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ABSTRACT 11 

 12 

Malignant progression of normal tissue is typically driven by complex networks of somatic 13 

changes, including genetic mutations, copy number aberrations, epigenetic changes, and 14 

transcriptional reprogramming. To delineate aberrant multi-omic tumor features that correlate with 15 

clinical outcomes, we present a novel pathway-centric tool based on the multiple factor analysis 16 

framework called padma. Using a multi-omic consensus representation, padma quantifies and 17 

characterizes individualized pathway-specific multi-omic deviations and their underlying drivers, 18 

with respect to the sampled population. We demonstrate the utility of padma to correlate patient 19 

outcomes with complex genetic, epigenetic, and transcriptomic perturbations in clinically 20 

actionable pathways in breast and lung cancer. 21 
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2 

BACKGROUND 27 

 28 

Large sets of patient-matched multi-omics data have become widely available for large-scale 29 

human health studies in recent years, with notable examples including the The Cancer Genome 30 

Atlas (TCGA)1 and Trans-omics for Precision Medicine (TOPMed) program. The increasing 31 

emergence of multi-omic data has in turn led to a renewed interest in multivariate, multi-table 32 

approaches2 to account for interdependencies within and across data types3. In such large-scale 33 

multi-level data, there is often limited or incomplete a priori knowledge of relevant phenotype 34 

groups for comparisons, and a primary goal may be to identify subsets of individuals that share 35 

common molecular characteristics, design therapies in the context of personalized medicine, or 36 

identify relevant biological pathways for follow-up. With these goals in mind, many multivariate 37 

approaches have the advantage of being unsupervised, using matched or partially matched omics 38 

data across genes, obviating the need for predefined groups for comparison as in the framework 39 

of standard differential analyses. A variety of such approaches has been proposed in recent 40 

years. For example, Multi-omics Factor Analysis (MOFA) uses group factor analysis to infer sets 41 

of hidden factors that capture biological and technical variability for downstream use in sample 42 

clustering, data imputation, and sample outlier detection4. 43 

 44 

In multi-omic integrative analyses, an intuitive first approach is to consider a gene-centric analysis, 45 

as we previously proposed in the EDGE in TCGA tool5. Expanding such analyses to the pathway-46 

level is also of great interest, as it can lead to improved biological interpretability as well as 47 

reduced or condensed gene lists to facilitate the generation of relevant hypotheses. In particular, 48 

our goal is to define a method that quantifies an individual’s deviation from a sample average, at 49 

the pathway-level, while simultaneously accounting for multiple layers of molecular information. 50 

Several related approaches for pathway-specific single-sample analyses have been proposed in 51 

recent years6–8. For example, PARADIGM7 is a widely used approach based on structured 52 
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probabilistic factor graphs to prioritize relevant pathways involved in cancer progression as well 53 

as identify patient-specific alterations; both pathway structures and multi-omic relationships are 54 

hard-coded directly in the model, but it requires a discretization of the data and is now a closed-55 

source software, making extensions and application to other gene sets difficult. Pathway 56 

relevance ranking9 integrates binarized tumor-related omics data into a comprehensive network 57 

representation of genes, patient samples, and prior knowledge to calculate the relevance of a 58 

given pathway to a set of individuals. A pathway-centric supervised principal component-based 59 

analysis implemented in pathwayPCA10 performs gene selection and estimates latent variables 60 

for association testing with respect to binary, continuous, and survival outcomes within each set 61 

of omics data independently. Pathifier6 instead seeks to calculate a personal pathway 62 

deregulation score (PDS), based on the distance of a single individual from the median reference 63 

sample on a principal curve; this principal curve approach is analogous to a nonlinear principal 64 

components analysis (PCA), but can be applied only to a single-omic dataset (e.g., gene 65 

expression). For both PARADIGM and Pathifier, clusters of scores across pathways are shown 66 

to correlate with clinically relevant clustering of patients.  67 

 68 

Here, we extend the basic philosophy of the Pathifier approach to multi-omics data, using an 69 

innovative application of a Multiple Factor Analysis (MFA), to quantify individualized pathway 70 

deviation scores. In particular, we propose an approach called padma (“PAthway Deviation scores 71 

using Multiple factor Analysis”) to characterize individuals with aberrant multi-omic profiles for a 72 

given pathway of interest and to quantify this deviation with respect to the sampled population 73 

using a multi-omic consensus representation. We further investigate the following succession of 74 

questions. In which pathways are high deviation scores strongly associated with measures of 75 

poor prognosis? For such pathways, which specific individuals are characterized by the most 76 

highly aberrant multi-omic profile? And for such individuals, which specific genes and omics drive 77 

large pathway deviation scores? By providing graphical and numerical outputs to address these 78 
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questions, padma represents both an approach for generating hypotheses as well as an 79 

exploratory data analysis tool for identifying individuals and genes/omics of potential interest for 80 

a given pathway.  81 

 82 

There is already some precedent for using MFA to integrate multi-omic data, although existing 83 

approaches differ from that proposed here. For instance, de Tayrac et al. suggested using MFA 84 

for paired CGH array and microarray data, superimposed with functional gene ontology terms, to 85 

highlight common structures and provide graphical outputs to better understand the relationships 86 

between omics11. In addition, padma shares some similarities with a recently proposed integrative 87 

multi-omics unsupervised gene set analysis called mogsa, which is similarly based on a MFA12. 88 

By calculating an integrated multi-omics enrichment score for a given gene set with respect to the 89 

full gene list, mogsa identifies gene sets driven by features that explain a large proportion of the 90 

global correlated information among different omics. In addition, these integrated enrichment 91 

scores can be decomposed by omic and used to identify differentially expressed gene sets or 92 

reveal biological pathways with correlated profiles across multiple complex data sets. However, 93 

the fundamental difference in the two approaches is that mogsa evaluates pathway-specific 94 

enrichment with respect to the entire set of genes, while padma instead focuses on identifying 95 

and quantifying pathway-specific multi-omic deviations between each individual and the sampled 96 

population.  97 

 98 

RESULTS AND DISCUSSION 99 

 100 

Description of the approach 101 

 102 

Pathway-centric multiple factor analysis for multi-omic data 103 

 104 
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MFA represents an extension of principal component analysis for the case where multiple 105 

quantitative data tables are to be simultaneously analyzed 13–16. As such, MFA is a dimension 106 

reduction method that decomposes the set of features from a given gene set into a lower 107 

dimension space. In particular, the MFA approach weights each table individually to ensure that 108 

tables with more features or those on a different scale do not dominate the analysis; all features 109 

within a given table are given the same weight. These weights are chosen such that the first 110 

eigenvalue of a PCA performed on each weighted table is equal to 1, ensuring that all tables play 111 

an equal role in the global multi-table analysis. According to the desired focus of the analysis, 112 

data can be structured either with molecular assays (e.g., RNA-seq, methylation, miRNA-seq, 113 

copy number alterations) as tables (and genes as features within omics), or with genes as tables 114 

(and molecular assays as features within genes). The MFA weights balance the contributions of 115 

each omic or of each gene, respectively. In this work, we focus on the latter strategy in order to 116 

allow different omics to contribute to a varying degree depending on the chosen pathway. In 117 

addition, we note that because the MFA is performed on standardized features, simple differences 118 

in scale between omics (e.g., RNA-seq log-normalized counts versus methylation logit-119 

transformed beta values) do not impact the analysis. 120 

 121 

More precisely, consider a pathway or gene set composed of p genes (Figure 1A), each of which 122 

is measured using up to k molecular assays (e.g., RNA-seq, methylation, miRNA-seq, copy 123 

number alterations), contained in the set of gene-specific matrices 𝑋1 , . . . , 𝑋𝑝 
that have the same 124 

n matched individuals (rows) and 𝑗1 , . . . ,  𝑗𝑝 
 potentially unmatched variables (columns) in each, 125 

where 𝑗𝑔 
∈ {1, . . . , 𝑘} for each gene 𝑔 =  1, . . . , 𝑝. Because only the observations and not the 126 

variables are matched across data tables, genes may be represented by potentially different 127 

subset of omics data (e.g., only expression data for one gene, and expression and methylation 128 

data for another).  129 
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 130 

In the first step, these data tables are generally standardized (i.e., centered and scaled). Next, an 131 

individual PCA is performed using singular value decomposition for each gene table 𝑋𝑔, and its  132 

largest singular value  𝜆𝑔
1  is calculated (Figure 1B). Then, all features in each gene table 𝑋𝑔are 133 

weighted by 
1

𝜆𝑔
1 , and a global PCA is performed using a singular value decomposition on the 134 

concatenated set of weighted standardized tables, 𝑋∗ = [
𝑋1

𝜆1
1 , . . . ,

𝑋𝑝

𝜆𝑝
1  ] (Figure 1C). This yields a 135 

matrix of components (i.e., latent variables) in the observation and variable space. Optionally, an 136 

independent set of supplementary individuals (or supplementary variables) can then be projected 137 

onto the original representation; this is performed by centering and scaling variables for the 138 

supplementary individuals (or individuals for the supplementary variables, respectively) to the 139 

same scale as for the reference individuals, and projecting these rescaled variables into the 140 

reference PCA space. Note that in the related mogsa approach, supplementary binary variables 141 

representing gene membership in gene sets are projected onto a transcriptome-wide multiple 142 

factor analysis to calculate gene set scores12.  143 

 144 

The MFA thus provides a consensus across-gene representation of the individuals for a given 145 

pathway, and the global PCA performed on the weighted gene tables decomposes the consensus 146 

variance into orthogonal variables (i.e., principal components) that are ordered by the proportion 147 

of variance explained by each. The coordinates of each individual on these components, also 148 

referred to as factor scores, can be used to produce factor maps to represent individuals in this 149 

consensus space such that smaller distances reflect greater similarities among individuals. In 150 

addition, partial factor scores, which represent the position of individuals in the consensus for a 151 

given gene, can also be represented in the consensus factor map; the average of partial factor 152 

scores across all dimensions and genes for a given individual corresponds to the factor score 153 
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(Figure 1D). A more thorough discussion of the MFA, as well as its relationship to a PCA, may be 154 

found in the Supplementary Methods. 155 

 156 

 157 

Figure 1. Illustration of the padma approach for calculating individualized multi-omic 158 

pathway deviation scores. (A-B) For a given pathway, matched multi-omic measures for 159 

each gene are assembled, with individuals in rows. Note that genes may be assayed for 160 

varying types of data (e.g., measurements for one gene may be available for expression, 161 

methylation, and copy number alterations, while another may only have measurements 162 

available for expression and methylation). (C) Using a Multiple Factor Analysis, each gene 163 

table is weighted by its largest singular value, and per-gene weighted tables are combined 164 

into a global table, which in turn is analyzed using a Principal Component Analysis. (D) 165 

Finally, each individual i is projected onto the consensus pathway representation; the 166 

individualized pathway deviation score is then quantified as the distance of this individual 167 

from the average individual. These scores can be further decomposed into parts attributed 168 

to each gene in the pathway. 169 

 170 

Individualized pathway deviation scores 171 

 172 

In the consensus space obtained from the MFA, the origin represents the “average” pathway 173 

behavior across genes, omics, and individuals; individuals that are projected to increasingly 174 
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distant points in the factor map represent those with increasingly aberrant values, with respect to 175 

this average, for one or more of the omics measures for one or more genes in the pathway. To 176 

quantify these aberrant individuals, we propose an individualized pathway deviation score𝑑𝑖 177 

based on the multidimensional Euclidean distance of the MFA component loadings for each 178 

individual to the origin: 179 

𝑑𝑖
 2 = ∑  𝐿

𝑙=1 𝑓𝑖,𝑙
2 ,  180 

where 𝑓𝑖,𝑙
 corresponds to the MFA factor score of individual i in component l, and L corresponds 181 

to the rank of 𝑋∗. Note that this corresponds to the weighted Euclidean distance of the scaled 182 

multi-omic data (for the genes in a given pathway) of each individual to the origin. These 183 

individualized pathway deviation scores are thus nonnegative, where smaller values represent 184 

individuals for whom the average multi-omic pathway variation is close to the average, while larger 185 

scores represent individuals with increasingly aberrant multi-omic pathway variation with respect 186 

to the average. An individual with a large pathway deviation score is thus characterized by one or 187 

more genes, with one or more omic measures, that explain a large proportion of the global 188 

correlated information across the full pathway.  189 

 190 

Note that the full set of components is used for this deviation calculation, rather than subsetting 191 

to an optimal number of components; we remark that due to their small variance relative to lower 192 

dimensions, components from larger dimensions contribute relatively little to the overall pathway 193 

deviation scores. Finally, to facilitate comparisons of scores calculated for pathways of differing 194 

sizes (e.g., the number of genes), deviation scores with respect to the origin are normalized for 195 

the pathway size.  196 

Decomposition of individualized pathway deviation scores into per-gene contributions 197 

 198 
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In order to quantify the role played by each gene for each individual, we decomposed the 199 

individualized pathway deviation scores into gene-level contributions. Recall that the average of 200 

partial factor scores across all MFA dimensions corresponds to each individual’s factor score. We 201 

define the gene-level deviation for a given individual as follows: 202 

𝑑𝑖,𝑔 =
∑  𝐿

𝑙=1 𝑓𝑖,𝑙(𝑓𝑖,𝑙,𝑔
 −𝑓𝑖,

 )

∑  𝐿
𝑙=1 𝑓𝑖,𝑙

2 , 203 

where as before 𝑓𝑖,𝑙
 corresponds to the MFA factor score of individual i in component l, L 204 

corresponds to the rank of 𝑋∗, and 𝑓𝑖,𝑙,𝑔
 corresponds to the MFA partial factor score of individual i 205 

in gene g in component l. Note that by construction, the contributions of all pathway genes to the 206 

overall deviation score sum to 0. In particular, per-gene contributions can take on both negative 207 

and positive values according to the extent to which the gene influences the deviation of the 208 

overall pathway score from the origin (i.e., the global center of gravity across individuals); large 209 

positive values correspond to tables with a large influence on the overall deviation of an individual, 210 

while large negative values correspond to genes that tend to be most similar to the global average. 211 

In the following, we additionally scale these per-gene scores by the inverse overall pathway score 212 

to highlight genes with highly atypical multi-omic measures both with respect to other genes in 213 

the pathway and with respect to individuals in the population. 214 

 215 

Quantifying percent contribution of omics to pathway-centric multiple factor analysis 216 

 217 

The richness of MFA outputs also includes various decompositions of the total variance (that is, 218 

the sum of the variances of each individual MFA component) of the multi-omic data for a given 219 

pathway. Similarly to a standard PCA, the percent contribution of each axis of the MFA can be 220 

calculated as the ratio between the variance of the corresponding MFA component and the total 221 

variance; by construction, the fraction of explained variance explained decreases as the MFA 222 
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dimension increases. Similarly, the percent contribution to the inertia of each axis for a given omic, 223 

gene, or individual can be quantified as the ratio between the inertia of its respective partial 224 

projection in the consensus space and the inertia of the full data projection for that axis. These 225 

per-gene, per-omic, and per-individual contributions can be quantified for a subset of components 226 

(e.g., the first ten dimensions) or for the entire set of components; here, as we calculate 227 

individualized pathway deviation scores using the full set of dimensions, we also calculated a 228 

weighted per-omic contribution, which corresponds to the average contribution across all 229 

dimensions, weighted by the corresponding eigenvalue. 230 

 231 

Application 232 

 233 

TCGA data acquisition and pre-processing 234 

 235 

We illustrate the utility of padma on data from two cancer types with sufficiently large multi-omic 236 

sample sizes in the TCGA database: invasive breast carcinoma (BRCA), which was chosen as 237 

individuals have previously been classified into one of five molecular subtypes 17 (Luminal A, 238 

Luminal B, Her2+, Basal, and Normal-like), as well as lung adenocarcinoma (LUAD), which was 239 

chosen for its high recorded mortality.  240 

 241 

The padma approach integrates multi-omic data by mapping omics measures to genes in a given 242 

pathway. Although this assignment of values to genes is straightforward for RNA-seq, CNA, and 243 

methylation data, a definitive mapping of miRNA-to-gene relationships does not exist, as miRNAs 244 

can each potentially target multiple genes. Many methods and databases based on text-mining 245 

or bioinformatics-driven approaches exist to predict miRNA-target pairs 18. Here, we make use of 246 

the curated miR-target interaction (MTI) predictions in miRTarBase (version 7.0)19, using only 247 
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exact matches for miRNA IDs and target gene symbols and predictions with the “Functional MTI” 248 

support type. Although the TCGA data used here have been filtered to include only those genes 249 

for which expression measurements are available, there are cases where missing values are 250 

recorded in other omics datasets (e.g., when no methylation probe was available in the promoter 251 

region of a gene, or when no predicted MTIs were identified) or where a given feature has little or 252 

no variance across individuals. In this analysis, features for a given omics dataset were removed 253 

from the analysis only if missing values are recorded for all individuals or if the feature has minimal 254 

variance across all individuals (defined here as < 10-5 after scaling). After running padma, we 255 

remark that the first ten MFA dimensions represent a large proportion of the total multi-omic 256 

variance across pathways for both cancers (Supplementary Figure 5; BRCA median = 46.1%, 257 

LUAD median = 51.9%). 258 

 259 

As a measure of patient prognosis, we focused on two different metrics. First, we used the 260 

standardized and curated clinical data included in the TCGA Pan-Cancer Clinical Resource 261 

(TCGA-CDR)20 to identify the progression-free interval (PFI). The PFI corresponds to the period 262 

from the date of diagnosis until the date of the first occurrence of a new tumor event (e.g., 263 

locoregional recurrence, distant metastasis) and typically has a shorter minimum follow-up time 264 

than measures such as overall survival. In the BRCA data, a total of 72 uncensored and 434 265 

censored events were recorded (median PFI time of 792 and 915 days, respectively); among 266 

LUAD individuals, a total of 65 uncensored and 79 censored events were recorded (median PFI 267 

time of 439 and 683 days, respectively). Second, we used the histological grade for breast cancer, 268 

which is an established cancer hallmark of cellular de-differentiation and poor prognosis21 269 

(downloaded from http://legacy.dx.ai/tcga_breast on March 7, 2019). Tumors are typically graded 270 

by pathologists on a scale of 1 (well-differentiated), 2 (moderately differentiated), or 3 (poorly 271 

differentiated) based on three different measures, including nuclear pleomorphism, 272 
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glandular/tubule formation, and mitotic index, where higher grades correspond to faster-growing 273 

cancers that are more likely to spread (Supplementary Table 1).  274 

 275 

Large deviation scores for relevant oncogenic pathways are associated with survival in lung 276 

cancer 277 

 278 

The first question we address is the prioritization of pathways that are associated with a given 279 

phenotype of interest. After processing the TCGA data and assembling the collection of gene 280 

sets, we sought to identify a subset of pathways for which deviation scores were significantly 281 

associated with patient outcome, as measured by PFI. To focus on pathways with the largest 282 

potential signal (i.e., those for which a small number of individuals have very large deviation 283 

scores relative to the remaining individuals) we consider only those with the most highly positively 284 

skewed distribution of deviation scores. For each of the top 5% of pathways (n = 57) ranked 285 

according to their Pearson’s moment coefficient of skewness, we fit a Cox proportional hazards 286 

(PH) model for the PFI on the pathway deviation score. Using the Benjamini-Hochberg22 adjusted 287 

p-values from a likelihood ratio test (FDR < 5%), we identified 14 pathways with deviation scores 288 

that were significantly associated with the progression-free interval in lung cancer (Table 1; see 289 

Supplementary Table 2 for the full gene lists in each pathway); for all of these, higher pathways 290 

scores corresponded to a worse survival outcome. Note that the filtering on skewness of the 291 

pathway scores is performed completely independently of the survival phenotype, ensuring that 292 

the downstream survival analysis is not biased 23. Of note, while candidates within the majority 293 

deviated pathways (Table 1) have been univariately associated with patient outcome (e.g., cell 294 

cycle, DNA repair, and apoptosis 24,25), the padma TCGA analysis is unique in its ability to extend 295 

these associations across multiple gene patient-specific perturbations within a pathway at the 296 

genomic and transcriptomic RNA levels. 297 

 298 
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The detection of several pathways related to DNA repair (ATM, Homologous DNA repair, 299 

BRCA1/2-ATR; Table1), as well as cell cycle and apoptosis related pathways, prompted us to 300 

consider is whether these pathway deviation scores are simply acting as proxies for the tumor 301 

mutational burden (i.e., the total number of nonsynonymous mutations) for each individual. To 302 

investigate this, we estimated the mutational burden for each individual by counting the number 303 

of somatic nonsynonymous mutations in a set of cancer-specific driver genes (n=183 and n=181 304 

genes in breast and lung cancer, respectively) identified by IntOGen26. After adding a constant of 305 

1 to these counts and log-transforming them, we fit a linear model to evaluate their association 306 

with the pathway deviation scores; after correcting p-values from the Wald test statistic for multiple 307 

testing (FDR < 10%), no pathways were found to be associated with the mutational burden. In 308 

addition, when repeating the Cox PH model described above including the log-mutational burden 309 

as an additional covariate, adjusted p-values were generally similar to previous values, and the 310 

top six pathways remained significant at a significance threshold of 5%. This suggests that the 311 

biological signal contained in the pathway deviation scores is indeed independent of that linked 312 

to mutational burden. 313 

 314 

Pathway name Pathway database 
Adj. p-
value  

Hazard 
ratio 

# of 
genes 

D4-GDI (GDP dissociation inhibitor) signaling pathway Biocarta 0.0111 1.2692 13 

NF-kB activation through FADD/RIP-1 pathway mediated 
by caspase-8 and -10 

Reactome 0.0111 1.2839 12 

Class I PI3K signaling events mediated by Akt PID 0.0251 1.1700 35 

ATM signaling pathway Biocarta 0.0265 1.1644 20 

CARM1 and regulation of the estrogen receptor Biocarta 0.0265 1.1426 35 

Homologous recombination repair of replication- 
independent double-strand breaks 

Reactome 0.0265 1.2432 16 

Role of BRCA1, BRCA2, and ATR in cancer susceptibility Biocarta 0.0467 1.1823 21 
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CD40L signaling pathway Biocarta 0.0467 1.1880 15 

Induction of apoptosis through DR4 and DR4/5 death 
receptors 

Biocarta 0.0467 1.1208 33 

Cell cycle: G1/S check point Biocarta 0.0467 1.1263 28 

Double stranded RNA induced gene expression Biocarta 0.0467 1.2007 10 

Signaling events mediated by HDAC class III PID 0.0467 1.1543 25 

HIV-1 Nef: Negative effector of Fas and TNF-alpha PID 0.0467 1.1268 35 

Regulation of telomerase PID 0.0467 1.0950 68 

Table 1. Pathways whose deviation scores are significantly correlated with progression-315 

free interval in lung cancer. Hazard ratios and adjusted p-values correspond to a Cox PH 316 

model for pathway deviation alone, with FDR < 5%. The number of genes for each pathway 317 

corresponds to the number of genes with expression quantified by RNA-seq in the TCGA 318 

data.  319 

 320 

Padma identifies individualized aberrations in the D4-GDP dissociation inhibitor signaling 321 

pathway in lung cancer 322 

 323 

To illustrate the full range of results provided by padma, we focus in particular on the results for 324 

the D4-GDP dissociation inhibitor (GDI) signaling pathway. D4-GDI is a negative regulator of the 325 

ras-related Rho Family of GTPases, and it has been suggested that it may promote breast cancer 326 

cell proliferation and invasiveness 27,28. The D4-GDI signaling pathway is made up of 13 genes; 327 

RNA-seq, methylation, and CNA measures are available for all 13 genes, with the exception of 328 

CYCS and PARP1, for which no methylation probes were measured the promoter region. In 329 

addition, miRNA-seq data were included for one predicted target pair: hsa-mir-421 ➝ CASP3. 330 

Over the 13 genes in the pathway, 130 of the 144 individuals had no nonsynonymous mutations, 331 

while 13 and 1 individuals had 1 or 3 such mutations; ARHGAP5 and CASP3 were most often 332 

characterized by mutations (3 individuals affected for each). Notably, although the D4-GDI 333 
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pathway has been previously implicated in breast cancer aggressiveness 27,28, this is to our 334 

knowledge the first evidence suggesting that D4-GDI pathway might play a similar role in 335 

promoting lung cancer. 336 

 337 

Using the multi-omic data available for the D4-GDI signaling pathway, we can use the outputs of 338 

padma to better understand the individualized drivers of multi-omic variation. In particular, it is 339 

possible to quantify both gene-specific deviation scores as well as an overall pathway deviation 340 

score for each individual, respectively based on the set of partial or full MFA components. We first 341 

visualize the scaled gene-specific deviation scores for the top and bottom decile of individuals, 342 

according to their overall pathway deviation score (Figure 2); these groups thus correspond to the 343 

individuals that are least and most similar to the average individual within the population. We 344 

remark that the 10% of individuals with the most aberrant overall scores for the D4-GDI signaling 345 

pathway, who also had a high 1- and 5-year mortality rate, are those that also tend to have large 346 

aberrant (i.e., red in the heatmap) scaled gene-specific deviation scores for one or more genes. 347 

For example, the two individuals with the largest overall scores, TCGA-78-7536 and TCGA-78-348 

7155 (12.79 and 12.31, respectively), both had large scaled gene-specific scores for CASP3 349 

(12.93 and 17.05, respectively), CASP1 (27.80 and 10.85, respectively), and CASP8 (29.72 and 350 

22.61, respectively). While a subset of five individuals from the top decile were all characterized 351 

by high deviation scores for JUN (TCGA-64-5775, TCGA-55-6972, TCGA-50-5051, TCGA-44-352 

6779, TCGA-49-4488), several other genes appear to have relatively small deviation scores for 353 

all individuals plotted here (e.g., PRF1, PARP1). In addition, we remark the presence of highly 354 

individualized gene-specific aberrations (e.g., APAF1 in individual TCGA-55-7725). 355 

 356 

To provide an intuitive link between these gene-specific deviation scores with the original batch-357 

corrected multi-omics data that were input into padma, we further focus on the three genes 358 

(CASP1, CASP3, and CASP8) for which large deviation scores were observed for the two highly 359 
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aberrant individuals (TCGA-78-7536 and TCGA-78-7155) in the D4-GDI signaling pathway. We 360 

plot boxplots of the Z-scores for each available omic for the three genes across all 144 individuals 361 

with lung cancer (Figure 3), specifically highlighting the two aforementioned individuals; full plots 362 

of all 13 genes in the pathway are included in Supplementary Figure 1. This plot reveals that both 363 

individuals are indeed notable for their overexpression, with respect to the other individuals, of 364 

miRNA hsa-mir-421 (Figure 3D), which is predicted to target CASP3; in coherence with this, both 365 

individuals had weaker CASP3 expression than average (although we note that its expression 366 

was not particularly extreme with respect to the full sample). Individual TCGA-78-7536 appears 367 

to have a hypomethylated CASP1 promoter, but a significantly higher number of copies of CASP8, 368 

while individual TCGA-78-7155 is characterized by a large underexpression of CASP8 with 369 

respect to other individuals. Both individuals appear to have deletions of CASP3, and 370 

hypermethylated CASP8 promoters. This seems to indicate that, although the large overall 371 

pathway deviations for these two individuals share some common etiologies, each also exhibit 372 

unique characteristics.  373 

 374 
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 375 

Figure 2. Scaled per-gene deviation scores for the D4-GDI signaling pathway for 376 

individuals corresponding to the top and bottom decile of overall pathway deviation scores. 377 

Red scores correspond to highly aberrant gene scores with respect to each individual’s 378 

global score, while blue indicates gene scores close to the overall population average. 379 

Annotations on the left indicate the 6-month, 1-year, and 5-year survival status (deceased, 380 

alive, or censored) and overall pathway deviation score for each individual. Genes and 381 

individuals within each sub-plot are hierarchically clustered using the Euclidean distance 382 

and complete linkage. 383 

 384 
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 385 

 386 

 387 

 388 

Figure 3.  Boxplots of Z-scores of gene expression (A), copy number alterations (B), 389 

methylation (C), and miRNA expression (D) for all individuals with lung cancer, with the 3 390 

genes (CASP1, CASP3, CASP8) and one miRNA (hsa-mir-421, predicted to target 391 

CASP3) of interest in the D4-GDI signaling pathway. The two individuals with the largest 392 

pathway deviation score (TCGA-78-7155, TCGA-78-7536) are highlighted in red and 393 

turquoise, respectively. 394 

 395 

  396 

As overall pathway deviation scores represent the multi-dimensional average of these gene-397 

specific deviation scores, a deeper investigation into them can also provide useful insight for a 398 

given pathway. We first note that the distribution of deviation scores for the D4-GDI signaling 399 

pathway (Figure 4A) is highly skewed, with a handful of individuals (e.g., TCGA-78-7536, TCGA-400 

78-7155, TCGA-91-6847, TCGA-50-5931, TCGA-50-5051, and TCGA-66-7725) characterized by 401 

particularly large scores with respect to the remaining individuals. The individual with the most 402 

aberrant score for this pathway, TCGA-78-7536, had a single pathway-specific somatic mutation 403 

in the CASP1 gene, and a total of 7 cancer-specific driver gene mutations (corresponding to the 404 

80th percentile of individuals considered here).  Although these pathway deviation scores are 405 

calculated across all dimensions of the MFA, it can also be useful to represent individuals in the 406 
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first few components of the consensus MFA space (Figure 4B); the farther away an individual is 407 

from the origin over multiple MFA dimensions, the larger the corresponding pathway deviation 408 

score. In this case, we see that TCGA-78-7536 is a large positive and negative outlier in the 409 

second (9.55% total variance explained), and third (8.07% total variance explained) MFA 410 

components, respectively, although less so in the first component (11.97% total variance 411 

explained). In addition, we note that RNA-seq is the major driver of the first MFA dimension 412 

(54.38% contribution), while promoter methylation and copy number alterations take a larger role 413 

in the second and third dimensions (42.29% and 59.18% contribution, respectively). miRNA 414 

expression appears to play a fairly minor role in the MFA, with its maximum contribution (21.14%) 415 

occurring at only the 16th dimension.  416 

 417 

When examining the partial factor maps for this individual over the first three MFA dimensions 418 

(Figures 4C-D), we note the large contribution of CASP3 (axis 1), CASP10 (axis 2), CASP1 and 419 

CASP 8 (axis 3), as evidenced by their distance from the origin in these dimensions. Overall, this 420 

is coherent with the previous gene-level analyses (Figure 2), where hypomethylation in CASP1 421 

and large copy number gains for CASP3 and CASP8 with respect to the population were identified 422 

for this individual. Other individuals with large overall deviation scores (e.g., TCGA-50-5931) are 423 

not obvious outliers in the first two MFA dimensions, reflecting the fact that additional dimensions 424 

play a more important role for them. Taken together, the individualized gene-specific and overall 425 

pathway deviation scores output by padma provide complementary and interesting exploratory 426 

insight into atypical multi-omic profiles for a given pathway of interest (here, the D4-GDI signaling 427 

pathway in lung cancer).  428 

 429 
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 430 

Figure 4.  (A) Distribution of pathway deviation scores for the D4-GDI signaling pathway 431 

in lung cancer; individuals with unusually large scores are labeled. (B) Factor map, 432 

representing the first two components of the MFA for the D4-GDI signaling pathway in lung 433 

cancer, with normal confidence ellipse superimposed. Individuals with extreme values in 434 

each plot are labeled with their barcode identifiers and colored by the number of pathway-435 

specific nonsynonymous mutations. For the individual circled in red, TCGA-78-7536, a 436 

partial factor map representing the first MFA components 1 and 2 is plotted in (C), and 437 

MFA components 1 and 3 in (D). The large black dot represents the individual’s overall 438 

pathway deviation score, as plotted in panel (B) for the first two axes, and gene-specific 439 

scores are joined to this point with dotted lines. 440 

 441 

 442 
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Pathway deviation scores globally recapitulate histological grade in breast cancer 443 

 444 

For some cancers, additional clinical phenotypes beyond survival information may be of particular 445 

interest; to illustrate the use of padma in such a case, we focus on histological grade for breast 446 

cancer. To quantify whether pathway deviation scores tend to be associated with histological 447 

grade in breast cancer, we performed a one-way ANOVA on the three measures that comprise 448 

histological grade for each of the 1136 pathways. Based on the Benjamini-Hochberg22 adjusted 449 

p-values from an F-test (FDR < 5%), all (1136) or nearly all (1135) pathways were found to have 450 

deviation scores that are significantly correlated with mitotic index and nuclear pleomorphism. 451 

Intriguingly, no pathways were found to be associated with degree of glandular/tubule formation; 452 

this may in part be due to the large proportion of individuals identified as grade III (poorly 453 

differentiated) for this measure (n = 285). The rankings of pathways based on mitotic index and 454 

nuclear pleomorphism were generally in agreement (Supplementary Figure 2). In all but two 455 

cases, higher deviation pathway scores corresponded to the higher grades for these two 456 

measures, corresponding to more aggressive tumors; the two exceptions were the Presynaptic 457 

nicotinic acetylcholine receptor and Highly calcium permeable postsynaptic nicotinic acetylcholine 458 

receptor pathways (both from Reactome), for which the largest pathway deviation scores were 459 

associated with grade II, rather than grade III, of the mitotic index.  460 

 461 

To prioritize pathways among this list, we calculated the rank product of the individual rankings 462 

by p-value for mitosis and nuclear pleomorphism; the top 10 pathways according to this joint 463 

ranking are shown in Table 2 (see Supplementary Table 3 for the full gene lists in each pathway). 464 

The signaling by Wnt pathway, which is made up of 63 genes, had the highest combined ranking 465 

for these two histological measures. Of this set of genes, all had RNA-seq, methylation, and CNA 466 

measures available, with the exception of FAM123B and PSMD10 (no CNA measures with 467 

nonzero variance) and PSMB1 to PSMB10, PSMC2, PSMC3, PSMC5, PSMC6, PSME1, and 468 
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PSME2 (no promoter methylation measures). miRNA-seq data were included for only two 469 

predicted target pairs: hsa-mir-375 ➝ CTNNB1 and hsa-mir-320a ➝ CTNNB1. Over the 63 genes 470 

in the pathway, 453 individuals had no nonsynonymous mutations, while 39, 6, 3, 2, and 1 471 

individuals had 1, 2, 3, 4, or 5 such mutations; APC, PSMD1, and FAM123B were most often 472 

characterized by mutations (10, 7, and 7 individuals affected, respectively).   473 

 474 

Pathway  
name 

Pathway 
database 

Combined 
ranking  

# of 
genes 

Signaling by Wnt Reactome 3.16 63 

Apoptotic execution phase Reactome 5.00 52 

APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 
targeted proteins in late mitosis/early G1 

Reactome 6.78 64 

Genes involved in Beta-catenin phosphorylation cascade Reactome 10.49 16 

Autodegradation of Cdh1 by Cdh1:APC/C    Reactome 10.95 56 

Genes involved in M/G1 transition  Reactome 11.62 72 

Regulation of the Fanconi anemia pathway                                                                               Reactome 13.93 7 

Apoptotic cleavage of cellular proteins                                                         Reactome 14.14 38 

Apoptosis                                                                                           Reactome 14.28 143 

ER-phagosome pathway Reactome 15.62 58 

Table 2. Pathways whose deviation scores are significantly correlated with measures of 475 

histological grade (mitosis, nuclear pleomorphism) in breast cancer. Adjusted p-values 476 

after Benjamini-Hochberg correction were < 3.31 × 10−12 for all pathways presented in the 477 

table. Combined ranks correspond to the rank product of the individual rankings from 478 

mitosis and nuclear pleomorphism, and the number of genes for each pathway 479 

corresponds to the number of genes with expression quantified by RNA-seq in the TCGA 480 

data. 481 

 482 

Similarly to the distribution of D4-GDI pathway scores in lung adenocarcinomas, a small number 483 

of breast cancer patients are characterized by highly aberrant scores in the signaling by Wnt 484 
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pathway, including TCGA-BH-A1FM, TCGA-E9-A22G, and TCGA-EW-A1PH, and the number of 485 

pathway-specific nonsynonymous somatic mutations does not appear to be related to this score. 486 

The associated factor map on the first two dimensions of the MFA (Figure 5A) clearly captures 487 

relevant biological structure from the data, as evidenced by the quasi-separation of individuals in 488 

different intrinsic inferred molecular subtypes (AIMS). Notably, individuals with Basal and Luminal 489 

A breast cancer are clearly separated in the first two dimensions and tend to respectively have 490 

positive and negative loadings in the first dimension of the MFA; Luminal B and Normal-like 491 

subtypes largely overlap with the Luminal A subtype for this pathway, while Her2 is located 492 

intermediate to the Luminal and Basal subtypes, as could be anticipated due to the equal 493 

prevalence of Her2 amplification in both Luminal and Basal subtypes. Similar relevant biological 494 

signal can be seen when considering a larger spectrum of pathways (Figure 5C). In particular, 495 

individuals with the Basal and Luminal B subtypes tend to have much more highly variant 496 

deviation scores across all pathways, whereas Luminal A and Normal-like subtypes are generally 497 

much less variant.  498 

 499 

When examining the percent contribution of each omic to the axes of the MFA for the Wnt 500 

signaling pathway (Figure 5B), we remark the preponderant contribution of gene expression to 501 

the first component (84.40%), while variability in the second component is largely driven by both 502 

gene expression and copy numbers (45.66 and 35.37%, respectively). The large role played by 503 

RNA-seq here is coherent with the definition of the AIMS subtypes themselves, which are defined 504 

on the basis of gene expression. On average, after weighting by the eigenvalue of each 505 

component, gene expression and copy number alterations were found to have similar 506 

contributions to the overall variation (36.6%, 35.4%, respectively), while methylation played a less 507 

important role (26.8%). For this pathway, as for most others we studied (Supplementary Figure 508 

6), miRNA expression contributed relatively little to the overall variation (1.2%).  509 

 510 
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Taken together, these results illustrate that the padma approach, which is used in an 511 

unsupervised manner on multi-omic cancer data for a given pathway, is able to recapitulate known 512 

sample structure in the form of intrinsic tumor subtypes as well as relevant prognostic factors such 513 

as histological grade.   514 

 515 

CONCLUSIONS 516 

 517 

Unsupervised dimension reduction approaches (such as PCA) have been widely used in genetics 518 

and genomics for many years, both to identify sample structure and batch effects29 and to 519 

visualize overall variation in large data30. Here, we present a generalization of this approach to 520 

multi-omic data for investigating biological variation at the pathway-level by aggregating across 521 

genes, omic-type, and individuals. Compared to single-omics approaches (for instance, running 522 

a PCA on RNA-seq data alone), padma accommodates multiple omics-sources which, for some 523 

sample sets and pathways, account for more than 50% of the overall variation (Figure 5B). Using 524 

MFA to partition variance, we construct a clinically relevant pathway disruption score that 525 

correlates with survival outcomes in lung cancer patients, and histological grade in breast cancer 526 

patients.  527 

 528 

Our MFA-based approach allows investigators to (a) identify overall sources of variation (such as 529 

batch effects); (b) prioritize high variance pathways defined by variability across subjects; (c) 530 

identify aberrant observations (i.e., individuals) within a given pathway; and (d) identify the genes 531 

and omics sources that drive these aberrant observations. For large, multi-omic data such as 532 

TCGA, padma allows investigators to summarize overall variation and assist in generating 533 

hypotheses for more targeted analyses and follow-up studies. As a case in point, we identified 534 

two lung cancer patients with aberrant multi-omic profiles at three CASP genes. With access to 535 
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the tumor samples and more fine-grained clinical data, future molecular experiments could help 536 

to clarify the role (if any) that these genes play in contributing to lung cancer mortality.  537 

 538 

There are a number of natural extensions and alternative formulations to our MFA-based 539 

approach. If comparisons between sets of individuals (e.g., healthy vs. disease) are of interest, 540 

the MFA can be based on one set of samples (e.g., healthy, or a “reference set”), and the other 541 

set of samples (e.g., diseased, or a “supplementary set”) can be projected onto this original 542 

representation. This is accomplished by centering and scaling supplementary individuals to the 543 

same scale as the reference individuals, and projecting these rescaled variables into the 544 

reference MFA space. In this setting, the interpretation of pathway deviation scores would no 545 

longer correspond to the identification of “aberrant” individuals compared to an overall average, 546 

but rather individuals that are most different from the reference set (e.g., the most “diseased” as 547 

compared to a healthy reference); this strategy would be similar in spirit to the individualized 548 

pathway aberrance score (iPAS) approach, which proposed using accumulated (unmatched) 549 

normal samples as a reference set31. There is also no reason to limit this approach to pathways, 550 

as the analysis could be performed just once, genome-wide (accordingly, inferences would no 551 

longer be applicable to specific pathways). Here, we have structured the data with genes 552 

representing data tables and omics representing columns within each table. Alternatively,  the 553 

data could be re-weighted by having omics represented as data tables and genes as columns 554 

within each, similar to de Tayrac et al. (2009)11. Extensions to our work could include incorporating 555 

the hierarchical structure of genes within pathways, or relatedness structure among samples. In 556 

principle, other types of omics that do not map to genes or pathways (e.g., genotypes on single 557 

nucleotide polymorphisms) could also be incorporated. Finally, though we illustrate the use of 558 

padma for cancer genomics data, we anticipate that it will be broadly useful to other multi-omic 559 

applications in human health or agriculture.  560 

 561 
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MATERIALS AND METHODS 562 

 563 

TCGA data acquisition and pre-processing 564 

 565 

The multi-omic TCGA data were downloaded and processed as described in Rau et al. (2019)5. 566 

Briefly, using TCGA2STAT32 we downloaded processed TCGA Level 3 data from the Broad 567 

Institute Genome Data Analysis Center (GDAC) Firehose on March 18, 2017 for individuals of 568 

self-reported European ancestry for whom gene expression, methylation, copy number alterations 569 

(CNA), microRNA (miRNA) abundance, and somatic mutation data were all available; this 570 

ancestry filter was applied to minimize population-specific variance and focus on the group with 571 

the largest available sample size. In addition, two individuals from the BRCA dataset (TCGA-E9-572 

A245, TCGA-BH-A1ES) were identified as outliers with consistently extreme deviation scores 573 

across multiple pathways and were removed from the remainder of the analyses; the final sample 574 

sizes were thus n=504 and n=144 individuals for the BRCA and LUAD datasets, respectively. 575 

 576 

Per-gene normalized expression estimates were calculated using RSEM33. Methylation was 577 

quantified using the maximally variant probe from the Illumina Infinium Human Methylation450 578 

BeadChip located within ±1500bp of the transcription start site, and representative probe beta 579 

measures were transformed to the logit scale. Somatic CNAs were called by comparing Affymetrix 580 

6.0 probe intensities from normal (i.e., non-cancer tissue) and cancer tissue, and genome 581 

segments were aggregated to gene-level measures by TCGA2STAT and CNTools. Individuals 582 

were classified as carriers or noncarriers of a nonsynonymous somatic mutation for each gene 583 

using TCGA2STAT. Normalized miRNA abundance was quantified as Reads per million 584 

microRNA mapped (RPMMM) values. RNA-seq and miRNA-seq quantifications were TMM-585 

normalized34, converted to counts per million (CPM), and log2-transformed. Only genes with 586 

available RNA-seq expression measures were retained for the remainder of the analysis, 587 
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corresponding to 20,501 and 19,971 genes for BRCA and LUAD, respectively. Finally, batch 588 

effects have been shown to have a strong impact on the analysis of high-throughput data in 589 

general29 and for the TCGA data specifically35. As specific sample plates have been shown to 590 

represent significant batch effects in previous analyses36, each processed omic (with the 591 

exception of somatic mutation data) was individually batch adjusted for each cancer to correct for 592 

plate-specific effects using removeBatchEffects in limmal37. Plots of the first two components 593 

from a transcriptome-wide and genome-wide single-omics PCA and multi-omics MFA for the 594 

batch-corrected data are included in Supplementary Figures 3 and 4. 595 

 596 

Choice of curated pathway collection 597 

 598 

We consider the pathways included in the MSigDB canonical pathways curated gene set 599 

catalog38, which includes genes whose products are involved in metabolic and signaling pathways 600 

reported in curated public databases. We specifically use the “C2 curated gene sets” catalog from 601 

MSigDB v5.2 available at http://bioinf.wehi.edu.au/software/MSigDB/ as described in the limma 602 

Bioconductor package37. We focus in particular on a collection of 1322 gene sets from public 603 

databases, including Biocarta, Pathway Interaction Database39, Reactome40; Sigma Aldrich, 604 

Signaling Gateway, Signal Transduction Knowledge Environment, and the Matrisome Project41, 605 

the smallest and largest of which were respectively made up of 6 and 478 genes (median size 29 606 

genes). For the subsequent padma analysis, we excluded gene sets for which fewer than 3 genes 607 

mapped to quantified features in the TCGA gene expression data, corresponding to a total of 608 

1136 gene sets. 609 

 610 

Padma R software package 611 
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The proposed method described above has been implemented in an open-source R package 612 

called padma, freely available on GitHub. Padma notably makes use FactoMineR3,15 to run the 613 

MFA; heatmaps in the following results were produced using ComplexHeatmap42. All of the 614 

analyses in this paper were performed using R v3.5.1.  615 

 616 

 617 

Figure 5. (A) Factor map of individuals, representing the first two components of the MFA, 618 

for the Wnt signaling pathway in breast cancer, with normal confidence ellipses 619 

superimposed for the five AIMS subtypes. B) Weighted overall percent contribution per 620 

omic (left) and for each of the first 10 MFA components (right) for the Wnt signaling 621 

pathway, with colors faded according to the percent variance explained for each 622 

(represented in text above each bar). (C) Distribution of pathway deviation scores for each 623 

individual in the breast cancer data, with individuals colored according to their AIMS 624 

subtype.   625 
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 739 

Supplementary Materials 740 

 741 

Supplementary Figure 1. Z-scores of RNA-seq, CNA, methylation, and miRNA-seq data for 742 

genes in the D4-GDI signaling pathway for individuals in the TCGA LUAD data (n = 144). Data 743 

corresponding to the two individuals with the largest overall pathway deviation scores, TCGA-78-744 

7155 and TCGA-78-7536, are highlighted in red and blue. 745 

 746 

Supplementary Figure 2. Negative log10-transformed p-values from the ANOVA F-test of 747 

pathway deviation score versus mitosis and nuclear pleomorphism for each pathway among 748 

breast cancer individuals. The signaling by Wnt pathway is highlighted in red. 749 

 750 

Supplementary Figure 3. Factor maps for the first two dimensions of a global transcriptome- and 751 

genome-wide PCA of the methylation, miRNA-seq, CNA, and RNA-seq data (left), as well as a 752 

global MFA of all four omics combined (right) for the TCGA BRCA data. 753 

 754 

Supplementary Figure 4. Factor maps for the first two dimensions of a global transcriptome- and 755 

genome-wide PCA of the methylation, miRNA-seq, CNA, and RNA-seq data (left), as well as a 756 

global MFA of all four omics combined (right) for the TCGA BRCA data. 757 

 758 

Supplementary Figure 5. Percent variance explained by the first 5 (blue) or 10 (red) components 759 

of the MFA for each pathway for the TCGA BRCA (A) and LUAD (B) data. 760 

 761 

Supplementary Figure 6. Average percent contribution to the MFA of each omic (miRNA-seq, 762 

methylation, CNA, RNA-seq) for each pathway. (A) Per-omic average contribution across the first 763 
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10 MFA components for TCGA BRCA. (B) Per-omic average contribution across all MFA 764 

components for TCGA BRCA. (C) Per-omic average contribution across the first 10 MFA 765 

components for TCGA LUAD. (D) Per-omic average contribution across all MFA components for 766 

TCGA LUAD. 767 

 768 

Supplementary Table 1. Sample size for each histological measure for the n = 504 breast cancer 769 

patients.  770 

 771 

Supplementary Table 2. Full gene lists for pathways in Table 1. Genes correspond to those with 772 

expression quantified by RNA-seq in the TCGA data. 773 

 774 

Supplementary Table 3. Full gene lists for pathways in Table 2. Genes correspond to those with 775 

expression quantified by RNA-seq in the TCGA data.   776 

 777 
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