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Key Message 25 

A 36-SNP diagnostic marker set has been developed for quality assurance and control to support 26 

global sweetpotato breeding optimization efforts. Breeding population structure is shaped by 27 

sweetpotato virus disease prevalence. 28 

Abstract 29 

Quality assurance and control (QA/QC) is an essential element of a breeding program’s 30 

optimization efforts towards increased genetic gains. Due to auto-hexaploid genome complexity, 31 

a low-cost marker platform for routine QA/QC in sweetpotato breeding programs is still 32 

unavailable. We used 662 parents of the International Potato Center (CIP)’s global breeding 33 

program spanning Peru, Uganda, Mozambique and Ghana, to develop a low-density highly 34 

informative single nucleotide polymorphism (SNP) marker set to be deployed for routine 35 

QA/QC. Segregation of the selected 30 SNPs (two SNPs per base chromosome) in a recombined 36 

breeding population was evaluated using 282 progeny from some of the parents above. The 37 

progeny were replicated from in-vitro, screenhouse and field, and the selected SNP-set was 38 

confirmed to identify relatively similar mislabeling error rates as a high density SNP-set of 39 

10,159 markers. Six additional trait-specific markers were added to the selected SNP set from 40 

previous quantitative trait loci mapping. The 36-SNP set will be deployed for QA/QC in 41 

breeding pipelines and in fingerprinting of advanced clones or released varieties to monitor 42 

genetic gains in famers fields. The study also enabled evaluation of CIP’s global breeding 43 

population structure and the effect of some of the most devastating biotic stresses like 44 

sweetpotato virus disease on genetic variation management. These results will inform future 45 

deployment of genomic selection in sweetpotato. 46 
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 60 

Introduction 61 

Development of user-friendly, low-cost, high-throughput markers for quality assurance and 62 

control (QA/QC) in a genomic-assisted breeding era is a critically important aspect in crop 63 

improvement and germplasm conservation (Semagn et al. 2012; Ndjiondjop et al. 2018). This 64 

is because genetic fidelity and trueness-to-type are often not phenotypically obvious. The use of 65 

molecular markers for QC/QA has been implemented in several plants and animals and single 66 

nucleotide polymorphism (SNP) markers have become the markers of choice in germplasm 67 

characterization and QA/QC (Ertiro et al. 2015). For example, Cullingham et al. (2013) 68 

developed transcriptome-derived SNP markers for cost-efficient forest seed stock identification, 69 

Frey et al. (2013) developed ‘near-minimal’ sets of SNPs to differentiate operational taxonomic 70 
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units in fruit flies, while Curk et al. (2015) developed species-diagnostic SNP markers to 71 

analyze admixture structure of varieties and rootstocks in citrus. Here we define QA and QC 72 

according to Gowda et al. (2017) who defined QA as the process or set of processes used to 73 

measure the quality of a product and QC as the process of ensuring products and services meet 74 

consumer expectations. In plant breeding, QA would refer to all measures put in place to prevent 75 

errors and create a high-quality variety, while QC is the process of identifying the defects or 76 

errors in the quality of the breeding line, germplasm accession, variety, or any other product 77 

from the breeding pipeline. Solid QA/QC procedures are critical in plant breeding, as errors in 78 

the process of developing new varieties can lead to wasted time and resources, and also to reduce 79 

and/or cancel out genetic gains achieved because of genotype mix-ups along the breeding 80 

pipeline. 81 

For most crops, the same SNP set can be used in a QA program to characterize germplasm, and 82 

study genetic diversity, genetic relationships and population structure, and in a QC program to 83 

evaluate genetic identity, genetic purity, parent-offspring identity, validation of crosses in 84 

nurseries and trait-specific testing (Ertiro et al. 2015; Gowda et al. 2017). Genotype 85 

misclassification is a common problem in most crops as has been reported in Oryza spp (Orjuela 86 

et al. 2014), Brassica spp (Mason et al. 2015) and sweetpotato (Ipomoea batatas; Gemenet et 87 

al. 2019a), and misclassification has consequences in breeding and variety development. QA/QC 88 

have become even more important with the advent of molecular markers for decision support in 89 

breeding programs. Whereas the importance of QC filtration methods for SNP markers are well 90 

established (Forneris et al. 2015; Jarquin et al. 2019) and methods put in place, QA/QC of the 91 

phenotypes that are combined with genotypes to predict performance are generally not very well 92 

established. The general lack of phenotype/genotype concordance has led to molecular decision 93 
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support tools for increasing genetic gains in plant breeding such as genomic selection not 94 

achieving their full potential. Although well acknowledged in human and animal genetic fields 95 

(Buyske et al. 2009; Smith et al. 2013), reports on the effects of poor QA/QC and genotype 96 

misclassification in plant breeding are generally lacking. With next- and third-generation 97 

sequencing methods enhancing rapid and cost-efficient development of large amounts of 98 

genomic data (van Dijk et al. 2018; Jarquin et al. 2019), one of the biggest challenges of plant 99 

breeding programs is putting in place highly precise mechanisms for QA/QC of the 100 

phenotyping/genotyping processes.  101 

Sweetpotato is a crop of increasing importance in sub-Saharan Africa (SSA) contributing to both 102 

food and nutritional security, from both adapted, starchy, white-fleshed varieties and new 103 

improved high β-carotene, orange-fleshed varieties (Mwanga et al. 2011; Low et al. 2009, 104 

2017). The International Potato Center (CIP), one of the centers of the Consultative Group on 105 

International Agricultural Research (CGIAR), runs a global sweetpotato improvement program. 106 

CIP is headquartered in Lima, Peru and has established three additional breeding support 107 

platforms in SSA. The support platform at Lima offers global technical support, while the east 108 

and central Africa platform focusses on end-user preferred varieties within this region including 109 

resistance to sweetpotato virus disease (SPVD), a major production constraint within the region. 110 

The southern Africa breeding support platform focusses on end-user preferred varieties in 111 

addition to drought tolerance which is the major production constraint in this region, while the 112 

west African support platform focusses on culinary aspects, especially the ‘less sweet’ 113 

sweetpotato which is preferred in this region (Low et al. 2017). Being mainly an auto-hexaploid, 114 

genomic-assisted breeding (GAB) tools are just starting to be mainstreamed into the breeding 115 

program due to genome complexity. Several genomic tools have been developed, in partnership 116 
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with several development partners and a molecular breeding team is currently stationed at CIP’s 117 

regional office for SSA in Nairobi, Kenya to facilitate this mainstreaming. Recently, the first 118 

attempt of QA/QC identified misclassification errors of about 30% in one breeding trial while 119 

germplasm moved from in-vitro to screenhouse to field (Gemenet et al. 2019a). That study, 120 

using high density SNP markers, recommended putting in place QA/QC measures to enhance the 121 

likelihood of success applying GAB in sweetpotato breeding. The main objectives of the current 122 

study were: i) to characterize breeding population parents from global support platforms for 123 

population structure, ii) to estimate allele diversity and linkage disequilibrium among the 124 

breeding population parents from the four global support platforms iii) to develop a low-cost 125 

diagnostic SNP set for rapid QA/QC of sweetpotato breeding populations.  126 

Materials and Methods 127 

Genetic materials 128 

We collected parents from all four global breeding support platforms of CIP: Peru, being the 129 

global support platform; Uganda, being the support platform for east and central Africa; 130 

Mozambique, being the support platform for southern Africa; and Ghana, being the support 131 

platform for west Africa. We had 331 parents from Peru, 126 parents from Uganda, 144 parents 132 

from Mozambique and 61 parents from Ghana, totaling 662 parents. The list of the breeding 133 

population parents is provided in Online Resource 1. Since our objective was to mainstream 134 

QA/QC in breeding trials, we used progeny from a breeding population to validate that the 135 

finally selected SNP set segregates in recombined individuals from parents. These validation 136 

materials were derived from a breeding population progeny developed from the east and central 137 

African support platform, named the Mwanga Diversity Panel (MDP) and described in Gemenet 138 

et al. (2019a). 139 
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Genotyping and SNP calling 140 

DNA from the breeding population parents was extracted at the Biosciences east and central 141 

Africa (BecA) laboratories based at the International Livestock Research Institute (ILRI), 142 

Nairobi. The extraction was done following a modified cetyl trimethylammonium bromide 143 

(CTAB) method optimized for sweetpotato. The DNA was treated for contaminating RNA using 144 

RNAse A, quantified and normalized using standard protocols. The DNA was then submitted for 145 

sequencing using the Diversity Array Technology’s DArTSeq method implemented by BecA’s 146 

Integrated Genotyping Service and Support platform (IGSS) as described by Kosmowski et al. 147 

(2018). IGSS is a subsidized genotyping platform supported by the Bill and Melinda Gates 148 

Foundation to enhance use of genomics in breeding for SSA. Sequencing was done at 96-plex, 149 

high density and SNP calling done using DArT’s proprietary software DArTSoft (Kosmowski et 150 

al. 2018), with aligning to the diploid reference genome of Ipomoea trifida, a relative of 151 

sweetpotato (Wu et al. 2018). Given that most commercial genotyping platforms have allele 152 

depth coverage ~25x to 30x, previous studies (Gemenet et al. under preparation) have shown 153 

that this depth of coverage is not adequate to call allele dosage with confidence in genotype 154 

quality for hexaploid sweetpotato. The study also showed that in such cases, ‘diploidized’ 155 

biallelic loci which are informative enough performed almost as well as data with high 156 

confidence dosage information. Therefore, biallelic markers used in this study were called in a 157 

diploidized version. A total of 9,670 SNP markers were obtained. Since the aim of the study was 158 

to develop a low-density SNP set for QA/QC, we stringently filtered the genotype data to ≤25% 159 

missingness (≥75% call rate), ≥0.25 polymorphic information content (PIC) and ≥10% minimum 160 

allele frequency (MAF), for further data analysis. The data is provided as Online Resource 2. 161 

Data analysis and validation 162 
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Population structure of International Potato Center’s breeding parents 163 

Since allele frequencies through genotype calling are biased when allele depth of coverage is 164 

relatively low (Maruki and Lynch 2017) and given that we used diploidized markers for a 165 

hexaploid, we used non-parametric methods as described by Gao and Starmer (2007), to 166 

estimate allele sharing distance (ASD). These methods do not assume Hardy-Weinberg 167 

equilibrium or linkage equilibrium and were implemented using the program AWClust 3.1. The 168 

phylogenetic tree was constructed using MEGA X program (Kumar et al. 2018). For allele 169 

diversity, Nei’s coefficients of inbreeding (FIS) (Nei 1977) and Wright’s inbreeding coefficients 170 

(FST or θ) according to Weir and Cockerham (1984), were estimated in R. Additionally, linkage 171 

disequilibrium (LD) between pairs of markers used for parental population structure was done 172 

using the LDheatmap package in R, with the option of estimating r2. 173 

Selection of a diagnostic SNP set 174 

Given that our objective was to develop a QA/QC SNP set that would be diagnostic for the 175 

global breeding population, we selected SNPs identified from parents as described above but also 176 

validated the selected SNPs using progeny from the recombined MDP breeding population. The 177 

MDP population was developed by crossing 16 parents from the east and central African support 178 

platform. The parents were crossed in 8*8 without reciprocals following a B*A pseudo-heterotic 179 

grouping based on genetic distance established by simple sequence repeat (SSR) markers (David 180 

et al. 2018). With about 30 genotypes per family on average leading to ~2000 genotypes, about 181 

5% of this population was selected for QA/QC, tracking the population from in vitro, through 182 

screen house and field (Gemenet et al. 2019a). To develop a rapid QA/QC intermediate marker 183 

set, we selected only high-quality SNP markers that were present in both the parents and the 184 

MDP breeding population progeny. The selected markers were confirmed if they kept the same 185 
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population structure of the parents and still identified the same error rate in the MDP population. 186 

Several studies have selected rapid QA/QC sets with as low as 10 SNP markers e.g. in Maize 187 

(Chen et al. 2016). However, the base chromosome number of sweetpotato is 15 and given that 188 

we were diploidizing hexaploid loci, our aim was to have a minimum of two markers per base 189 

chromosome. We performed principal component analysis of the intermediate marker set 190 

according to Chen et al. (2016), but no apparent grouping of the markers was determined. We 191 

therefore selected the final 30 SNP markers based on chromosome number and genetic distance, 192 

from an intermediate marker set of 85 SNP markers. To establish the utility of the 30 selected 193 

SNPs for rapid QA/QC, we compared the ASD of both parents and MDP populations based on 194 

the 30 selected SNPs and the ASD based on their respective original filtered marker sets (205 195 

SNPs for parents and 10,159 SNPs for MDP), using DARwin 6.0.21 tree comparison function 196 

(Perrier and Jacquemoud-Collet 2006). The data, including the parental Full-SNP set (9,670 197 

SNP), 205-SNP set, 85-SNP set, and 85-SNP set for MDP are provided in Online Resource 2. 198 

The full-SNP set for the MDP is published open-access together with Gemenet et al. (2019a).  199 

Results 200 

SNP profile from the parental population 201 

The high-density genotyping resulted in 9,670 SNP markers (Online Resource 2) from 662 202 

parents of CIP’s breeding population. With filtration of ≤25% missingness, ≥0.25 polymorphic 203 

information content (PIC) and ≥10% minimum allele frequency (MAF) and an average of 30x 204 

allele depth of coverage we recovered 205 SNP markers that were deemed appropriate for 205 

analysis of the breeding population structure. Fig. 1 shows quality attributes of the unfiltered and 206 

filtered SNP data. The number of filtered SNPs ranged from six to 18 per base chromosome. 207 
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Population structure of CIP’s Breeding Population 208 

We examined population structure of the parents using 205 SNP markers. As expected from a 209 

global breeding program, population structuring indicated evidence of germplasm transfer 210 

among the breeding support platforms, although there was also evident local adaptation to each 211 

support platform (Fig. 2). The global support platform in Peru had the highest number of parents 212 

in the current study. Clustering showed that there is a group of parents from Peru that are closely 213 

related to African breeding parents especially those from Ghana and Mozambique. However, an 214 

additional group was only unique to Peru (Fig. 2). This group can also be seen between the first 215 

and second dimensions of a 2D multidimensional scale (Online Resource 3). The east and 216 

central Africa support platform in Uganda had a distinct group of parents but also a small 217 

admixed group with Mozambique (Fig. 2). The Uganda platform did not have a lot of admixtures 218 

from Peru. Given that the west African support platform was recently established (ca. 2010), and 219 

is the smallest in terms of size, the clustering indicates intake of breeding materials from other 220 

breeding support platforms especially from Mozambique and Peru, with minimal transfer to 221 

Ghana from Uganda. However, on a higher level, the structure can be generalized into two, with 222 

one cluster made up of materials from Peru and Ghana, and the other made up of materials from 223 

Uganda, Mozambique and Peru. 224 

Allele diversity and linkage disequilibrium 225 

Nei’s coefficients of inbreeding indicated an average of FIS = 0.14 across all populations and that 226 

parents from Uganda had the highest inbreeding coefficient FIS = 0.33, followed by Mozambique 227 

with FIS = 0.24. Ghana, followed by Peru had the lowest coefficients of inbreeding at FIS = 0.008 228 

and FIS = 0.07, respectively. The estimated variance components and fixation indices showed 229 

that the correlation of genes within individuals or inbreeding was F = 0.18, the correlation of 230 
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genes in different individuals within the same population was θ = 0.07, and the correlation of 231 

genes within individuals within populations f = 0.12. Comparing θ values (FST) between pairs of 232 

populations (support platforms in this case) showed that Uganda was the most distinct group 233 

with θ = 0.08, θ = 0.09, and θ = 0.1 with Ghana, Mozambique and Peru, respectively. The paired 234 

θ values among Ghana, Mozambique, and Peru were fairly consistent ranging from θ = 0.041 to 235 

θ = 0.049. Data is summarized in Table 1. Analysis of LD indicated minimal LD among the SNP 236 

markers used with the genome-wide LD having an average r2 ≤ 0.1. LD per chromosome is 237 

presented in Fig. 3. The results show that very few loci were in LD at r2 ≥ 0.1, as majority of loci 238 

within a chromosome also had r2 ≤ 0.1. This data indicated that the data set was adequate for 239 

analyzing population structure. 240 

Identifying diagnostic markers for routine quality assurance and control of breeding 241 

populations 242 

To develop QA/QC diagnostic markers from parents that can be used in routine QA/QC of 243 

breeding populations, we added an additional filtering step to the QA/QC parent SNP markers so 244 

as to include only those markers that were also present in genotypic data developed from a 245 

breeding population progeny (MDP). A random 5% (94 genotypes) of the MDP population had 246 

previously been genotyped for QA/QC and genetic fidelity as the population passed through in 247 

vitro, screenhouse and to the field experiments, using the same genotyping platform. The 248 

genotyping had been done at high density with approximately 41k SNPs filtered down to 10,159 249 

SNPs. Genotype misclassification in the population was then previously estimated based on 250 

10,159 SNPs (Gemenet et al. 2019a), which is ‘rich’ for routine QA/QC within most breeding 251 

programs. The desired low-cost, low-density QA/QC SNP set was therefore selected based on 252 

the following criteria: i) ~30x allele depth of coverage; ii) ≥75% call rate; iii) ≥0.25 PIC; iv) 253 
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≥10% MAF; v) chromosome position known; vi) be present in a randomly selected population of 254 

progeny. This resulted in further filtration of the 205 SNP markers used for population structure 255 

of the parents above, down to 85 SNP markers (Online Resource 2), which could be used for 256 

‘general QC’ in the sweetpotato breeding programs as proposed by Chen et al. (2016). However, 257 

for routine QC, this marker number is still probably too high for most breeding programs. 258 

Principal component analysis of the 85 markers did not show any specific grouping of markers, 259 

with PC1 and PC2 only explaining 9.1% of the variation (Online Resource 4). Therefore, the 260 

final 30 SNP markers were selected based on genetic distance per chromosome. The set of 85 261 

markers were not evenly distributed for all chromosomes and chromosome 15 had only one 262 

marker. To achieve the target of two markers per base chromosome, we selected one marker 263 

from the original set of 205, based on genetic distance relative to the one marker present in the 264 

set of 85. Comparing the population structure of the parents using 205, 85 and 30 SNP markers 265 

indicated that the 30 markers kept the general structure of the populations, though the clustering 266 

was considerably different compared with the use of 205 SNPs (Fig. 4). Comparing trees 267 

indicated that the tree developed with 205 SNPs was 17.1% different from the tree with 30 SNPs 268 

when strict conditions were used. For validation of the selected marker set, we also compared the 269 

level of error identified in the breeding population progeny (MDP) using 10,159 SNPs, 85 SNPs 270 

and 30 SNPs (Fig. 5). Results show that 10,159 SNPs identified 27.7% misclassification, 85 271 

SNPs identified 29.8% misclassification and 30 SNPs identified 31.9% misclassification. Tree 272 

comparison between 10,159 SNPs and 30 SNPs indicated that they were 24.6% dissimilar when 273 

strict conditions were applied. Combined, these results suggest that the selected 30 SNPs could 274 

be used as a cost-effective rapid QA/QC set for sweetpotato in CIP’s breeding populations. The 275 

selected SNPs are listed in Table 2. 276 
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Addition of trait specific markers to the selected QC set 277 

Previous studies had mapped quantitative trait loci (QTL) for yield and component traits 278 

(Pereira et al. 2019; Gemenet et al. 2019a) as well as quality-related traits (Gemenet et al. 279 

2019b). From these QTL mapping results, we selected six SNP markers that were associated 280 

with dry matter, starch, β-carotene, flesh color and total root yield. The markers labeled ‘trait 281 

specific’ are shown in Table 2. The first four traits were selected because they are correlated and 282 

important contributors to culinary traits that affect adoption of new varieties in sweetpotato. Dry 283 

matter and starch are positively correlated but are negatively correlated to both β-carotene and 284 

flesh color, and this negative correlation affects ‘culinary quality’. Additionally, these traits are 285 

oligogenic hence results are repeatable within the QTL. Total storage root yield was selected as a 286 

primary trait and the selected marker of a QTL was found to be a constitutive marker for this trait 287 

across several environments based on multi-environment testing of a full-sib population 288 

(Gemenet et al. 2019a).  289 

Discussion 290 

Our genotyping efforts resulted in less than 10,000 bi-allelic SNP markers. Stringent filtering 291 

resulted in an even smaller data set of 205 SNP markers. The considerable reduction in highly 292 

informative markers can be associated with the difficulty in genotyping polyploids. With a 293 

mostly auto-hexaploid genome (Wu et al. 2018), sweetpotato presents allele dosage uncertainty 294 

due to ambiguous copy numbers of each allele. Additionally, the assumption of random 295 

inheritance of alleles may not hold true in this case due to uncharacterized consequences of 296 

whole genome duplication (Blischak et al. 2016, 2018). DArTSeq implements new protocols of 297 

sequencing complexity reduced representations (Altshuler et al. 2000) in combination with the 298 

next-generation sequencing methods (Baird et al. 2008; Elshire et al. 2011). Implementing 299 
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genotyping-by-sequencing-like procedures, DArTSeq involves a two-restriction enzyme system 300 

composed of a ‘rare-cutter’ and a ‘common-cutter’, mainly Pst1-Mse1, to enhance uniform 301 

complexity reduction within the genome (Poland et al. 2012; Brouard et al. 2017). In such 302 

next-generation sequencing methods, depth of sequencing determines genotyping quality as low 303 

depth of coverage results in genotyping errors, misalignments and a lot of missing data which 304 

eventually cause biases in downstream population-genetic analyses (Fumagalli 2013; Maruki 305 

and Lynch 2017; Crawford and Lazzaro 2012). For instance, Ashraf et al. (2016) showed that 306 

low sequencing depth resulted in SNPs that underestimated genomic heritability due to 307 

overestimation of inbreeding and underestimation of heterozygosity in rye-grass. We chose to 308 

use ‘diploidized’ data in the current analysis because the depth of coverage from most 309 

genotyping platforms is not adequate to reliably characterize heterozygous loci, such as those 310 

likely to be found in polyploids, for which deep sequencing is required (Fresnedo-Ramirez et 311 

al. 2019). Furthermore, analyses comparing genotypic data from DArT-Seq and those from a 312 

deep sequencing optimization platform for sweetpotato called GBSpoly (Wadl et al. 2018) have 313 

confirmed that highly informative ‘diploidized’ DArTseq data performed just as well as high 314 

confidence data with dosage in genomic predictions of sweetpotato depending on trait 315 

architecture (Gemenet et al. under preparation).  316 

Population structure as well as allele diversity analyses in the current study indicated that 317 

parental genotypes from Uganda were the more distinct and inbred. This observation can be 318 

associated with the high sweetpotato virus disease (SPVD) pressure around the lake region of 319 

eastern Africa and a general lack of germplasm with high levels of resistance to SPVD 320 

necessitating the use of the same lines frequently as parents in the Ugandan breeding program 321 

(Gibson et al. 1998a, 1998b; Ndunguru et al. 2009). SPVD is the most important virus 322 
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complex in SSA and its effects are most pronounced in east Africa, causing yield loses of about 323 

56-98% in farmers fields (Mukasa et al. 2003; Ndunguru and Kapinga 2007). Gruneberg et 324 

al. (2015) noted that SPVD prevalence in east Africa resulted in the failure of nearly all orange-325 

fleshed varieties introduced into this region. SPVD is caused by a synergistic and complex 326 

infection by sweetpotato feathery mottle virus and sweetpotato chlorotic stunt virus, transmitted 327 

by aphids and white-flies, respectively (Mwanga et al. 2002). Clarke et al. (2012) indicated that 328 

different regions have different strains of the individual virus, and that east Africa has distinct 329 

strains. Studies have also showed that sweetpotato chlorotic stunt virus strains are more related 330 

in east and southern Africa and are distinct from those in the other regions of the world (Hoyer 331 

et al. 1996). These results are supported by our current population structuring which shows that 332 

Uganda has some ad-mixing with Mozambique, but very little admixing with either Peru or 333 

Ghana. These results have implications extending to other breeding decisions such as 334 

determining the effective population sizes especially for the Uganda breeding platform where 335 

migration of germplasm into the platform is restricted due to SPVD. 336 

Different alleles are represented in different genetic backgrounds and our results show allele 337 

diversity between other support platforms with especially the Uganda population. Therefore, 338 

understanding population diversity especially of a global breeding program is important for 339 

breeding decisioning. Breeding programs are currently moving towards genomics-assisted 340 

breeding (GAB). Repeatability of quantitative trait loci in different genetic backgrounds is one 341 

prerequisite for the success of GAB methods such as QTL mapping, genome-wide association 342 

mapping, and genomic selection (Azevedo et al. 2017; Wientjes et al. 2018). In genome-wide 343 

association mapping, accounting for population structure avoids false positives and allows 344 

selection of causative variants, while accurate prediction of untested future genotypes in genomic 345 
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selection is only possible when familial relatedness is accounted for, allowing for a reliable 346 

association between markers and QTL (Daetwyler et al. 2012). In the case of our global 347 

breeding population, the current information will be important when designing a genomic 348 

selection scheme to facilitate decisions such as prediction within or across sub-populations. 349 

Similarities and differences in genetic architecture of complex traits between populations can 350 

also be understood by studying the genetic correlation between the populations (Wientjes et al. 351 

2018). Our results indicate that the Ugandan sub-population was also the most distinct from the 352 

three others when θ values (FST) between pairs of populations was examined. This would imply 353 

that predictions may be carried out separately for the Ugandan populations in future GAB 354 

activities, while the predictions may be tested across the platforms in Peru, Mozambique and 355 

Ghana, given similar environmental conditions. Since GAB requires that markers be in LD with 356 

QTL, our results indicating very minimal LD among markers confirm that this marker density is 357 

not enough for making selection decisions (Flint-Garcia et al. 2003; Vos et al. 2017). Although 358 

the number of markers used in the current study are adequate for the purposes of the current 359 

objectives of population structuring, more dense markers along the genome will be required to 360 

reliably study the LD decay in sweetpotato. However, ‘high density’ has cost implications and 361 

hence the optimum number of markers required for routine GAB use will need to be reliably 362 

estimated through reducing within-haplotype density by selecting the minimum number of 363 

markers that can define common haplotypes (Meng et al. 2003).  364 

In the current study, we used filtration and validation methods of DArTSeq developed markers to 365 

select a marker set of 30 SNPs that can be used for QA/QC purposes in sweetpotato. Our 366 

selection of informative markers included considerations for depth of coverage, missingness, 367 

chromosome position, genetic distances, validation for repeatability in progeny and inclusion of 368 
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trait specific markers to result in a total of 36 SNPs. Development of SNP sets for QA/QC has 369 

been done in several crops. Extensive tests were carried out to develop a SNP set for ‘broad’ and 370 

‘rapid’ QC in maize (Chen et al. 2016). In their study, they showed that marker coverage 371 

between 2 and 15, markers with less than 20% missing values, including markers with 372 

chromosome positions, markers with less than 6% heterogeneity, inclusion of trait specific 373 

markers, and selection of markers from groups based on average group distance gave the best 374 

marker set towards developing a ‘rapid’ QC set, using DArTSeq markers. Prior to this, Semagn 375 

et al. (2012), used about 1,597 SNP markers from the KASPar and GoldenGate platforms to 376 

select highly informative markers for low-cost QC genotyping in maize. They recommended a 377 

set of 50-100 SNPs for routine QC after finding about 29% heterogeneity in inbred lines. In rice, 378 

Ndjiondjop et al. 2018 recommended a subset of 24-36 SNP markers filtered from DArTSeq 379 

developed markers for genetic purity analyses. In sweetpotato, QA/QC problems have recently 380 

been acknowledged (Gemenet et al. 2019a) by monitoring the rate of misclassification as 381 

materials moved through different stages of breeding trialing. That study indicated about 30% 382 

misclassification issues in one breeding population. QA/QC in sweetpotato breeding trials will 383 

improve precision and breeding efficiency through use of new methods like forward breeding 384 

and genomic selection currently being adopted by CGIAR programs. These new breeding 385 

strategies are aimed towards increasing the rate of genetic gains from breeding to address issues 386 

related with population increase and climate change. Therefore, QA/QC of breeding processes 387 

will improve the likelihood of success.  388 

Since the real impact from breeding can only be measured by the improvements observed in 389 

farmers’ fields, controlling and assuring the quality of finished varieties is important to breeding 390 

programs. Issues with QA/QC of released varieties have been reported in sweetpotato and this is 391 
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exacerbated because the extent of adoption of new varieties cannot be determined accurately 392 

especially with informal seed systems where genetic integrity is seldom considered (Namanda 393 

et al. 2011). In Ethiopia, Kosmowski et al. (2018) used 17,220 DArTSeq developed markers to 394 

establish that about 20% of farmers confused local varieties for improved varieties and vice 395 

versa, and that farmers assigned different local names to the same variety or vice versa. Their 396 

study confirmed that data from survey studies (Labeyrie et al. 2014; Wossen et al. 2017) were 397 

mostly unreliable. Despite this important revelation, high density genotyping at 17,220 markers 398 

is not amenable for widespread routine use, therefore leaving household surveys as the 399 

predominant way of carrying out adoption studies. The currently developed marker set will 400 

therefore be useful in addressing also adoption-related needs in sweetpotato.  401 

Towards increasing genetic gains in the sweetpotato breeding programs, QA/QC will need to be 402 

combined with other approaches of optimizing breeding schemes. 403 

Data Availability 404 

All data associated with this manuscript are provided together with the manuscript as 405 

supplementary (Online Resource 2). 406 

Figure Captions 407 

Fig. 1 Quality attributes of unfiltered (9,670; Top) and filtered (205; Bottom) SNPs from 408 

DArTSeq indicating call rate (A), frequency of homozygotes for the reference allele (B), 409 

frequency of homozygotes for the alternative allele (SNP; C), frequency of heterozygotes in the 410 

data (D), polymorphic information content of the SNP (E), and average polymorphic information 411 

content between reference and SNP alleles (F) 412 
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Fig. 2 Phylogenetic tree (Neighbor-Joining) showing the population structure of the International 413 

Potato Center (CIP)’s global breeding parents. Genotypes in Black represent parents from the 414 

global support platform in Peru, genotypes in Blue represent parents from the southern Africa 415 

support platform in Mozambique, genotypes in Green represent parents from the east and central 416 

Africa support platform in Uganda, while genotypes in Red represent parents from the west 417 

African support platform in Ghana. The tree was developed using MEGA X. 418 

Fig. 3 Linkage disequilibrium among 205 markers used in population structure analysis, 419 

analyzed per chromosomes for the 15 base chromosomes of hexaploid sweetpotato 420 

Fig. 4 Phylogenetic trees (Neighbor-Joining) comparing the clustering of the International Potato 421 

Center (CIP)’s breeding parents using 205 highly informative SNP markers (left), 85-SNP 422 

intermediate marker set (center) and the 30-SNP selected QA/QC set markers (right). Genotypes 423 

in Violet represent parents from the global support platform in Peru, genotypes in Green 424 

represent parents from the southern Africa support platform in Mozambique, genotypes in 425 

Orange represent parents from the east and central Africa support platform in Uganda, while 426 

genotypes in Blue represent parents from the west African support platform in Ghana. Trees 427 

were developed using DARwin 6.0.21 428 

Fig. 5 Sankey diagrams showing mislabeling error as Mwanga diversity Panel (MDP) population 429 

moved from in-vitro to screen house to field, based on 10,159 SNPs, 85-SNP intermediate 430 

marker set and 30-SNP selected quality control (QC)-set. The Pink color indicates those that did 431 

not cluster (with mislabeling errors) while the grey color indicates those that clustered as 432 

expected, implying no mislabeling errors 433 

Online Resource Captions 434 
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Online Resource 1 List of parental genotypes from the International Potato Center (CIP)’s 435 

global breeding program indicating breeding support platform of origin. 436 

Online Resource 2 DArTSeq data used in the current study in separate excel sheets showing the 437 

original data set of 9,670 SNPs (Parents-Full), 205 stringently filtered and highly polymorphic 438 

SNPs (Parents-205), 85-SNP intermediate with highlighted 30-SNP selected QA/QC set based 439 

on parents (Parents-85&Selected QC Set), and 85-SNP intermediate marker set with highlighted 440 

selected QA/QC set based on the progeny of the Mwanga Diversity Panel (MDP-85&Selected 441 

QC Set) 442 

Online Resource 3 Two-dimensional figure from multidimensional scaling of the International 443 

Potato center (CIP)’s global sweetpotato breeding parents as observed using 205 highly 444 

informative SNP markers 445 

Online Resource 4 Principle component analysis (PCA) carried out on 85-SNP intermediate 446 

marker set to check for possible groupings to aid the selection of a 30-SNP quality control 447 

marker set 448 
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Table 1. Allelic diversity parameters among parents of the International Potato Center (CIP)’s 619 

breeding parents from Ghana, Mozambique, Peru and Uganda. 620 

 621 

Nei's FIS 
Ghana Mozambique Peru Uganda Average 

0.008 0.24 0.07 0.33 0.14 
Variance and fixation indices 

F=0.18 θ=0.07 f=0.12 
FST (θ) among pairs of populations 

  Ghana  Mozambique Peru Uganda 
Ghana 0 
Mozambique 0.049 0 
Peru 0.046 0.041 0 
Uganda 0.08 0.09 0.1 0 

 622 
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Table 2 Details of the 36 SNPs selected for ‘rapid QC’ in sweetpotato. AlleleID refers to the identity of the specific allele on the 623 

DArT platform, AlleleSeq refers to the flanking sequence of the SNP, Chr indicates the chromosome number, Pos indicates the 624 

position of a SNP on the specific chromosome, SNP is single nucleotide polymorphism 625 

No AlleleID AlleleSeq Chr Pos SNP 

1 7557698|F|0-64:T>A-64:T>A TGCAGATAATAATACAAAACGTGATTTCTATTGTGCACCTAGAAGTGAGCAGAGTTGTCTGCCATAAGT Chr01 30898063 64:T>A 

2 100736260|F|0-18:C>T-18:C>T TGCAGTCAGCGACTCTCTCCAATGATATTCTTCTTCTGGAGCTGAGTGGAACTTCTTTCTTTGATTCTA Chr01 881461 18:C>T 

3 7629110|F|0-28:G>T-28:G>T TGCAGTCTTTGCTCTCAAAAGTTTCTTTGGAGTTCTCATATGAATTCTGAACATCACTAATTTGGATTG Chr02 13184152 28:G>T 

4 7609930|F|0-10:T>G-10:T>G TGCAGTCATCTGTTTGTCTGAAGCAATTAGCCTATGATCTTGTTGAGCTGCTGTTGTCATCTGCATTTC Chr02 6247633 10:T>G 

5 7629039|F|0-39:A>T-39:A>T TGCAGTACAGAAAACCAACCAGCAGAAGATAATTTTTATAATGAACAGCTCAGGAACCCAGTTGGCTAG Chr03 24217089 39:A>T 

6 7561292|F|0-28:A>G-28:A>G TGCAGTTGACTCATCCCAACCGACCTACACATTATCAAAACAATTACAGATCGGAAGAGCGGTTCAGCA Chr03 3304180 28:A>G 

7 11826044|F|0-66:G>A-66:G>A TGCAGTCCATATCAGAATGACAATTCTGTAGAGATTGCACAATCCTTTGGGTTTTCTTCTGCGTACGAT Chr04 31341133 66:G>A 

8 7569592|F|0-50:G>A-50:G>A TGCAGAAGATGGTGGTTGCGACAGAATGAAAGAATGGAGTAAGCAGAGAAGGCCATTACCCCTTCTGAT Chr04 5305718 50:G>A 

9 7552489|F|0-18:T>G-18:T>G TGCAGATAAAAGGTAAAATCAAACCACAAATCTAACTGTCCTCTACATTCCTTTCTATCAAATATTTGG Chr05 24475925 18:T>G 

10 7562059|F|0-41:A>G-41:A>G TGCAGATGAAATGAAATGAAAACTTTTAGTGCATATCATGTAAGCAATGTAATTGAAATCCACTAAGAG Chr05 892499 41:A>G 

11 9847708|F|0-17:G>C-17:G>C TGCAGAAAAACATACGCGGTGGATTGATGGTTCTCAAACAAATGGAAGATGCAGAAGTGAAACCTGACT Chr06 19672316 17:G>C 

12 7558428|F|0-52:C>T-52:C>T TGCAGCTACAACTTTGACAAGCTGGCATCTATTAGTTACGTTTTGTTCCCTTCATGTGGCACTCTTGAT Chr06 4639839 52:C>T 

13 9845663|F|0-25:T>G-25:T>G TGCAGTTTATCTAAGTAAGATGATATTCAGCGAGATGAAAACCCTAGGATGAGTGTGAAGGAATACAAG Chr07 23485155 25:T>G 

14 7618077|F|0-38:G>A-38:G>A TGCAGATCTTGAGCAGGTTGTAAATAAAGTGTGAGAGTGAATTAGTTACCACAATTCTTGTAAATTTAG Chr07 5042144 38:G>A 

15 100588703|F|0-44:T>C-44:T>C TGCAGGCAACTTTATTGAAATGTTGACTAAAATCTTGTTTTCTGTCAAGCTTCAACATAGACCTCATTG Chr08 15171824 44:T>C 

16 100512185|F|0-24:A>G-24:A>G TGCAGTATCCGAAATCCCTTTCCAAATGTTTGCTTATAAGCTGGTTGAGAAGGAGAAAAGTTTAGGGAA Chr08 6218106 24:A>G 

17 7568783|F|0-21:T>A-21:T>A TGCAGTGCATGCATGAGCCTCTGGCAACGTTGAGAAGTCACCCGCTTGCAGTTTCTCGGTCACGTCGGT Chr09 22534529 21:T>A 

18 14313832|F|0-18:G>A-18:G>A TGCAGATATAATGAAAAAGCACATAAAAAGTGACAAGAAATTATCAAATTAGGTACACTTGCTGCATCT Chr09 520352 18:G>A 

19 7554048|F|0-9:G>A-9:G>A TGCAGTATCGAAAGCAATGTCTTTGGTCTTCTTGTTAGGTTTCTCTTCCTTTTCCATTTCTATTTCACA Chr10 4446069 9:G>A 

20 7574585|F|0-20:A>G-20:A>G TGCAGAAACTCCCAAAGGAGATAGGAAATTTGCATCATCTAAGGTACATTGATTTACAGATCGGAAGAG Chr10 6952705 20:A>G 

21 7619107|F|0-63:G>T-63:G>T TGCAGTGACGATTCTTCCAATTAGCTCTTCTGCCCTTGAACAACAATCAAACATAACTAGCTTGCTGTT Chr11 18928235 63:G>T 

22 7611165|F|0-24:G>T-24:G>T TGCAGTCAATCAGATAGAACAATCGTTTAGTCTTTAGTTATGGTGATTGATAGGGGGAGTATACGATTA Chr11 2783237 24:G>T 

23 7558251|F|0-66:C>A-66:C>A TGCAGCCACGTGACACCAACAAACCCCTATTTTTCCGCCCAGTTTTGTTCTCACTTGGCGGGAAACCCC Chr12 1719732 66:C>A 

24 7619930|F|0-17:C>A-17:C>A TGCAGAGGATAAAAGTTCTGTACCCAAACAGGGGCTTTTTACAGATCGGAAGAGCGGTTCAGCAGGAAT Chr12 24038510 17:C>A 

25 7562142|F|0-54:C>T-54:C>T TGCAGATTGTGTAATCCCTTTAGAGTCAGCAACAGAGGCACTCTCGGTGATTCTCTTCTCATTATTATC Chr13 22402544 54:C>T 

26 100589662|F|0-45:C>T-45:C>T TGCAGTAATGATTTGGATATAGCACATACACATATAAATTATATACAATATAGTATTATTTTCAGCAAA Chr13 7074575 45:C>T 

27 100619651|F|0-17:C>T-17:C>T TGCAGTTGCTTAGCTTCCGCTACTTTGTTGGGTGGCCTTCTCTTTGCAGGTAATTTGAAGTACTAATCA Chr14 17915206 17:C>T 
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No AlleleID AlleleSeq Chr Pos SNP 

28 15728547|F|0-52:T>A-52:T>A TGCAGTTTTATTGAAGCTGAAAGTTTGATCAGAGAGGGAGAGAGAGTTTGAGTGAGGAAAAGAATGAAG Chr14 3121906 52:T>A 

29 7559173|F|0-7:T>C-7:T>C TGCAGTATATGTATTATCAAATATGTGAAACGAGAATGATGACAGGTCAATCTAGAAGTGTAGCACATT Chr15 11417254 7:T>C 

30 9845617|F|0-25:C>A-25:C>A TGCAGTTCCTGCACTTCCAGTGAACCCCGATATATATGCTCTCCGCATATAACACTCAGCAATGAATTC Chr15 8808402 25:C>A 

Trait-Specific Markers 

  Trait Genetic Position Chr Pos SNP 

31 Dry matter & Starch 37.44 Chr03 3185578 C>T 

32 

β-Carotene & Flesh 

color 36.14 Chr03 2994719 C>G 

33 

β-Carotene & Flesh 

color 146.02 Chr12 22131994 G>A 

34 Starch 147.31 Chr12 22197168 T>A 

35 Dry matter 150.05 Chr12 22369268 A>T 

36 Storage root yield 4.19 Chr15 452966 A>C 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 
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