODE plot showing the enrichment of MYC-target genes in WT as 

compared to KO activated B cells. p values showing the statistical significance of enrichment of gene set calculated 

via FRY test are indicated. 

 

Figure 6:  DOT1L-mediated H3K79 methylation is associated with gene activity in B cells and indirectly promotes 

repression of PRC2 target genes.  
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a) Integrative analyses of differentially expressed transcripts (FDR < 0.05) from activated and naïve Dot1L-deficient 

B cells (left panel) with H3K79me2 ChIP values from WT activated and naïve B cells (right panel). b) The distribution 

of mean H3K79me2 amongst different gene sets from activated and naïve B cells as depicted by box-plots. c) 

Differential expression of Ezh2 and Cdkn1a is depicted as CPM after TMM normalization from WT and Dot1L-KO 

activated B cells. Error bars indicate mean ±SD. d) H3K79me2 methylation at the Ezh2 locus from WT activated and 

naïve B cells, as determined by reads per genomic content (RPGC); three independent replicates are shown. e) 

Scatter plot showing the correlation between expression of Ezh2 and Dot1L as depicted in TPM in different mature 

B-cell subsets; B1: B1 cells, MZB: Marginal Zone B, FOB: Follicular B, GCB: Germinal Center B, SPLPB: spleen plasma 

blast, SPLPC: spleen plasma cells) and Bone Marrow (BMPC: Bone marrow plasma cells) A20: Germinal Center like 

cell lymphoma cell line. f) Coverage plot of H3K27me3 from naïve B cells 66 and H3K79me2 (from WT naïve and 

activated B cells) flanking four kb around transcriptional start sites (TSS) for genes upregulated in KO (KO Gain) or 

non-differential Expression Matched genes is shown. Coverage was calculated as reads per genomic content cutoff 

at the 0.995th quantile and rescaled to a maximum of 1. 
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Table 1: Ingenuity Pathway Analysis of upstream transcriptional regulators that are differentially expressed in 

WT versus Dot1L knock-out naïve B cells (FDR < 0.05) 

Upstream  Expression Activation  p-value of  

Transcriptional  Log Ratio  z-score overlap 

Regulator (KO/WT)     

HIF1A -1.534 5.138 3.22E-10 

EZH2 -1.195 0.27 1.33E-04 

REL -1.146 1.685 9.25E-05 

TAF4B -1.042   3.96E-02 

IRF4 -1.038 -3.202 1.93E-03 

MED13 -0.978 -2.143 6.70E-03 

SIRT1 -0.973 -3.106 7.11E-09 

PURA -0.964 1.067 2.23E-03 

EBF1 -0.95 2.612 7.55E-08 
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Table 2: Surface markers for identification of specific cellular population 

Bone Marrow 

B cells CD19+B220+ 

Immature B cells CD19+B220lowIgM+ 

Mature B cells CD19+B220highIgM+ 

Pro B cells CD19+B220lowIgM-c-Kit+CD25- 

Pre B cells CD19+B220lowIgM-c-Kit-CD25+ 

Spleen 

B cells CD19+B220+ 

B1-a cells CD19+B220low 

T1 cells CD19+B220+CD23-/lowCD21/35-/lowIgMhigh 

T2 cells CD19+B220+CD23highCD21/35-/lowIgMhigh 

Marginal Zone 

progenitor 
CD19+B220+CD23highCD21/35highIgMhigh 

Marginal Zone B cells CD19+B220+CD23-/lowCD21/35highIgMhigh 

Follicular B cells CD19+B220+CD23highCD21/35lowIgM-/low 

Follicular B-I cells B220+CD93-/lowCD21/35lowIgMlowIgDhigh 

Follicular B-II cells B220+CD93-CD21/35lowIgMhighIgDhigh 

Germinal center B cells CD19+B220+PNA/GL7highCD95high 

Plasma cells CD19+B220+IgD-CD138+ 

T cells CD3+CD19- 

Peyer’s patches 

Germinal center B cells  CD19+B220+PNA/GL7highCD95high 
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Table 3: Antibodies used for flowcytometry 

Bone Marrow 

Antibodies  Flourophore Clone Dilution Vendor 

CD19 APC-H7 1D3 1:200 BD Pharmingen 

CD19 PerCpCy5,5 1D3 1:200 BD Pharmingen 

CD45R (B220) Pacific Blue RA3-6B2 1:200 BD Pharmingen 

IgM PECy7  11/41 1:200 eBioscience 

CD117 (cKit) APC 2B8 1:200 eBioscience 

CD25 PE PC61 1:200 Biolegend 

IgD FITC 11-26c.2a 1:200 BD Pharmingen 

DAPI     1:20 Sigma-Aldrich 

PI     1:20 Sigma-Aldrich 

Spleen 

Antibodies  Flourophore Clone Dilution Vendor 

Gl-7 FITC GL7 1:200 BD Pharmingen 

Peanut Agglutinin FITC   1:400 Vector 

CD23 BV421 B3B4 1:200 Biolegend 

CD19 PerCpCy5,5 1D3 1:200 BD Pharmingen 

CD19 APC-H7 1D3 1:200 BD Pharmingen 

CD19 A780 1D3 1:200 eBioscience 

CD95 Biotin 15A7 1:100 eBioscience 

CD95 PE Jo2 1:200 BD Pharmingen 

CD21/35 APC 7E9 1:200 Biolegend 

CD93 BV650 AA4.1 1:200 BD Pharmingen 

IgM BV785 II/41 1:200 BD Pharmingen 
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IgD BV650 11-26c.2a 1:200 Biolegend 

IgD PE 11-26C 1:800 eBioscience 

IgD AF-488 11-26c2a 1:200 eBioscience 

CD3 FITC 17A2 1:200 Biolegend 

CD3 AF488 145-2C11 1:200 eBioscience 

CD45R (B220) V500 RA3-6B2 1:200 BD Pharmingen 

CD45R (B220) PB RA3-6B2 1:200 BD Pharmingen 

CD45R (B220) APC RA3-6B2 1:200 BD Pharmingen 

CD45R (B220) BV510 RA3-6B2 1:200 Biolegend 

CD138 PE 281-2 1:200 BD Pharmingen 

CD138 BV605 281-2 1:200 Biolegend 

Strepavidin BV605   1:400 BD Pharmingen 

Zombie NIR     1:1000 Biolegend 

7AAD     1:500 Biolegend 

PI     1:20 Sigma-Aldrich 

DAPI     1:20 Sigma-Aldrich 

Peyer's Patches 

Antibodies  Flourophore Clone Dilution Vendor 

CD45R (B220) Pacific Blue RA3-6B2 1:200 BD Pharmingen 

CD19  PerCpCy5,5 1D3 1:200 BD Pharmingen 

IgM  APC Polyclonal 1:200 Southern Biotech 

Peanut Agglutinin FITC   1:400 Vector 

CD95 PE Jo2 1:200 BD Pharmingen 

DAPI     1:20 Sigma-Aldrich 
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Class switch recombination (In vitro) 

Antibodies  Flourophore Clone Dilution Vendor 

CD19 PerCpCy5,5  1D3 1:400 BD Pharmingen 

IgG1 PE 15H6 1:800 Southern Biotech 

IgM  APC Polyclonal 1:1000 Southern Biotech 

IgG3 PE Polyclonal 1:800 Southern Biotech 

DAPI     1:20 Sigma-Aldrich 

Plasma cells (In vitro) 

Antibodies  Flourophore Clone Dilution Vendor 

CD138  BV605 281-2 1:200 Biolegend 

CD45R (B220) BV510 RA3-6B2 1:200 Biolegend 

IgD  BV650 11-26c.2a 1:200 Biolegend 

Sca1 PeCy7 D7  1:200 Biolegend 

CD3e APC 145-2C11 1:200 BD Pharmingen 

Ter119  APC TER-119 1:200 BD Pharmingen 

Blimp* PE SE7 1:200 Biolegend 

Zombie NIR     1:1000 Biolegend 

* Intracellular         
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