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Summary

Malignant progression of normal tissue is typically driven by complex networks of somatic changes,

including genetic mutations, copy number aberrations, epigenetic changes, and transcriptional

reprogramming. To delineate aberrant multi-omic tumor features that correlate with clinical out-

comes, we present a novel pathway-centric tool based on the multiple factor analysis framework

called padma. Using a multi-omic consensus representation, padma quantifies and characterizes

individualized pathway-specific multi-omic deviations and their underlying drivers, with respect

to the sampled population. We demonstrate the utility of padma to correlate patient outcomes

with complex genetic, epigenetic, and transcriptomic perturbations in clinically actionable path-

ways in breast and lung cancer.
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1. Introduction

Large sets of patient-matched multi-omics data have become widely available for large-scale

human health studies in recent years, with notable examples including the The Cancer Genome

Atlas (TCGA; The Cancer Genome Atlas Research Network and others, 2013) and Trans-omics

for Precision Medicine (TOPMed) program. The increasing emergence of multi-omic data has in

turn led to a renewed interest in multivariate, multi-table approaches (Meng and others, 2016) to

account for interdependencies within and across data types (Husson and others, 2017). In such

large-scale multi-level data, there is often limited or incomplete a priori knowledge of relevant

phenotype groups for comparisons, and a primary goal may be to identify subsets of individuals

that share common molecular characteristics, design therapies in the context of personalized

medicine, or identify relevant biological pathways for follow-up. With these goals in mind, many

multivariate approaches have the advantage of being unsupervised, using matched or partially

matched omics data across genes, obviating the need for predefined groups for comparison as in

the framework of standard differential analyses. A variety of such approaches has been proposed

in recent years. For example, Multi-omics Factor Analysis (MOFA) uses group factor analysis to

infer sets of hidden factors that capture biological and technical variability for downstream use in

sample clustering, data imputation, and sample outlier detection (Argelaguet and others, 2018).

In multi-omic integrative analyses, an intuitive first approach is to consider a gene-centric

analysis, as we previously proposed in the EDGE in TCGA tool (Rau and others, 2018). Ex-

panding such analyses to the pathway-level is also of great interest, as it can lead to improved

biological interpretability as well as reduced or condensed gene lists to facilitate the generation of

relevant hypotheses. In particular, our goal is to define a method that quantifies an individual’s

deviation from a sample average, at the pathway-level, while simultaneously accounting for multi-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2020. ; https://doi.org/10.1101/827022doi: bioRxiv preprint 

https://doi.org/10.1101/827022
http://creativecommons.org/licenses/by-nc-nd/4.0/


Individualized multi-omic pathway deviation scores 3

ple layers of molecular information. Several related approaches for pathway-specific single-sample

analyses have been proposed in recent years (Vaske and others, 2010; Verbeke and others, 2015;

Drier and others, 2013). For example, PARADIGM (Vaske and others, 2010) is a widely used

approach based on structured probabilistic factor graphs to prioritize relevant pathways involved

in cancer progression as well as identify patient-specific alterations; both pathway structures and

multi-omic relationships are hard-coded directly in the model, but it requires a discretization

of the data and is now a closed-source software, making extensions and application to other

gene sets difficult. Pathway relevance ranking (Verbeke and others, 2015) integrates binarized

tumor-related omics data into a comprehensive network representation of genes, patient sam-

ples, and prior knowledge to calculate the relevance of a given pathway to a set of individuals.

A pathway-centric supervised principal component-based analysis implemented in pathwayPCA

(Odom and others, 2019) performs gene selection and estimates latent variables for association

testing with respect to binary, continuous, and survival outcomes within each set of omics data

independently. Pathifier (Drier and others, 2013) instead seeks to calculate a personal pathway

deregulation score (PDS), based on the distance of a single individual from the median reference

sample on a principal curve; this principal curve approach is analogous to a nonlinear principal

components analysis (PCA), but can be applied only to a single-omic dataset (e.g., gene ex-

pression). For both PARADIGM and Pathifier, clusters of scores across pathways are shown to

correlate with a clinically relevant clustering of patients.

Here, we extend the basic philosophy of the Pathifier approach to multi-omics data, using an

innovative application of a Multiple Factor Analysis (MFA), to quantify individualized pathway

deviation scores. In particular, we propose an approach called padma (“PAthway Deviation scores

using Multiple factor Analysis”) to characterize individuals with aberrant multi-omic profiles for

a given pathway of interest and to quantify this deviation with respect to the sampled population

using a multi-omic consensus representation. We further investigate the following succession of
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questions. In which pathways are high deviation scores strongly associated with measures of

poor prognosis? For such pathways, which specific individuals are characterized by the most

highly aberrant multi-omic profile? And for such individuals, which specific genes and omics

drive large pathway deviation scores? By providing graphical and numerical outputs to address

these questions, padma represents both an approach for generating hypotheses as well as an

exploratory data analysis tool for identifying individuals and genes/omics of potential interest

for a given pathway.

There is already some precedent for using MFA to integrate multi-omic data, although ex-

isting approaches differ from that proposed here. For instance, de Tayrac and others (2009)

suggested using MFA for paired CGH array and microarray data, superimposed with functional

gene ontology terms, to highlight common structures and provide graphical outputs to better

understand the relationships between omics. In addition, padma shares some similarities with a

recently proposed integrative multi-omics unsupervised gene set analysis called mogsa, which is

similarly based on a MFA (Meng and others, 2019). By calculating an integrated multi-omics

enrichment score for a given gene set with respect to the full gene list, mogsa identifies gene sets

driven by features that explain a large proportion of the global correlated information among

different omics. In addition, these integrated enrichment scores can be decomposed by omic and

used to identify differentially expressed gene sets or reveal biological pathways with correlated

profiles across multiple complex data sets. However, the fundamental difference in the two ap-

proaches is that mogsa evaluates pathway-specific enrichment with respect to the entire set of

genes, while padma instead focuses on identifying and quantifying pathway-specific multi-omic

deviations between each individual and the sampled population.
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2. Methods

2.1 Pathway-centric multiple factor analysis for multi-omic data

MFA represents an extension of principal component analysis for the case where multiple quan-

titative data tables are to be simultaneously analyzed (Escofier and Pagès, 2014; Pagès, 2015; Lê

and others, 2008; Abdi and others, 2013). As such, MFA is a dimension reduction method that

decomposes the set of features from a given gene set into a lower dimension space. In particular,

the MFA approach weights each table individually to ensure that tables with more features or

those on a different scale do not dominate the analysis; all features within a given table are given

the same weight. These weights are chosen such that the first eigenvalue of a PCA performed

on each weighted table is equal to 1, ensuring that all tables play an equal role in the global

multi-table analysis. According to the desired focus of the analysis, data can be structured ei-

ther with molecular assays (e.g., RNA-seq, methylation, miRNA-seq, copy number alterations)

as tables (and genes as features within omics), or with genes as tables (and molecular assays

as features within genes). The MFA weights balance the contributions of each omic or of each

gene, respectively. In this work, we focus on the latter strategy in order to allow different omics

to contribute to a varying degree depending on the chosen pathway. In addition, we note that

because the MFA is performed on standardized features, simple differences in scale between omics

(e.g., RNA-seq log-normalized counts versus methylation logit-transformed beta values) do not

impact the analysis.

More precisely, consider a pathway or gene set composed of p genes (Figure 1A), each of

which is measured using up to k molecular assays (e.g., RNA-seq, methylation, miRNA-seq,

copy number alterations), contained in the set of gene-specific matrices X1, . . . , Xp that have the

same n matched individuals (rows) and j1, . . . , jp potentially unmatched variables (columns) in

each, where jg ∈ {1, . . . , k} for each gene g = 1, . . . , p. Because only the observations and not

the variables are matched across data tables, genes may be represented by potentially different
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subset of omics data (e.g., only expression data for one gene, and expression and methylation

data for another).

In the first step, these data tables are generally standardized (i.e., centered and scaled). Next,

an individual PCA is performed using singular value decomposition for each gene table Xg, and

its largest singular value λ1g, which corresponds to the variance of the first principal component,

is calculated (Figure 1B). Note that λ1g represents a function of both the number of variables in a

given table and the redundancy among them; the more redundant a set of variables, the less new

information is contributed by each given the others, and the larger λ1g will be. Then, all features

in each gene table Xg are weighted by 1/λ1g, and a global PCA is performed using a singular

value decomposition on the concatenated set of weighted standardized tables, X∗ =
[
X1

λ1
1
, . . . ,

Xp

λ1
p

]
(Figure 1C). Using this weighting scheme, genes with highly correlated measures among some

combination of multi-omic assays will thus tend to be down-weighted in the global analysis,

while those with complementary information contributed by different assays will tend to be up-

weighted. Although this is the standard weighting used in MFA, we note that other potential

strategies do exist, for example in the consensus PCA (Wold and others, 1987), which uses as

weights the inverse of the total inertia of each table (equal to the number of variables in the case

of standardized variables).

The global PCA performed on the weighted standardized data yields a matrix of components

(i.e., latent variables) in the observation and variable space. Optionally, an independent set of

supplementary individuals (or supplementary variables) can then be projected onto the original

representation; this is performed by centering and scaling variables for the supplementary indi-

viduals (or individuals for the supplementary variables, respectively) to the same scale as for the

reference individuals, and projecting these rescaled variables into the reference PCA space. Note

that in the related mogsa approach, supplementary binary variables representing gene member-

ship in gene sets are projected onto a transcriptome-wide multiple factor analysis to calculate
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gene set scores (Meng and others, 2019).

The MFA thus provides a consensus across-gene representation of the individuals for a given

pathway, and the global PCA performed on the weighted gene tables decomposes the consensus

variance into orthogonal variables (i.e., principal components) that are ordered by the proportion

of variance explained by each. The coordinates of each individual on these components, also

referred to as factor scores, can be used to produce factor maps to represent individuals in this

consensus space such that smaller distances reflect greater similarities among individuals. In

addition, partial factor scores, which represent the position of individuals in the consensus for

a given gene, can also be represented in the consensus factor map; the average of partial factor

scores across all dimensions and genes for a given individual corresponds to the factor score

(Figure 1D). A more thorough discussion of the MFA, as well as its relationship to a PCA and

additional details about the calculation of factor scores and partial factor scores, may be found

in the Supplementary Methods.

2.2 Individualized pathway deviation scores

In the consensus space obtained from the MFA, the origin represents the “average” pathway be-

havior across genes, omics, and individuals; individuals that are projected to increasingly distant

points in the factor map represent those with increasingly aberrant values, with respect to this

average, for one or more of the omics measures for one or more genes in the pathway. To quantify

these aberrant individuals, we propose an individualized pathway deviation score di based on the

multidimensional Euclidean distance of the MFA component loadings for each individual to the

origin:

d2i =
L∑
`=1

f2i,`,

where fi,` corresponds to the MFA factor score of individual i in component `, and L corresponds

to the rank of X∗. Note that this corresponds to the weighted Euclidean distance of the scaled
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multi-omic data (for the genes in a given pathway) of each individual to the origin. These individ-

ualized pathway deviation scores are thus nonnegative, where smaller values represent individuals

for whom the average multi-omic pathway variation is close to the average, while larger scores

represent individuals with increasingly aberrant multi-omic pathway variation with respect to the

average. An individual with a large pathway deviation score is thus characterized by one or more

genes, with one or more omic measures, that explain a large proportion of the global correlated

information across the full pathway.

Note that the full set of components is used for this deviation calculation, rather than sub-

setting to an optimal number of components; we remark that due to their small variance relative

to lower components, higher components contribute relatively little to the overall pathway devi-

ation scores. When all components are used in padma, there is no dimension reduction and the

calculation of the pathway deviation score (and the corresponding gene-level contributions) is

equivalent to that calculated in the original space of the concatenated set of weighted, standard-

ized variables. However, if desired, the user can calculate the pathway deviation score on a subset

of components, for example after removing one or more components that are correlated with

batch effects or those that explain little variability. Finally, to facilitate comparisons of scores

calculated for pathways of differing sizes (e.g., the number of genes), deviation scores with respect

to the origin are normalized for the pathway size by dividing them by the number of genes in the

pathway.

2.3 Decomposition of individualized pathway deviation scores into per-gene contributions

In order to quantify the role played by each gene for each individual, we decompose the individ-

ualized pathway deviation scores into gene-level contributions. Recall that the average of partial

factor scores across all MFA dimensions corresponds to each individual’s factor score. We define
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the gene-level deviation for a given individual as follows:

di,g =

∑L
`=1 fi,` (fi,`,g − fi,`)∑L

`=1 f
2
i,`

,

where as before fi,` corresponds to the MFA factor score of individual i in component `, L

corresponds to the rank of X∗, and fi,`,g corresponds to the MFA partial factor score of individual

i in gene g in component `. Note that by construction, the contributions of all pathway genes

to the overall deviation score sum to 0. In particular, per-gene contributions can take on both

negative and positive values according to the extent to which the gene influences the deviation

of the overall pathway score from the origin (i.e., the global center of gravity across individuals);

large positive values correspond to tables with a large influence on the overall deviation of an

individual, while large negative values correspond to genes that tend to be most similar to the

global average. In the following, we additionally scale these per-gene scores by the inverse overall

pathway score to highlight genes with highly atypical multi-omic measures both with respect to

other genes in the pathway and with respect to individuals in the population.

Interestingly, it is possible to quantify the contribution of any single variable of any arbitrary

grouping of variables (e.g. individual omics, all assays for a given gene family) to the individualized

pathway deviation score; see the Supplementary Methods for more details.

2.4 Quantifying percent contribution of omics to pathway-centric multiple factor analysis

The richness of MFA outputs also includes various decompositions of the total variance (that

is, the sum of the variances of each individual MFA component) of the multi-omic data for a

given pathway. Similarly to a standard PCA, the percent contribution of each axis of the MFA

can be calculated as the ratio between the variance of the corresponding MFA component and

the total variance; by construction, the fraction of explained variance explained decreases as

the MFA dimension increases. Similarly, the percent contribution to the inertia of each axis

for a given omic, gene, or individual can be quantified as the ratio between the inertia of its
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respective partial projection in the consensus space and the inertia of the full data projection

for that axis. These per-gene, per-omic, and per-individual contributions can be quantified for a

subset of components (e.g., the first ten dimensions) or for the entire set of components; here,

as we calculate individualized pathway deviation scores using the full set of dimensions, we also

calculated a weighted per-omic contribution, which corresponds to the average contribution across

all dimensions, weighted by the corresponding eigenvalue.

2.5 padma R software package

The proposed method described above has been implemented in an open-source R package called

padma, freely available at https://github.com/andreamrau/padma. Padma notably makes use

FactoMineR (Lê and others, 2008; Husson and others, 2017) to run the MFA; heatmaps in the

following results were produced using ComplexHeatmap (Gu and others, 2016). All of the analyses

in this paper were performed using R v3.5.1. In addition, all R scripts used to generate the results

in this work may be found at https://github.com/andreamrau/RMFRJLA_2019.

3. Application

3.1 Description of TCGA data and pathway collection

We illustrate the utility of padma on data from two cancer types with sufficiently large multi-omic

sample sizes in the TCGA database: invasive breast carcinoma (BRCA), which was chosen as

individuals have previously been classified (Paquet and Hallett, 2015) into one of five molecular

subtypes (Luminal A, Luminal B, Her2+, Basal, and Normal-like), as well as lung adenocarcinoma

(LUAD), which was chosen for its high recorded mortality. The multi-omic TCGA data were

downloaded and processed as described in Rau and others (2018); in particular, all associated

scripts can be found at https://doi.org/10.5281/zenodo.3524080 and additional details are

provided in the Supplementary Methods. In this study, pre-processed and batch-corrected multi-
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omic data for BRCA and LUAD included gene expression, methylation, copy number alterations

(CNA), and microRNA (miRNA) abundance for n = 504 and n = 144 individuals, respectively.

The padma approach integrates multi-omic data by mapping omics measures to genes in a

given pathway. Although this assignment of values to genes is straightforward for RNA-seq, CNA,

and methylation data, a definitive mapping of miRNA-to-gene relationships does not exist, as

miRNAs can each potentially target multiple genes. Many methods and databases based on text-

mining or bioinformatics-driven approaches exist to predict miRNA-target pairs (Riffo-Campos

and others, 2016). Here, we make use of the curated miR-target interaction (MTI) predictions

in miRTarBase version 7.0 (Chou and others, 2018), using only exact matches for miRNA IDs

and target gene symbols and predictions with the “Functional MTI” support type. Although

the TCGA data used here have been filtered to include only those genes for which expression

measurements are available, there are cases where missing values are recorded in other omics

datasets (e.g., when no methylation probe was available in the promoter region of a gene, or

when no predicted MTIs were identified) or where a given feature has little or no variance across

individuals. In this analysis, features for a given omics dataset were removed from the analysis

only if missing values are recorded for all individuals or if the feature has minimal variance

across all individuals (defined here as < 10−5 before scaling); any remaining missing values are

mean-imputed, although more sophisticated imputation strategies, such as those proposed in the

missMDA package, could be used instead (Josse and Husson, 2016). After running padma, we

remark that the first ten MFA dimensions represent a modest proportion of the total multi-

omic variance across pathways for both cancers (Supplementary Figure 5; BRCA median =

46.1%, LUAD median = 51.9%); the number of MFA components needed to explain 80% of

the total variability was strongly associated with the total number of features in each pathway

(Supplementary Figure 9).

As a measure of patient prognosis, we focused on two different metrics. First, we used the
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standardized and curated clinical data included in the TCGA Pan-Cancer Clinical Resource (Liu

and others, 2018) to identify the progression-free interval (PFI). The PFI corresponds to the

period from the date of diagnosis until the date of the first occurrence of a new tumor event

(e.g., locoregional recurrence, distant metastasis) and typically has a shorter minimum follow-up

time than measures such as overall survival. In the BRCA data, a total of 72 uncensored and

434 censored events were recorded (median PFI time of 792 and 915 days, respectively); among

LUAD individuals, a total of 65 uncensored and 79 censored events were recorded (median PFI

time of 439 and 683 days, respectively). Second, we downloaded the histological grade for breast

cancer (http://legacy.dx.ai/tcga_breast on March 7, 2019), which is an established cancer

hallmark of cellular de-differentiation and poor prognosis (Heng and others, 2017). Tumors are

typically graded by pathologists on a scale of 1 (well-differentiated), 2 (moderately differentiated),

or 3 (poorly differentiated) based on three different measures, including nuclear pleomorphism,

glandular/tubule formation, and mitotic index, where higher grades correspond to faster-growing

cancers that are more likely to spread (Supplementary Table 3).

Finally, we focus our attention on a collection of 1136 pathways included in the MSigDB

canonical pathways curated gene set catalog (Liberzon and others, 2011), which includes genes

whose products are involved in metabolic and signaling pathways reported in curated public

databases; additional details on these pathways may be found in the Supplementary Methods.

3.2 Computational validation of pathway deviation scores

Before exploring in detail the results of padma on the TCGA breast and lung tumor samples,

we first sought to computationally validate the extent to which the pathway deviation scores

correctly identify observations known to have aberrant multi-omic profiles. Specifically, we made

use of the 70 matched healthy tissue samples in the TCGA breast cancer data for which RNA-

seq, miRNA-seq, and methylation assays were available (as copy number alterations are called by
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comparing tumor to healthy tissue, these are not available for healthy tissue). These multi-omic

healthy tissue samples were subsequently batch-corrected in the same way as the tumor samples.

Next, to create a multi-omic data set with a set of “true positives”, we randomly selected 5

tumor samples to include with the 70 healthy samples; for each pathway, this random sampling

was repeated 20 independent times. Using the RNA-seq, miRNA-seq, and methylation data for

the full set of 75 samples, we then evaluated whether the padma pathway deviation scores were

able to successfully identify the 5 tumor samples by calculating the Area Under the Curve (AUC)

of the Receiver Operating Characteristic (ROC) curve for each of the 1136 pathways. Mean AUC

values across the 20 repetitions were very high for nearly all pathways considered (25% quantile =

0.988; median = 0.993; 75% quantile = 0.996; Supplementary Figure 7). As a whole, this suggests

that the padma deviation scores indeed reflect true biological signal, as the tumor controls added

to healthy samples nearly always had the largest deviation scores across pathways.

In addition, we conducted a simulation study to investigate the conditions (i.e., sample size,

percentage of aberrant individuals in the population, and number of driver genes and omics)

under which padma pathway deviation scores can correctly identify aberrant individuals. We

compared the AUC values of padma with those of pathway deviation scores calculated using two

alternatives: a PCA on all concatenated data tables (i.e., where MFA per-table weights were

not applied) and a padma single-omics approach. Full details of the simulation study may be

found in the Supplementary Methods, and results are shown in Supplementary Figures 12-14

and Supplementary Table 6. Overall, we confirm the solid performance of padma across a wide

range of settings, as well as an advantage in identifying aberrant individuals for padma compared

to a PCA-based alternative, particularly in cases with smaller sample sizes (i.e., n 50) and

fewer driver genes and omics. Finally, we also confirmed that the per-gene contributions to the

individualized padma pathway deviation scores successfully recover the true gene drivers in all

scenarios considered.
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3.3 Large deviation scores for relevant oncogenic pathways are associated with survival in lung

cancer

The first major question we address is the prioritization of pathways that are associated with a

given phenotype of interest. After processing the TCGA data and assembling the collection of

gene sets, we sought to identify a subset of pathways for which deviation scores were significantly

associated with patient outcome, as measured by PFI. To focus on pathways with the largest po-

tential signal (i.e., those for which a small number of individuals have very large deviation scores

relative to the remaining individuals) we consider only those with the most highly positively

skewed distribution of deviation scores. For each of the top 5% of pathways (n = 57) ranked

according to their Pearson’s moment coefficient of skewness, we fit a Cox proportional hazards

(PH) model for the PFI on the pathway deviation score, additionally controlling for age at initial

pathologic diagnosis (minimum = 42; median = 68; maximum = 86), gender (88 females, 56

males), and American Joint Committee on Cancer (AJCC) pathologic tumor stage (Stage I, n

= 80; Stage II, n = 33; Stage III+, n = 31). Using the Benjamini-Hochberg (BH; Benjamini

and Hochberg, 1995) adjusted p-values from a likelihood ratio test (FDR < 5%), we identified

32 pathways with deviation scores that were significantly associated with the progression-free

interval in lung cancer (Supplementary Table 1; see Supplementary Table 4 for the full gene

lists in each pathway); for all of these, higher pathway scores corresponded to a worse survival

outcome. Although overlaps in gene lists between pairs of pathways create a positive dependency

structure among the deviation scores (Supplementary Figure 11), the BH correction method has

been shown to control the FDR in such families of tests (Benjamini and Yekutieli, 2001). Note

that the filtering on skewness of the pathway scores is performed completely independently of

the survival phenotype, ensuring that the downstream survival analysis is not biased (Bourgon

and others, 2010). Of note, while candidates within the majority of deviated pathways (Supple-

mentary Table 1) have been univariately associated with patient outcome (e.g., cell cycle, DNA

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2020. ; https://doi.org/10.1101/827022doi: bioRxiv preprint 

https://doi.org/10.1101/827022
http://creativecommons.org/licenses/by-nc-nd/4.0/


Individualized multi-omic pathway deviation scores 15

repair, and apoptosis; Bosken and others, 2002; Singhal and others, 2005), the padma TCGA

analysis is unique in its ability to extend these associations across multiple gene patient-specific

perturbations within a pathway at the genomic and transcriptomic RNA levels.

It is also of interest to evaluate the difference in results provided by a multi-omic versus

single-omic pathway deviation analysis. To this end, we used padma to calculate deviation scores

and fit the corresponding Cox PH survival analysis for the same n=57 pathways using RNA-seq

lung cancer data alone (note that this corresponds to running an MFA with a single omic feature

in each gene table). Pathway deviation scores for each individual were moderately correlated

between the single- and multi-omic analyses (Pearson correlation; minimum = 0.56, median =

0.67, max = 0.82), but the majority of the pathways had considerably smaller p-values in the

multi-omic analysis as compared to the single-omic analysis (Supplementary Figure 8); further,

after BH correction none of the 57 pathways were significantly associated with survival (FDR <

5%) in the single-omic analysis. Although single-omic deviation scores for pathways other than

those studied here may be significantly associated with survival, this result does indicate that a

multivariate analysis of multi-omic data does capture a different signal than does a single-omic

analysis.

The detection of several pathways related to DNA repair (ATM, Homologous DNA repair,

BRCA1/2-ATR; Supplementary Table 1), as well as cell cycle and apoptosis related pathways,

prompted us to consider whether these pathway deviation scores are simply acting as proxies for

the tumor mutational burden (i.e., the total number of nonsynonymous mutations) for each indi-

vidual. To investigate this, we estimated the mutational burden for each individual by counting

the number of somatic nonsynonymous mutations in a set of cancer-specific driver genes (n = 183

and n = 181 genes in breast and lung cancer, respectively) identified by IntOGen (Gonzalez-Perez

and others, 2013). After adding a constant of 1 to these counts and log-transforming them, we fit

a linear model to evaluate their association with the pathway deviation scores; after correcting
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p-values from the Wald test statistic for multiple testing (FDR < 10%), no pathways were found

to be associated with the mutational burden. In addition, when repeating the Cox PH model de-

scribed above including the log-mutational burden as an additional covariate, raw p-values were

generally similar to previous values (Spearman correlation: ρ = 0.9981). This suggests that the

biological signal contained in the pathway deviation scores is indeed independent of that linked

to mutational burden.

3.4 Padma identifies individualized aberrations in the D4-GDP dissociation inhibitor signaling

pathway in lung cancer

To illustrate the full range of results provided by padma, we focus in particular on the results for

the D4-GDP dissociation inhibitor (GDI) signaling pathway. D4-GDI is a negative regulator of

the ras-related Rho Family of GTPases, and it has been suggested that it may promote breast

cancer cell proliferation and invasiveness (Zhang and others, 2009; Zhang and Zhang, 2006). The

D4-GDI signaling pathway is made up of 13 genes; RNA-seq, methylation, and CNA measures

are available for all 13 genes, with the exception of CYCS and PARP1, for which no methylation

probes were measured the promoter region. In addition, miRNA-seq data were included for one

predicted target pair: hsa-mir-421 → CASP3. Over the 13 genes in the pathway, 130 of the 144

individuals had no nonsynonymous mutations, while 13 and 1 individuals had 1 or 3 such muta-

tions; ARHGAP5 and CASP3 were most often characterized by mutations (3 individuals affected

for each). Notably, although the D4-GDI pathway has been previously implicated in breast can-

cer aggressiveness (Zhang and others, 2009; Zhang and Zhang, 2006), this is to our knowledge

the first evidence suggesting that D4-GDI pathway might play a similar role in promoting lung

cancer.

Using the multi-omic data available for the D4-GDI signaling pathway, we can use the outputs

of padma to better understand the individualized drivers of multi-omic variation. In particular, it
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is possible to quantify both gene-specific deviation scores as well as an overall pathway deviation

score for each individual, respectively based on the set of partial or full MFA components. We first

visualize the scaled gene-specific deviation scores for the top and bottom decile of individuals,

according to their overall pathway deviation score (Figure 2); these groups thus correspond to

the individuals that are least and most similar to the average individual within the population.

We remark that the 10% of individuals with the most aberrant overall scores for the D4-GDI

signaling pathway, who also had a high 1- and 5-year mortality rate, are those that also tend

to have large aberrant (i.e., red in the heatmap) scaled gene-specific deviation scores for one

or more genes. For example, the two individuals with the largest overall scores, TCGA-78-7536

and TCGA-78-7155 (12.79 and 12.31, respectively), both had large scaled gene-specific scores

for CASP3 (12.93 and 17.05, respectively), CASP1 (27.80 and 10.85, respectively), and CASP8

(29.72 and 22.61, respectively). While a subset of five individuals from the top decile were all

characterized by high deviation scores for JUN (TCGA-64-5775, TCGA-55-6972, TCGA-50-5051,

TCGA-44-6779, TCGA-49-4488), several other genes appear to have relatively small deviation

scores for all individuals plotted here (e.g., PRF1, PARP1). In addition, we remark the presence

of highly individualized gene-specific aberrations (e.g., APAF1 in individual TCGA-55-7725).

To provide an intuitive link between these gene-specific deviation scores with the original

batch-corrected multi-omics data that were input into padma, we further focus on the three genes

(CASP1, CASP3, and CASP8) for which large deviation scores were observed for the two highly

aberrant individuals (TCGA-78-7536 and TCGA-78-7155) in the D4-GDI signaling pathway. We

plot boxplots of the Z-scores for each available omic for the three genes across all 144 individuals

with lung cancer (Figure 3), specifically highlighting the two aforementioned individuals; full plots

of all 13 genes in the pathway are included in Supplementary Figure 1. This plot reveals that

both individuals are indeed notable for their overexpression, with respect to the other individuals,

of miRNA hsa-mir-421 (Figure 3D), which is predicted to target CASP3; consistent with this
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observation, both individuals had weaker CASP3 expression than average (although we note that

its expression was not particularly extreme with respect to the full sample). Individual TCGA-

78-7536 appears to have a hypomethylated CASP1 promoter, but a significantly higher number

of copies of CASP8, while individual TCGA-78-7155 is characterized by a large underexpression

of CASP8 with respect to other individuals. Both individuals appear to have deletions of CASP3,

and hypermethylated CASP8 promoters. This seems to indicate that, although the large overall

pathway deviations for these two individuals share some common etiologies, each also exhibit

unique characteristics.

As overall pathway deviation scores represent the multi-dimensional average of these gene-

specific deviation scores, a deeper investigation into them can also provide useful insight for a

given pathway. We first note that the distribution of deviation scores for the D4-GDI signaling

pathway (Figure 4A) is highly skewed, with a handful of individuals (e.g., TCGA-78-7536, TCGA-

78-7155, TCGA-91-6847, TCGA-50-5931, TCGA-50-5051, and TCGA-66-7725) characterized by

particularly large scores with respect to the remaining individuals. The individual with the most

aberrant score for this pathway, TCGA-78-7536, had a single pathway-specific somatic mutation

in the CASP1 gene, and a total of 7 cancer-specific driver gene mutations (corresponding to

the 80th percentile of individuals considered here). Although these pathway deviation scores are

calculated across all dimensions of the MFA, it can also be useful to represent individuals in the

first two components of the consensus MFA space (Figure 4B); the farther away an individual is

from the origin over multiple MFA dimensions, the larger the corresponding pathway deviation

score. In this case, we see that TCGA-78-7536 is a large positive and negative outlier in the second

(9.55% total variance explained), and third (8.07% total variance explained) MFA components,

respectively, although less so in the first component (11.97% total variance explained). In addition,

we note that RNA-seq is the major driver of the first MFA dimension (54.38% contribution),

while promoter methylation and copy number alterations take a larger role in the second and
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third dimensions (42.29% and 59.18% contribution, respectively). miRNA expression appears to

play a fairly minor role in the MFA, with its maximum contribution (21.14%) occurring at only

the 16th dimension.

When examining the partial factor maps for this individual over the first three MFA dimen-

sions (Figures 4C-D), we note the large contribution of CASP3 (axis 1), CASP10 (axis 2), CASP1

and CASP 8 (axis 3), as evidenced by their distance from the origin in these dimensions. Over-

all, this is consistent with the previous gene-level analyses (Figure 2), where hypomethylation

in CASP1 and large copy number gains for CASP3 and CASP8 with respect to the population

were identified for this individual. Other individuals with large overall deviation scores (e.g.,

TCGA-50-5931) are not obvious outliers in the first two MFA dimensions, reflecting the fact that

additional dimensions play a more important role for them. Taken together, the individualized

gene-specific and overall pathway deviation scores output by padma provide complementary and

interesting exploratory insight into atypical multi-omic profiles for a given pathway of interest

(here, the D4-GDI signaling pathway in lung cancer).

3.5 Pathway deviation scores globally recapitulate histological grade in breast cancer

For some cancers, additional clinical phenotypes beyond survival information may be of particular

interest; to illustrate the use of padma in such a case, we focus on histological grade for breast

cancer. To quantify whether pathway deviation scores tend to be associated with histological

grade in breast cancer, we performed a one-way ANOVA on the three measures that comprise

histological grade for each of the 1136 pathways. Based on the BH-adjusted p-values from an

F-test (FDR < 5%), all (1136) or nearly all (1135) pathways were found to have deviation scores

that are significantly correlated with mitotic index and nuclear pleomorphism. Intriguingly, no

pathways were found to be associated with degree of glandular/tubule formation; this may in part

be due to the large proportion of individuals identified as grade III (poorly differentiated) for this
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measure (n = 285). The rankings of pathways based on mitotic index and nuclear pleomorphism

were generally in agreement (Supplementary Figure 2). In all but two cases, higher deviation

pathway scores corresponded to the higher grades for these two measures, corresponding to more

aggressive tumors; the two exceptions were the Presynaptic nicotinic acetylcholine receptor and

Highly calcium permeable postsynaptic nicotinic acetylcholine receptor pathways (both from

Reactome), for which the largest pathway deviation scores were associated with grade II, rather

than grade III, of the mitotic index.

To prioritize pathways among this list, we calculated the rank product of the individual

rankings by p-value for mitosis and nuclear pleomorphism; the top 10 pathways according to

this joint ranking are shown in Supplementary Table 2 (see Supplementary Table 5 for the

full gene lists in each pathway). The Wnt signaling pathway, which is made up of 63 genes,

had the highest combined ranking for these two histological measures. Of this set of genes,

all had RNA-seq, methylation, and CNA measures available, with the exception of FAM123B

and PSMD10 (no CNA measures with nonzero variance) and PSMB1 to PSMB10, PSMC2,

PSMC3, PSMC5, PSMC6, PSME1, and PSME2 (no promoter methylation measures). miRNA-

seq data were included for only two predicted target pairs: hsa-mir-375 → CTNNB1 and hsa-

mir-320a→ CTNNB1. Over the 63 genes in the pathway, 453 individuals had no nonsynonymous

mutations, while 39, 6, 3, 2, and 1 individuals had 1, 2, 3, 4, or 5 such mutations; APC, PSMD1,

and FAM123B were most often characterized by mutations (10, 7, and 7 individuals affected,

respectively).

Similarly to the distribution of D4-GDI pathway scores in lung adenocarcinomas, a small

number of breast cancer patients are characterized by highly aberrant scores in the Wnt signaling

pathway, including TCGA-BH-A1FM, TCGA-E9-A22G, and TCGA-EW-A1PH, and the number

of pathway-specific nonsynonymous somatic mutations does not appear to be related to this

score. The associated factor map on the first two dimensions of the MFA (Figure 5A) clearly
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captures relevant biological structure from the data, as evidenced by the quasi-separation of

individuals in different intrinsic inferred molecular subtypes (AIMS). Notably, individuals with

Basal and Luminal A breast cancer are clearly separated in the first two dimensions and tend

to respectively have positive and negative loadings in the first dimension of the MFA; Luminal

B and Normal-like subtypes largely overlap with the Luminal A subtype for this pathway, while

Her2 is located intermediate to the Luminal and Basal subtypes, as could be anticipated due to

the equal prevalence of Her2 amplification in both Luminal and Basal subtypes. Similar relevant

biological signal can be seen when considering a larger spectrum of pathways (Figure 5C). In

particular, individuals with the Basal and Luminal B subtypes tend to have much more highly

variant deviation scores across all pathways, whereas Luminal A and Normal-like subtypes are

generally much less variant.

When examining the percent contribution of each omic to the axes of the MFA for the Wnt

signaling pathway (Figure 5B), we remark the preponderant contribution of gene expression to the

first component (84.40%), while variability in the second component is largely driven by both gene

expression and copy numbers (45.66 and 35.37%, respectively). The large role played by RNA-seq

here is consistent with the definition of the AIMS subtypes themselves, which are defined on the

basis of gene expression. On average, after weighting by the eigenvalue of each component, gene

expression and copy number alterations were found to have similar contributions to the overall

variation (36.6%, 35.4%, respectively), while methylation played a less important role (26.8%).

For this pathway, as for most others we studied (Supplementary Figure 6), miRNA expression

contributed relatively little to the overall variation (1.2%). We do need to be cautious in the

interpretation of this phenomenon, as it may be due to real biology or to the mapping uncertainty

and much smaller number (with respect to the other omics) of miRNA features (Supplementary

Figure 10). Because we have structured the data into gene-tables (and not omics-tables) in padma,

the MFA weighting leads to a balancing of contributions among genes (and not omics); as such,
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the drastically smaller number of miRNA features is likely directly linked to the overall smaller

contributions to the variance explained.

Taken together, these results illustrate that the padma approach, which is used in an unsu-

pervised manner on multi-omic cancer data for a given pathway, is able to recapitulate known

sample structure in the form of intrinsic tumor subtypes as well as relevant prognostic factors

such as histological grade.

4. Conclusions

Unsupervised dimension reduction approaches (such as PCA) have been widely used in genetics

and genomics for many years, both to identify sample structure and batch effects (Leek and

others, 2010) and to visualize overall variation in large data (Gautier and others, 2010). Here, we

present a generalization of this approach to multi-omic data for investigating biological variation

at the pathway-level by aggregating across genes, omic-type, and individuals. Compared to single-

omics approaches (for instance, running a PCA on RNA-seq data alone), padma accommodates

multiple omics-sources which, for some sample sets and pathways, account for more than 50%

of the overall variation (Figure 5B). Using MFA to partition variance, we construct a clinically

relevant pathway disruption score that correlates with survival outcomes in lung cancer patients,

and histological grade in breast cancer patients.

Our MFA-based approach allows investigators to (a) identify overall sources of variation (such

as batch effects); (b) prioritize high variance pathways defined by variability across subjects; (c)

identify aberrant observations (i.e., individuals) within a given pathway; and (d) identify the

genes and omics sources that drive these aberrant observations. As with any analysis of omic data

we generally recommend that standard quality control analyses be performed (e.g., genomewide

PCA of each omic individually as in Supplementary Figures 3-4, boxplots of normalized read

count distributions for each sample) to identify any potential technical outliers before running
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padma. Here, we chose to remove known batch effects prior to the padma analysis, but in principle

the method could be run on uncorrected data and MFA components correlated with undesired

batch effects could be identified and removed prior to computing the pathway deviation score.

For large, multi-omic data such as TCGA, padma allows investigators to summarize overall

variation and assist in generating hypotheses for more targeted analyses and follow-up studies.

As a case in point, we identified two lung cancer patients with aberrant multi-omic profiles at

three CASP genes. With access to the tumor samples and more fine-grained clinical data, future

molecular experiments could help to clarify the role (if any) that these genes play in contributing

to lung cancer mortality. Although the multi-omic TCGA data considered here were quite large

(n = 144 and n = 504 matched samples for lung and breast cancer, respectively), Thioulouse

(2011) recently suggested that descriptive methods like PCA and MFA can be used without

limitation on the ratio between the number of samples and number of variables; as such we

anticipate that padma could be useful even for more modestly sized multi-omic datasets.

There are a number of natural extensions and alternative formulations to our MFA-based

approach. If comparisons between sets of individuals (e.g., healthy vs. disease) are of interest, the

MFA can be based on one set of samples (e.g., healthy, or a “reference set”), and the other set of

samples (e.g., diseased, or a “supplementary set”) can be projected onto this original representa-

tion. This is accomplished by centering and scaling supplementary individuals to the same scale

as the reference individuals, and projecting these rescaled variables into the reference MFA space.

In this setting, the interpretation of pathway deviation scores would no longer correspond to the

identification of “aberrant” individuals compared to an overall average, but rather individuals

that are most different from the reference set (e.g., the most “diseased” as compared to a healthy

reference); this strategy would be similar in spirit to the individualized pathway aberrance score

(iPAS) approach, which proposed using accumulated (unmatched) normal samples as a reference

set (Ahn and others, 2014). There is also no reason to limit this approach to pathways, as the
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analysis could be performed just once, genome-wide (accordingly, inferences would no longer be

applicable to specific pathways). Here, we have structured the data with genes representing data

tables and omics representing columns within each table. Alternatively, the data could be re-

weighted by having omics represented as data tables and genes as columns within each, similar to

de Tayrac and others (2009). Extensions to our work could include incorporating the hierarchical

structure of genes within pathways, or relatedness structure among samples. In principle, other

types of omics that do not map to genes or pathways (e.g., genotypes on single nucleotide poly-

morphisms) could also be incorporated. Finally, though we illustrate the use of padma for cancer

genomics data, we anticipate that it will be broadly useful to other multi-omic applications in

human health or agriculture.

5. Supplementary Material

Supplementary material, including Supplementary Methods, Tables, and Figures, is available

online at http://biostatistics.oxfordjournals.org.
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Natália D. and others. (2018, April). An Integrated TCGA Pan-Cancer Clinical Data Re-

source to Drive High-Quality Survival Outcome Analytics. Cell 173(2), 400–416.e11.
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Riffo-Campos, Ángela, Riquelme, Ismael and Brebi-Mieville, Priscilla. (2016, De-

cember). Tools for Sequence-Based miRNA Target Prediction: What to Choose? International

Journal of Molecular Sciences 17(12), 1987.

Singhal, Sunil, Vachani, Anil, Antin-Ozerkis, Danielle, Kaiser, Larry R. and Al-

belda, Steven M. (2005, June). Prognostic implications of cell cycle, apoptosis, and an-

giogenesis biomarkers in non-small cell lung cancer: a review. Clinical Cancer Research: An

Official Journal of the American Association for Cancer Research 11(11), 3974–3986.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2020. ; https://doi.org/10.1101/827022doi: bioRxiv preprint 

https://doi.org/10.1101/827022
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 REFERENCES

The Cancer Genome Atlas Research Network, Weinstein, John N, Collisson,

Eric A, Mills, Gordon B, Shaw, Kenna R Mills, Ozenberger, Brad A, Ellrott,

Kyle, Shmulevich, Ilya, Sander, Chris and Stuart, Joshua M. (2013, October). The

Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics 45(10), 1113–1120.

Thioulouse, J. (2011). Simultaneous analysis of a sequence of paired ecological tables: A

comparison of several methods. Annals of Applied Statistics 5(4), 2300–2325.

Vaske, Charles J., Benz, Stephen C., Sanborn, J. Zachary, Earl, Dent, Szeto,

Christopher, Zhu, Jingchun, Haussler, David and Stuart, Joshua M. (2010, June).

Inference of patient-specific pathway activities from multi-dimensional cancer genomics data

using PARADIGM. Bioinformatics 26(12), i237–i245.

Verbeke, Lieven P. C., Van den Eynden, Jimmy, Fierro, Ana Carolina, Demeester,

Piet, Fostier, Jan and Marchal, Kathleen. (2015, July). Pathway Relevance Ranking

for Tumor Samples through Network-Based Data Integration. PLOS ONE 10(7), e0133503.

Wold, S., Geladi, P., Esbensen, K. and Öhman, J. (1987). Multi-way principal components-

and PLS-analysis. Journal of Chemometrics 1(1), 41–56.

Zhang, Yaqin, Rivera Rosado, Leslie A., Moon, Sun Young and Zhang, Baolin. (2009,

May). Silencing of D4-GDI inhibits growth and invasive behavior in MDA-MB-231 cells by acti-

vation of Rac-dependent p38 and JNK signaling. The Journal of Biological Chemistry 284(19),

12956–12965.

Zhang, Yaqin and Zhang, Baolin. (2006, June). D4-GDI, a Rho GTPase regulator, promotes

breast cancer cell invasiveness. Cancer Research 66(11), 5592–5598.

[Received May 2020; revised . . . accepted for publication . . .]

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2020. ; https://doi.org/10.1101/827022doi: bioRxiv preprint 

https://doi.org/10.1101/827022
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES 37

Fig. 1. Illustration of the padma approach for calculating individualized multi-omic pathway deviation
scores. (A-B) For a given pathway, matched multi-omic measures for each gene are assembled, with
individuals in rows. Note that genes may be assayed for varying types of data (e.g., measurements for
one gene may be available for expression, methylation, and copy number alterations, while another may
only have measurements available for expression and methylation). (C) Using a Multiple Factor Analysis,
each gene table is weighted by its largest singular value, and per-gene weighted tables are combined into a
global table, which in turn is analyzed using a Principal Component Analysis. (D) Finally, each individual
i is projected onto the consensus pathway representation; the individualized pathway deviation score is
then quantified as the distance of this individual from the average individual. These scores can be further
decomposed into parts attributed to each gene in the pathway.
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Fig. 2. Scaled per-gene deviation scores for the D4-GDI signaling pathway for individuals corresponding
to the top and bottom decile of overall pathway deviation scores. Red scores correspond to highly aberrant
gene scores with respect to each individual’s global score, while blue indicates gene scores close to the
overall population average. Annotations on the left indicate the 6-month, 1-year, and 5-year survival
status (deceased, alive, or censored) and overall pathway deviation score for each individual. Genes and
individuals within each sub-plot are hierarchically clustered using the Euclidean distance and complete
linkage.
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Fig. 3. Boxplots of Z-scores of gene expression (A), copy number alterations (B), methylation (C), and
miRNA expression (D) for all individuals with lung cancer, with the 3 genes (CASP1, CASP3, CASP8)
and one miRNA (hsa-mir-421, predicted to target CASP3) of interest in the D4-GDI signaling path-
way. The two individuals with the largest pathway deviation score (TCGA-78-7155, TCGA-78-7536) are
highlighted in red and turquoise, respectively.
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Fig. 4. (A) Distribution of pathway deviation scores for the D4-GDI signaling pathway in lung cancer;
individuals with unusually large scores are labeled. (B) Factor map, representing the first two com-
ponents of the MFA for the D4-GDI signaling pathway in lung cancer, with normal confidence ellipse
superimposed. Individuals with extreme values in each plot are labeled with their barcode identifiers and
colored by the number of pathway-specific nonsynonymous mutations. For the individual circled in red,
TCGA-78-7536, a partial factor map representing the first MFA components 1 and 2 is plotted in (C),
and MFA components 1 and 3 in (D). The large black dot represents the individual’s overall pathway
deviation score, as plotted in panel (B) for the first two axes, and gene-specific scores are joined to this
point with dotted lines.
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Fig. 5. (A) Factor map of individuals, representing the first two components of the MFA, for the Wnt
signaling pathway in breast cancer, with normal confidence ellipses superimposed for the five AIMS
subtypes. B) Weighted overall percent contribution per omic (left) and for each of the first 10 MFA
components (right) for the Wnt signaling pathway, with colors faded according to the percent variance
explained for each (represented in text above each bar). (C) Distribution of pathway deviation scores for
each individual in the breast cancer data, with individuals colored according to their AIMS subtype.
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