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Abstract 24 

Annotating cell types is a critical step in single cell RNA-Seq (scRNA-Seq) data analysis. Some 25 

supervised/semi-supervised classification methods have recently emerged to enable automated 26 

cell type identification. However, comprehensive evaluations of these methods are lacking to 27 

provide practical guidelines. Moreover, it is not clear whether some classification methods 28 

originally designed for analyzing other bulk omics data are adaptable to scRNA-Seq analysis. In 29 

this study, we evaluated ten cell-type annotation methods publicly available as R packages. Eight 30 

of them are popular methods developed specifically for single cell research (Seurat, scmap, 31 

SingleR, CHETAH, SingleCellNet, scID, Garnett, SCINA). The other two methods are 32 

repurposed from deconvoluting DNA methylation data: Linear Constrained Projection (CP) and 33 

Robust Partial Correlations (RPC). We conducted systematic comparisons on a wide variety of 34 

public scRNA-seq datasets as well as simulation data. We assessed the accuracy through intra-35 

dataset and inter-dataset predictions, the robustness over practical challenges such as gene 36 

filtering, high similarity among cell types, and increased classification labels, as well as the 37 

capabilities on rare and unknown cell-type detection. Overall, methods such as Seurat, SingleR, 38 

CP, RPC and SingleCellNet performed well, with Seurat being the best at annotating major cell 39 

types. Also, Seurat, SingleR, CP and RPC are more robust against down-sampling. However, 40 

Seurat does have a major drawback at predicting rare cell populations, and it is suboptimal at 41 

differentiating cell types that are highly similar to each other, while SingleR and RPC are much 42 

better in these aspects. All the codes and data are available at: 43 

https://github.com/qianhuiSenn/scRNA_cell_deconv_benchmark. 44 
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Introduction 52 

Single cell RNA sequencing (scRNA-seq)  has emerged as a powerful tool to enable the 53 

characterization of cell types and states in complex tissues and organisms at the single-cell level 54 

[1–5]. Annotating cell types amongst the cell clusters is a critical step before other downstream 55 

analyses, such as differential gene expression and pseudo time analysis [6–9]. Conventionally, a 56 

set of priorly known cell-type specific markers are used to label the cell types of the clusters 57 

manually. This process is laborious and often is a rate-limiting step for scRNA-seq analysis. This 58 

approach is also prone to bias and errors. The marker may not be specific enough to differentiate 59 

the cell subpopulations in the same dataset, or it may not be generic enough to be applied from one 60 

study to another. Automating the cell type labeling is critical to enhance reproducibility and 61 

consistency among single cell studies. 62 

Recently some annotation methods have emerged to systematically assign cell types in the new 63 

scRNA-seq dataset, based on existing annotations from another dataset. Instead of using only top 64 

differentiating markers, most methods project or correlate the new cells onto similar cells in the 65 

well-annotated reference datasets, by leveraging the whole transcriptome profiles. These 66 

annotation methods are developed rapidly, at the same time benchmark datasets that the 67 

bioinformatics community agrees upon are lacking. These issues pose the urgent need to 68 

comprehensively evaluate these annotation methods using datasets with different biological 69 

variabilities, protocols and platforms. It is essential to provide practical guidelines for users. 70 

Additionally, identification of limitations of each method through comparisons will also help boost 71 

further algorithmic development, which in turn will benefit the scRNA-Seq community. 72 

In this study, we evaluated ten cell annotation methods publicly available as R packages (Table 73 

1). Eight of them are popular methods developed specifically for single cell research (Seurat [10], 74 

scmap [11], SingleR [12], CHETAH [13], SingleCellNet [14], scID [15], Garnett [16], SCINA 75 

[17]). Those methods can be further divided into two categories: Seurat, scmap, CHETAH, 76 

SingleCellNet, and scID utilize the gene expression profile as a reference without prior knowledge 77 

in signature sets, while Garnett and SCINA require additional pre-defined gene markers as the 78 

input. Additionally, to potentially leverage existing deconvolution methods for other bulk omics 79 

data, we also included two modified methods: Linear Constrained Projection (CP) and Robust 80 

Partial Correlations (RPC) that are popular in DNA methylation analysis [18]. We conducted 81 
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systematic comparisons on six publicly available scRNA-seq datasets (Table 2) varying by 82 

species, tissue and sequencing protocol, as well as six sets of simulation data with known truth 83 

measure. 84 

Results 85 

Intra-dataset accuracy evaluation 86 

We first tested the classification accuracy of 10 methods (Table 1) on six publicly available 87 

scRNA-seq datasets (Table 2). These datasets include two human pancreatic islet datasets 88 

(GSE85241 and GSE86469), two whole mouse datasets (Tabula Muris, or TM-Full), and two 89 

peripheral blood mononuclear cells datasets (PBMC). Since Tabula Muris datasets are 90 

heterogeneous in terms of tissue contents, to evaluate the tools’ performance on homogeneous 91 

data, we down sampled them separately into two mouse lung datasets (Tabula Muris-Lung, or TM-92 

Lung) by taking cells from lung tissue only. This results in eight real scRNA-seq datasets (Table 93 

1). To avoid potential bias, we used the 5-fold cross validation scheme to measure the averaged 94 

accuracy in the 1-fold holdout subset. We used three different performance measurement metrics: 95 

overall accuracy, adjusted rand index (ARI), and V-measure [19–20] (see Materials and 96 

methods). The evaluation workflow is depicted in Figure S1. 97 

Figure 1A-C show the classification accuracy metrics on eight datasets. The top-five 98 

performing annotation methods are Seurat, SingleR, CP, singleCellNet and RPC. Seurat has the 99 

best overall classification performance in the 5-fold cross validation evaluation. On average, the 100 

three accuracy metrics from Seurat are significantly higher (Wilcoxon paired rank test, P<0.05) 101 

than 9 other methods. SingleR has the second-best performance after Seurat, with all three metrics 102 

higher than 8 other methods, among which 6 pair-wise method comparisons achieved statistical 103 

significance (Wilcoxon paired rank test P < 0.05). Though slightly lower in average metric scores, 104 

the classification performance of both singleCellNet and CP are comparable to SingleR.  105 

In order to test the influence of cell-type number on tool’s performance, we next evaluated the 106 

TM-Full and TM-Lung results. As shown in Table 2, for two TM-Full datasets from 10X and 107 

Smart-Seq2 platforms, which contain a large number of cell types (32 and 37 cell types, 108 

respectively), we took a subset of cells from the lung tissue and created two TM-Lung datasets 109 

that are relatively small in cell-type numbers, with 8 and 10 cell types for 10X and Smart-Seq2 110 
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platforms, respectively. Most methods perform well for both TM-Lung datasets with ARI > 0.9. 111 

However, some of the methods had a drop of performance on the two TM-Full datasets. The 112 

increased classification labels imposed a challenge. Garnett failed to predict on such large TM-113 

Full datasets. Additionally, SCINA, CHETAH and scmap have significantly lower classification 114 

metrics on TM-Full datasets, compared to those on TM-Lung datasets. On the contrary, the 115 

previously mentioned top-five methods are more robust despite the increase of complexity in TM-116 

Full datasets. Again, Seurat yields the best metric scores in both TM-Full datasets, demonstrating 117 

its capability at analyzing complex datasets.  118 

Cross-dataset accuracy evaluation 119 

To evaluate the annotation tools in a more realistic setting, we conducted cross-dataset 120 

performance evaluation on 10 datasets (5 pairs), where the referencing labels were obtained from 121 

one dataset and the classification was done on another dataset of the same tissue type (Table 2). 122 

Within a pair, we used FACS-sorted, purified dataset as the reference data, and the remaining one 123 

as the query data (see Materials and methods). Among the 5 pairs of datasets, 4 are real 124 

experimental data: PBMC cell pair with PBMC-sorted-ref and PBMC-3K-query; pancreas cell pair 125 

with pancreas-celseq2-ref and pancreas-fluidigm-query; TM-Full pair with TM-Full-smartseq2-126 

ref and TM-Full-10X-query; TM-Lung pair with TM-Lung-smartseq2-ref and TM-Lung-10x-127 

query. The last pair is simulation datasets with the pre-defined truth, where the true assay without 128 

dropouts (simulation_true-ref) was used as the reference and the raw assay with dropout mask 129 

(simulation_raw-query) was used as the query.  130 

Figure 1D-F shows the classification accuracy metrics on the above mentioned 5 pairs of query 131 

and reference datasets. The top 3 performing annotation methods in the descending rank order are 132 

Seurat, SingleR, and CP, the same as those in the same-dataset cross validation results (Figure 133 

1A-C). In particular, they all perform very well on the simulation data with known truth measures, 134 

as all three accuracy metrics are above 0.96. RPC is ranked 4th, slightly better than SCINA. Similar 135 

to the 5-fold cross validation evaluation, methods such as scID, CHETAH, scmap and Garnett are 136 

persistently ranked among the lowest-performing methods for accuracy. Interestingly, 137 

singleCellNet, the method that performs relatively well (ranked 4th) in the same-dataset 5-fold 138 

cross validation, is now consistently ranked on the 6th, behind RPC and SCINA, due to drop of 139 

performance in TM-Full datasets. Besides annotation methods, the accuracy scores are also much 140 
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dependent on the datasets. For example, on complex PBMC datasets, even Seurat only reaches 141 

0.76 for ARI. A further examination of the confusion matrices (Figure S2) for Seurat, SingleR, 142 

CP, singleCellNet and RPC reveals that the challenge comes from distinguishing highly similar 143 

cell types such as CD4+ T cells vs. CD8+ T cells or Dendritic cells vs. CD14+ Monocytes in the 144 

PBMC datasets. 145 

We also performed batch corrected cross-dataset accuracy evaluations on 4 pairs of 146 

experimental datasets. For each pair of data, both reference and query datasets were aligned using 147 

CCA [10,21]. The result is illustrated in Figure S3A-B. Most methods do not benefit from aligning 148 

and integrating the datasets (Figure S3B). None of the other methods exceeds the performance of 149 

Seurat in all three metrics after the batch correction (Figure S3A). The drop of performance in 150 

those methods may be attributed to the fact that aligned datasets contain negative values after the 151 

matrix correction and subtraction from the integration algorithm used in Seurat. In addition, some 152 

algorithms require non-normalized data matrix as the input, while batch-corrected matrix from 153 

Seurat is normalized, which may violate some models’ assumptions.  154 

Altogether, these results from both experimental and simulation data indicate that Seurat has 155 

the best overall accuracy among the annotation methods in comparison, based on intra-dataset 156 

prediction and cross-dataset prediction [10]. 157 

The effect of cell type similarity  158 

Since it is challenging to distinguish highly similar cell populations using cross-data evaluation, 159 

we next conducted simulations. We designed 20 simulation data sets composed of five cell groups 160 

with varying levels of differential expression. Similar to others [22], we used Splatter [23] to pre-161 

define the same set of differential expression (DE) genes in simulation datasets, and only differed 162 

the magnitudes of DE, from low, low-moderate, moderate to high (Figure 2A). When cell 163 

populations are more separable, the classification task is easy for the majority of methods. As the 164 

cell populations become less separable, all methods show a decrease in their performance (Figure 165 

2B-D). The degrees of such decrease vary among the methods though. SingleR, RPC, Seurat, 166 

singleCellNet and CP are in the first class that are relatively more robust than the other five 167 

methods. SingleR and RPC are ranked the 1st and 2nd for their robustness against cell type 168 

similarity, with all three metric scores above 0.9. Seurat is ranked the 4th after singleCelNet (the 169 

3rd) when the samples are least separable (low DE), exposing its slight disadvantage. Garnett 170 
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failed to predict when cell-cell similarity is high (low DE). In this context, the pre-defined marker 171 

genes may be ‘ambiguous’ to discriminate in multiple cell types, which may cause problems for 172 

Garnett to train the classifier. 173 

The effect of increased classification labels on annotation performance 174 

The increased cell type classification labels imposed a challenge for some methods in inter and 175 

intra-data predictions. We designed five simulation datasets each composed of an increased 176 

number (N) of cell groups (N = 10, 20, 30, 40, 50) with a constant total cell numbers, gene 177 

numbers, and level of differential expression among cell groups. Similar to the performance that 178 

we observed on intra-data and inter-data classification experiments, the increased classification 179 

grouping labels lead to dropping accuracy for most methods, except SingleR, which is extremely 180 

robust without drop of performance (Figure 2E-G). RPC is consistently ranked 2nd regardless of 181 

the cell group numbers. Seurat and CP are ranked the 3nd and 4rd for their robustness before N=30, 182 

with small differences in accuracy metrics. However, after N=30, the accuracy of Seurat 183 

deteriorates faster and is ranked 4rd instead. The performance issue in Seurat may be due to its 184 

susceptibility towards cell-cell similarity. Since we keep a constant differential expression level 185 

despite the increased cell grouping labels, more cell types have similar expression profiles and 186 

they are more likely to be misclassified. On the other hand, Garnett failed to predict when 187 

simulation data set has cell types N>20. Therefore, the simulation study confirms the practical 188 

challenge of increased cell labels in multi-label classification for most methods evaluated. SingleR 189 

is the most robust method against increased complexity in both real dataset and simulation data 190 

evaluations. 191 

The effect of gene filtering 192 

We also evaluated the stability of annotation methods in inter-dataset classification, by varying the 193 

number of query input features. For this purpose, we used the human pancreas data pair (Table 2). 194 

We randomly down sampled the features from Fluidigm data into 15,000, 10,000 and 5000 input 195 

genes, based on the original log count distribution (Figure 3A). When the number of features 196 

decreases, most methods show decreased metric scores as expected (Figure 3B). Seurat and 197 

SingleR are the top 2 most robust methods over the decrease of feature numbers, and their ARI 198 

scores remain high across all sampling sizes (ARI > 0.9). Again, methods such as Garnett, scID 199 

and scmap are more susceptible to low feature numbers, since their performances decrease as the 200 
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feature number decreases. Therefore, using query data with fewer features than the reference data 201 

may affect the prediction performance of those methods. Alternatively, we also downsized the 202 

samples by reducing the number of raw reads before alignment and tag counting steps (Figure 203 

3C). While most methods show fairly consistent accuracy scores with reduced raw reads as 204 

expected, a couple of methods, such as singleCellNet and scID, are perturbed by this procedure 205 

(Figure 3D). 206 

Rare population detection 207 

Identifying rare populations in single cells is a much biologically interesting aspect. We evaluated 208 

the inter-dataset classification accuracy per cell population for the top 5 methods based on overall 209 

accuracy and adjusted rand index (ARI) (Figure S4): Seurat, SingleR, CP, singleCellNet and RPC 210 

(Figure 1A-B). We used a mixture of 9 cell populations with a wide variety of percentages (50%, 211 

25%, 12.5%, 6.25%, 3.125%, 1.56%, 0.97%, 0.39%, 0.195%) in ten repeated simulation datasets 212 

with different seeds (Figure 4A). When the size of the cell population is larger than 50 cells out 213 

of 2000 cells, all five methods achieve high cell-type specific accuracy of over 0.8 (Figure 4B). 214 

However, the classification performances drop drastically for Seurat and singleCellNet when the 215 

cell population is 50 or less. On the other hand, most low-performing methods have fluctuated 216 

performance and do not perform well in classifying the major cell populations (Figure S4B). 217 

Interestingly, bulk-reference based methods such as SingleR, CP and RPC are extremely robust 218 

against the size changes of a cell population. They employ averaged profiles as the references and 219 

are not susceptible to low cell counts. One challenge for some other single cell methods is that 220 

there are not enough cell counts from a low-proportion cell type. Some methods just remove or 221 

ignore those cell types in the training phase (such as Garnett), or during alignment (such as Seurat) 222 

by their threshold parameters of the algorithms. 223 

Unknown population(s) detection 224 

Among the scRNA-seq specific annotation tools, five methods (Garnett, SCINA, scmap, 225 

CHETAH, scID) contain the rejection option that allows ‘unassigned’ labels. This is a rather 226 

practical option, as the reference data may not contain all cell labels present in the query data. In 227 

order to assess how accurate these methods are at labeling ‘unassigned’ cells, we used the scheme 228 

of “hold-out one cell type evaluation” on the same simulation dataset pair used in cross-dataset 229 

prediction. That is, we remove the signature of one cell type in the reference matrix while keeping 230 
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the query intact. The evaluation repeated five times for all five cell types. For each method, we 231 

measured the average classification accuracies excluding the hold-out group (Figure 4C), and the 232 

accuracy of assigning unlabeled class to the leave-out group in the query (Figure 4D). Among the 233 

five methods compared, SCINA, scmap and scID all have metrics scores above the average level 234 

of all tools tested for accuracy excluding the hold-out group (Figure 4C). However, SCINA has 235 

better accuracy in rejecting cell groups existing in the query dataset but not in the reference (Figure 236 

4D). Similar results were observed from “hold-out two cell type evaluation” (Figure S5). SCINA 237 

has a relatively better balance between overall accuracy in existing cell types and precise rejection 238 

in non-existing cell types. 239 

The caveat here, however, is that none of the rejection-enabled methods are among the best 240 

performing methods in terms of overall accuracy, stability and robustness to cell type similarities. 241 

Since accuracy, stability and robustness are probably more important attributes to assess these 242 

methods, the practical guide value based on the results of unknown population detection is limited. 243 

Time and memory comparison 244 

In order to compare the runtime and memory utilization of the annotation methods, we simulated 245 

six data sets each composed of 20,000 genes, with 5 cell types of equal proportion (20%), in total 246 

cell numbers of 5000, 10,000, 15,000, 20,000, 25,000, 50,000, respectively (see Materials and 247 

methods). All methods show increases in computation time and memory usage when the number 248 

of cells increases (Figure 5). Of the five top-performing methods in the intra-data and inter-data 249 

annotation evaluations (Figure 1), singleCellNet and CP outperform others on speed (Figure 5A). 250 

As the dataset size increases beyond 50,000 cells, methods such RPC require a runtime as large as 251 

6 hours. For memory utilization, singleCellNet and CP consistently require less memory than other 252 

top performing methods (Figure 5B). Notably, the best performing method Seurat (by accuracy) 253 

requires memories as large as 100GB, when dataset size increases beyond 50,000 cells, which is 254 

significantly larger than most other methods. In all, based on computation speed and memory 255 

efficiency, singleCellNet and CP outperform others among the top-class accurate annotation 256 

methods.  257 

Discussion 258 
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In this study, we presented comprehensive evaluations of 10 computational annotation methods in 259 

R packages, on single cell RNA-Seq data. Of the 10 methods, 8 of them are designed for single-260 

cell RNA-seq data, and 2 of them are our unique adaptation from methylation-based analysis. We 261 

evaluated these methods on 6 publicly available scRNA-seq datasets as well as many additional 262 

simulation datasets. We systematically assessed accuracy (through intra-dataset and inter-dataset 263 

predictions), the robustness of each method with challenges from gene filtering, cell-types with 264 

high similarity, increased cell type classification labels, and the capabilities on rare population 265 

detection and unknown population detection, as well as time and memory utilization (Figure 6). 266 

In summary, we found that methods such as Seurat, SingleR, CP, RPC and SingleCellNet 267 

performed relatively well overall, with Seurat being the best-performing methods in annotating 268 

major cell types. Methods such as Seurat, SingleR, RPC and CP are more robust against down-269 

sampling. However, Seurat does have a major drawback at predicting rare cell populations, as well 270 

as minor issues at differentiating highly similar cell types and coping with the increased 271 

classification labels, while SingleR and RPC are much better in these aspects.  272 

During the preparation of the manuscript, another evaluation paper was published in a special 273 

edition of Genome Biology [24]. We, therefore, address the differences between these two studies’ 274 

methodologies, before discussing our own findings in detail. First, rather than simply comparing 275 

the methods claimed to be “single cell specific”, we uniquely repurpose two methods: Linear 276 

Constrained Projection (CP) and Robust Partial Correlations (RPC). Although they were originally 277 

developed for DNA methylation data deconvolution, their regression-based principle could be 278 

adapted to scRNA-seq supervised/semi-supervised classification. We modified the final regression 279 

coefficients as the probability of one specific cell type label, rather than the cell content as in DNA 280 

methylation-based deconvolution. As the results indicated, CP and RPC has comparable prediction 281 

with SingleR, the overall second best method. This shows the potential of repurposing existing 282 

deconvolution methods from another bulk omics analysis. Secondly, for benchmark datasets, we 283 

used fewer real experimental datasets. However, we uniquely included many simulated datasets 284 

while the other study did not use any. We argue that it is important to have additional simulation 285 

datasets, because evaluation based on manually annotated cell-type-specific markers in the 286 

experimental data is prone to bias. On the contrary, one can introduce simulation datasets with 287 

‘ground truth’ and unbiasedly assess the tricky issues, such as identifying highly similar cell 288 

populations or very rare cell populations. Thirdly, Seurat, the method with the best overall 289 
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accuracy in our study, is not included in the other study. The high annotation performance of Seurat 290 

on intra-data and inter-data predictions in our study, is mostly due to the fact that it’s a 291 

classification method using an integrated reference. Its data transfer feature shares the same 292 

anchors identification step as the data integration feature. However, unlike data integration, the 293 

cell type classification method in Seurat does not correct the query expression data. On top of that, 294 

its default setting projects the PCA structure of a reference onto the query, instead of learning a 295 

joint structure with CCA [10,21]. This type of methods represents a new trend in single cell 296 

supervised classification, evident by a series of scRNA-seq data integration methods (LIGER, 297 

Harmony, scAlign etc [25–27]). Lastly, we only selected the packages in R with good 298 

documentations, as R is still the most popular bioinformatics platform for open-source scRNA-299 

Seq analysis packages (e.g. the arguably most popular method Seurat, which the other study 300 

omitted).  301 

Although having slightly lower accuracy metrics scores than Seurat, SingleR and CP still have 302 

very excellent performance in intra-data and inter-data prediction, with resilience towards gene 303 

filtering and increased complexity in datasets. In addition, SingleR has better performance than 304 

Seurat in predicting rare cell populations, dealing with increased cell type classification labels, as 305 

well as differentiating highly similar cell types. This advantage of SingleR may benefit from its 306 

method and the pseudo-bulk reference matrix. The averaged pseudo-bulk reference profile may 307 

potentially remove the variation and noise from the original single cell reference profile, and it can 308 

retain the expression profiles of all cell types and is not affected by the low count. SingleR uses 309 

pseudo-bulk RNA-seq reference to correlate the expression profiles to each of the single cells in 310 

the query data, and uses highly variable genes to find the best fit iteratively. For Seurat, the 311 

annotation of the cell labels on query data is informed by the nearest anchor pairs. If two or more 312 

cell types have similar profiles, their alignments may overlap which may cause misclassification. 313 

Seurat also has some requirements on the minimum number of defined anchor pairs. In the case of 314 

rare cell populations, the lack of the neighborhood information makes the prediction difficult. 315 

Similar to other study [24], we also found that method that incorporates the prior-knowledge (e.g. 316 

Garnett and SCINA) did not improve the classification performance over other methods that do 317 

not have such requirements. This prior-knowledge is limited when cell-cell similarity is large. In 318 

addition, as the number of cell types increases, the search for the marker genes will become 319 

challenging, making these methods even less desirable. 320 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2020. ; https://doi.org/10.1101/827139doi: bioRxiv preprint 

https://paperpile.com/c/qLh3AT/goFG+7euP
https://paperpile.com/c/qLh3AT/VmIoz+4hYlu+qkmwQ
https://paperpile.com/c/qLh3AT/9h5lv
https://doi.org/10.1101/827139
http://creativecommons.org/licenses/by-nd/4.0/


Compared with intra-data prediction, inter-data prediction is more realistic but also more 321 

challenging. Technical/platform and batch differences in inter-data prediction may impose major 322 

challenges to the classification process, although the tissue and cell type contents are the same. In 323 

our study, the CCA batch-correction preprocessing step did not improve the classification accuracy 324 

for most methods. Among all experimental data used as the benchmark in this study, PBMC 325 

datasets had the worst accuracy results (ARI=0.76 for the best method Seurat). Further inspection 326 

of the confusion matrices revealed that the challenges come from distinguishing highly similar cell 327 

types, which themselves may have some level of inaccuracy from the original experiments. If the 328 

upstream unsupervised clustering methods are not sensitive enough to categorize similar cell 329 

populations, this uncertainty may be carried through to the downstream cell annotation steps. This 330 

again highlights the potential issue of evaluating the supervised/semi-supervised methods in single 331 

cell data, where we are not certain about the ‘ground truth’ of the cell labels to begin with. 332 

Recently, some studies used unsupervised classification methods through multi-omics integration, 333 

and/or  reconstruction of gene regulatory network [28,29], representing a new trend in this area. 334 

As the multi-omics technology continues to advance [30], it will be of interest to evaluate these 335 

methods, where both multi-omics and pre-defined marker information are available for the same 336 

samples. 337 

Overall, we recommend using Seurat for general annotation tasks for cell types that are 338 

relatively separable and without rare population identification as the objective. However, for 339 

datasets contain cell types with high similarities or rare cell populations, if a reference dataset with 340 

clean annotations is available, SingleR, RPC and CP are preferable.  341 

 342 

Materials and methods 343 

Real data sets 344 

Six real scRNA-seq data sets were downloaded and used for evaluations and validations (Table 345 

2). The human pancreatic islet datasets were obtained from the following accession numbers: 346 

GEO: GSE85241 (Celseq2) [10,31], GEO: GSE86469 (Fluidigm C1) [10,32]. The Tabula Muris 347 

datasets Version 2 (10X Genomics and Smart-Seq2) were downloaded from FigShare: 348 

https://tabula-muris.ds.czbiohub.org/ [3]. The bead-purified PBMC dataset (10X Genomics) was 349 
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obtained from the Zheng dataset: https://github.com/10XGenomics/single-cell-3prime-paper, and 350 

the PBMC-3K dataset (10X Genomics) was downloaded from 351 

https://support.10xgenomics.com/single-cell-gene-expression/datasets [33]. These datasets differ 352 

by species, tissue and sequencing protocol. For each of the datasets, we collected both raw counts 353 

and cell-type annotations from the corresponding publications, except PBMC-3k, for which the 354 

cell-type annotations were obtained through the standard single cell RNA-seq analysis and 355 

classified using cell-type-specific marker genes. The extracted cell-type annotations for each 356 

dataset were used as the ground truth for evaluations (Table S1).  357 

Data cleaning 358 

Datasets were paired in groups by tissue type (Table 2). Within a pair, we used the data generated 359 

by Fluorescence-activated cell sorting (FACS) sorted method as reference data.  Both reference 360 

data and query data were further processed to make sure the cell types in reference data are larger 361 

or equal to the cell types in the query data. When necessary, the query data were down sampled 362 

following the original cell type count distribution. For the two Tabula Muris (TM-Full) datasets 363 

from 10X and Smart-Seq2 platforms, which contain a large number of cell types (32 and 37 cell 364 

types, respectively), we took a subset of cells from lung tissue and created two TM-Lung datasets 365 

that have fewer cell types, 8 for 10X and 10 for Smart-Seq2 platform, respectively. As a result, we 366 

have four pairs of experimental datasets: PBMC cell pair with PBMC-sorted-ref and PBMC-3K-367 

query; pancreas cell pair with pancreas-celseq2-ref and pancreas-fluidigm-query; TM-Full pair 368 

with TM-Full-smartseq2-ref and TM-Full-10X-query; TM-Lung pair with TM-Lung-smartseq2-369 

ref and TM-Lung-10x-query. 370 

Data downsampling 371 

To explore the effects of different feature numbers and read depths on the performance of tools, 372 

we randomly down sampled features (genes) from human pancreas-Fluidigm dataset into 5000, 373 

10,000 and 15,000 input genes, following the original log count distribution. We repeated five 374 

times for each downsampling scheme. Alternatively, we also down sampled the reads into 25%, 375 

50%, 75% of the original read depths (with 2 repetitions) using samtools on BAM files, and then 376 

realigned following the method provided by the original manuscript [32]. 377 

Simulated Data Sets 378 
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We simulated a dataset using Splatter, with 4000 genes and 2000 cells (Splatter parameters, 379 

dropout.shape=-0.5, dropout.mid=1), and then split each dataset into 5 cell groups with proportions 380 

10%, 30%, 30%, 10% and 20%. In addition, we also generated three additional simulation sets to 381 

evaluate the robustness of tools. In the first set, we generated 10 simulation datasets each has 382 

10,000 genes and 2,000 cells (use Splatter parameters dropout.shape=-0.5, dropout.mid=1, 10 383 

different seeds), and then split each into 9 cell groups with proportions 50%, 25%, 12.5%, 6.25%, 384 

3.125%, 1.56%, 0.97%, 0.39%, 0.195%, respectively. The second set contains 20 simulation 385 

datasets, each composed of 10,000 genes and 2,000 cells splitting into 5 cell types with equal 386 

proportions. These datasets have the same set of differentially expressed (DE) genes, but differ by 387 

the magnitude of DE factors (de.facScale parameter in Splatter). We simulated each DE scale five 388 

times with five different seeds. The DE scales and the parameterizations are: low: de.facScale = 389 

c(0.1, 0.3, 0.1, 0.3, 0.2); low-moderate: de.facScale = c(0.3, 0.5, 0.3, 0.5, 0.4); moderate: 390 

de.facScale = c(0.5, 0.7, 0.5, 0.7, 0.6); high: de.facScale = c(0.7, 0.9, 0.7, 0.9, 0.8). The third set 391 

contains five simulation datasets each composed of an increased number (N) of cell groups (N = 392 

10, 20, 30, 49, 50) with a constant total cell numbers (10,000), gene numbers (20,000), and level 393 

of differential expression among cell groups. Each simulation dataset contains two paired assays. 394 

The true assay without dropouts was used as the reference and the raw assay with dropout mask 395 

was used as the query. 396 

Data Preprocessing 397 

Cell and gene filtering 398 

We filtered out cells for which fewer than 200 genes were detected and any genes that were 399 

expressed in fewer than 3 cells. 400 

Normalization 401 

For the annotation tools that require a normalized count matrix as input, we performed log-402 

normalization using a size factor of 10,000. 403 

Pseudo-bulk reference matrix 404 
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For the annotation tools that use bulk rather than single-cell expression profiles as reference, we 405 

took the average of the normalized count of each cell type group and made a pseudo-bulk RNA-406 

seq reference. 407 

Marker genes selection 408 

Some classification tools (SCINA and Garnett) require cell-type specific marker as the input. 409 

When such marker information is neither provided by the corresponding tools nor retrievable by 410 

public research, we extract them from the reference data by performing differential expression 411 

analysis using Wilcoxon rank sum test (FindAllMarkers function from Seurat with parameters 412 

only.pos = TRUE, min.pct = 0.25 and logfc.threshold = 0.25). Wilcoxon rank sum test is the most 413 

common nonparametric test for a difference in mean expression between cell groups. The top 10 414 

ranked marker genes for each cell type were used as the input for the corresponding tools. 415 

Supervised/Semi-supervised Annotation Methods 416 

We only considered pre-printed or published methods with detailed documentation on installation 417 

and execution. We excluded any methods that required extensive running time, and where we were 418 

unable to customize the reference dataset, or random and inconsistent predictions were produced. 419 

In the end, ten cell annotation methods, publicly available as R packages, were evaluated in this 420 

study. This includes eight methods (Seurat, scmap, SingleR, CHETAH, SingleCellNet, scID, 421 

Garnett, and SCINA) commonly used to annotate scRNA-seq data. In addition, to investigate the 422 

potential to repurpose deconvolution methods for other bulk omics analysis, we also included and 423 

modified two methods originally designed for bulk DNA methylation that use a different type of 424 

algorithms not yet reported in scRNA-seq specific tools: Linear Constrained Projection (CP) and 425 

Robust Partial Correlations (RPC). 426 

All parameters were set to default values following the author’s recommendations or the 427 

respective manuals (Table 1). For methods that allow “unknown” assignments (scmap, CHETAH, 428 

scID, Garnett, and SCINA), we modified the parameter to force assignments where possible 429 

(except for the evaluations where unknown assignments were allowed).  430 

Adaptation of CP and RPC methods for scRNA-Seq analysis 431 
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In order to accommodate the methylation-based methods for scRNA-seq data, we made some 432 

modifications. In original papers, both RPC and CP model the methylation profile of any given 433 

sample as a linear combination of a given set of reference profiles representing underlying cell-434 

types present in the sample. Assume the number of underlying cell-types to be C, and each cell 435 

type has a profile bc that constitutes the signature matrix H [34–36]. Let y be the profile of a given 436 

sample and wc be the weight estimation of cellular proportion of each cell type, and the underlying 437 

model becomes: 438 

𝒚 =  ∑𝑐=1
𝐶 𝑤𝑐𝒃𝒄 + 𝜖 439 

Both methods assume that reference profiles contain the major cell-types present in the sample 440 

y and sum of weights equal to 1. RPC estimates the weight coefficients using robust multivariate 441 

linear regression or robust partial correlation, while CP uses a quadratic programming technique 442 

known as linear constrained protection to estimate the weights [37].  443 

In the modified version, we first converted the single cell RNA-seq reference data into pseudo-444 

bulk RNA-seq data matrix by taking the average of the normalized count of each cell type group. 445 

Then we took the subset of pseudo-bulk RNA-seq data by keeping 𝑛 features that exhibited high 446 

cell-to-cell variations across C distinct cell types in the reference dataset, and had a small condition 447 

number below 3 as the signature matrix H [34]. We set the highly variable genes to 2000, using 448 

FindVaraibleFeatures function from Seurat (Figure S6). We let y be the profile of a given single 449 

cell from the query data with the same 2000 genes from the signature matrix H. While applying 450 

both algorithms, we treated the estimated weight for each cell type as the probability and the cell 451 

type with the highest weight was the identity of the corresponding single cell sample in the query 452 

data. This conversion is based on the fact that y no longer represents averages over many different 453 

cell types, but only expression profile from only one cell type (since we have single cell data). 454 

Benchmarking 455 

Five-fold cross validation and cross-dataset prediction 456 

For each dataset in four pairs of the real experimental datasets mentioned above, we used a 5-fold 457 

cross validation where the four-fold data were used as the reference and the remaining one-fold as 458 

the query. For the cross-dataset prediction, in addition to the four pairs of real datasets, we used 459 
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simulation datasets containing true assay (without dropouts) as the reference and raw assay (with 460 

dropout mask) as the query.  461 

In order to evaluate whether batch correction and data integration benefit the classification 462 

performance, for each pair of real dataset, we aligned both reference and query dataset using CCA 463 

[10,21] from the Seurat data integration function. Then we separated the aligned datasets and 464 

performed the cross-dataset evaluation again. 465 

Performance evaluation on the effect of feature numbers and read depths 466 

To investigate the robustness of different methods with regards to feature numbers and read depths, 467 

we used the down-sampled human pancreas Fluidigm data set as described in the data 468 

downsampling section. In such evaluation, the human pancreas Celseq2 dataset was used as the 469 

reference and the down-sampled human pancreas Fluidigm dataset was used as a query. 470 

Performance evaluation with effect of differential expression (DE) scale among cell groups 471 

In this assessment, we used 20 simulation data sets containing the same DE gene set but differing 472 

only by DE factors as described earlier in the Simulated Data Sets section. Each simulation data 473 

set contains two paired assays. The true assay (without dropouts) was used as the reference and 474 

the raw assay (with dropout mask) was used as the query. 475 

Performance evaluation on the effect of increased classification labels 476 

In this evaluation, we designed five simulation data sets, each composed of an increased number 477 

(N) of cell groups (N=10, 20, 30, 40, 50) with a constant total cell numbers, gene numbers, and 478 

level of differential expression among cell groups. Each simulation data set contains two paired 479 

assays. The true assay (without dropouts) was used as the reference and the raw assay (with 480 

dropout mask) was used as the query. 481 

Rare and unknown population detection 482 

Each of the 10 simulation data sets in the rare population detection evaluation was composed of 483 

10, 000 genes and 2000 cells splitting into 9 cell types with proportions 50%, 25%, 12.5%, 6.25%, 484 

3.125%, 1.56%, 0.97%, 0.39%, 0.195%. The simulation dataset in the unknown population 485 

detection evaluation was composed of 4000 genes and 2000 cells splitting into 5 cell types. We 486 

used the scheme of “hold-out one cell type evaluation” to evaluate prediction on the unknown 487 
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population, that is, removing the signature of one cell type in the reference matrix while predicting 488 

the query. During each prediction, one cell group was removed from the reference matrix and the 489 

query remained intact. We repeated the evaluation five times for all five cell types. We additionally 490 

employed a “hold-out two cell type” experiment, in which we removed signatures of any 491 

combination of two cell types in the reference matrix while keeping the query intact. The 492 

evaluation was repeated ten times for all ten different combinations. Similarly, for each simulation 493 

data set, the true assay (without dropouts) was used as the reference and the raw assay (with 494 

dropout mask) was used as the query. 495 

Runtime and Memory Assessment 496 

In order to compare the computational runtime and memory utilization of annotation methods, we 497 

simulate six datasets, with total cell numbers of 5000, 10,000, 15,000, 20,000, 25,000, and 50,000, 498 

respectively, each composed of 20,000 genes, splitting into 5 cell types with the equal proportion.  499 

The true assay (without dropouts) was used as the reference and the raw assay (with dropout mask) 500 

was used as the query. Each execution was performed in a separate R session in our lab server (4 501 

nodes (Dell PowerEdge C6420) of 2 X Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz, 192GB 502 

RAM, one node (Dell Poweredge R740) with 2 X Xeon(R) Gold 6148 CPU @ 2.40GHz, 192 GB 503 

RAM, and two 16GB Nvidia V100 GPUs) with Slurm job scheduler. One processor and 100GB 504 

memory were reserved for each job. From the job summary, we collected ‘Job Wall-clock time’ 505 

and ‘Memory Utilized’ for evaluation. We ran each method on each dataset five times to estimate 506 

the average computation time. 507 

Evaluation Criteria 508 

The prediction results of the methods are evaluated using three different metrics: overall accuracy, 509 

adjusted rand index, and V-measure. We used three different metrics to avoid possible bias in 510 

evaluating the performance. The detailed explanations on these metrics were described earlier 511 

[22,38,39]. Briefly, Overall accuracy is the percent agreement between the predicted label and the 512 

true label. Adjusted rand index (ARI) is the ratio of all cell pairs that are either correctly classified 513 

together or correctly not classified together, among all possible pairs, with adjustment for chance. 514 

V-measure is computed as the harmonic mean of distinct homogeneity and completeness score. In 515 

specific, homogeneity is used to assess whether each predicted cell type groups contains only 516 
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members of a single class, while completeness is used to assess whether all members of a given 517 

class are assigned to the same predicted cell label. 518 

Code Availability 519 

All the codes and data are available at: 520 

https://github.com/qianhuiSenn/scRNA_cell_deconv_benchmark.  521 
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Figure Legends 630 

Figure 1  Inter-data and cross-date accuracy comparison 631 

(A-C) Within data accuracy comparison, shown as heatmaps of three classification metrics, (A) 632 

overall accuracy, (B) adjusted rand index (ARI), and (C) v-measure across eight real datasets. For 633 
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each dataset, a 5-fold cross validation is performed: using four folds as the reference and one-fold 634 

as the query. (D-F) Between-data accuracy comparison, shown as heatmaps of three classification 635 

metrics, (D) overall accuracy, (E) adjusted rand index (ARI), and (F) v-measure across four pairs 636 

of experimental datasets and one pair of simulation datasets. PBMC cell pair: PBMC-sorted-ref 637 

and PBMC-3K-query; pancreas pair: pancreas-celseq2-ref and pancreas-fluidigm-query; TM-Full 638 

pair: TM-Full-smartseq2-ref and TM-Full-10X-query; TM-Lung pair: TM-Lung-smartseq2-ref 639 

and TM-Lung-10x-query; simulation: true-ref and dropout-masked raw. TM-Lung datasets pair 640 

was down sampled from TM-Full datasets pair by taking cells from lung tissue only. Within the 641 

simulation datasets pair, the true assay without dropouts (true-ref) was used as the reference and 642 

the raw assay with dropout mask (raw-query) was used as the query. The columns are datasets, 643 

and the rows are annotation methods. The heatmap scale is shown on the figure, where the brighter 644 

yellow color indicates a better classification accuracy score. On the right of each heatmap is a 645 

boxplot to summarize the classification metrics among methods.  Box colors represent different 646 

methods as shown in the figure. The methods in the heatmap and the boxplot are arranged in 647 

descending order by their average metrics score across all datasets. Some methods failed to 648 

produce a prediction for certain data sets (indicated by grey squares). 649 

****: significantly higher (P<0.05) than 9 other methods using pairwise Wilcoxon test. 650 

***: significantly higher (P<0.05) than 8 other methods using pairwise Wilcoxon test. 651 

**: significantly higher (P<0.05) than 7 other methods using pairwise Wilcoxon test. 652 

*: significantly higher (P<0.05) than 6 other methods using pairwise Wilcoxon test.  653 

 654 

Figure 2  Effect of cell-cell similarity and increased classification labels on annotation tool 655 

performance 656 

(A) PCA plots of simulation datasets generated by Splatter, each of which is composed of 10,000 657 

genes and 2000 cells, splitting into 5 cell types with equal proportion, and contains the same 658 

proportion of differentially expressed genes in each cell type. The datasets differ by changing the 659 

magnitude of DE factors for those DE genes to simulate more or less differences between groups. 660 
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Based on the magnitude of DE factors in five cell groups, we generated 20 datasets with cell groups 661 

similarity ranging from low, low-moderate, moderate to high DE (see Materials and methods). 662 

Colors represent different cell types. True assay (without dropouts) is used as the query and raw 663 

assay (with dropout) is used as the reference. (B-D) Plots showing three classification metrics to 664 

evaluate each annotation method applied to the datasets in (A). The x-axis is the DE scale for 665 

differential expressed genes in each group, and the y-axis is the metric score. Results are shown as 666 

mean+std over 5 repetitions. Line colors and point shapes correspond to different methods. The 667 

metrics are: (B) overall accuracy, (C) adjusted rand index (ARI) and (D) v-measure. (E-G) Plots 668 

illustrating three classification metrics to evaluate each annotation methods applied to five 669 

simulation datasets, each of which is composed of an increased number (N) of cell groups (N = 670 

10, 20, 30, 49, 50) with a constant total cell numbers (10,000), gene numbers (20,000), and level 671 

of differential expression among cell groups. The x-axis is the number of cell types in each data 672 

set, and the y-axis is the metric score. The metrics are: (E) overall accuracy, (F) adjusted rand 673 

index (ARI) and (G) v-measure. 674 

Figure 3  Effects of feature (gene) numbers and read depths on annotation tool performance 675 

(A)  The features (genes) in the human pancreas-fluidigm dataset are filtered by removing genes 676 

that present in less than 3 cells, resulting in 19211 genes. The filtered features (genes) are randomly 677 

down sampled into 5000, 10,000 and 15,000 input genes, following the original log count 678 

distribution. Such down-sampling was repeated 5 times. (C) The BAM file reads in the human 679 

pancreas-fluidigm dataset are randomly down sampled into 25%, 50%, 75% of the original read 680 

depths. (B)(D) Plots depicting the three classification metrics (overall accuracy, adjusted rand 681 

index and v-measure) of each method applied to the down sampling approaches in (A) and (C) 682 

respectively. The x-axis is the down sampling size for feature numbers or reads, and the y-axis is 683 

the metrics score. Results are shown as mean+std over 5 repetitions. Line colors and point shapes 684 

correspond to different methods. SCINA failed when the number of input features reached 5000, 685 

thus no point is shown. 686 

  687 

Figure 4  Performance comparison on rare cell type and unknown cell types detection 688 
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All datasets are generated by Splatter. (A) Cell population distribution of simulation data (10 689 

repeats), composed of 10,000 genes and 2000 cells, split into 9 cell types with proportions of 50%, 690 

25%, 12.5%, 6.25%, 3.125%, 1.56%, 0.97%, 0.39%, 0.195%, respectively. (B) Plot illustrating 691 

cell-type specific accuracy across 9 cell groups in (A), for the five annotation methods that exceed 692 

0.8 in overall accuracy and adjusted rand index (ARI). The x-axis is the cell groups in the 693 

descending order for their cell proportions, and the y-axis is the cell-type specific classification 694 

score. Results are shown as mean+std over 5 repetitions. (C) Performance metrics (overall 695 

accuracy, adjusted rand index and v-measure) of another simulation data set, composed of 4000 696 

genes and 2000 cells splitting into 5 cell types. True assay (without dropouts) is used as the 697 

reference and the raw assay (with dropout) is used as the query. During each prediction, one cell 698 

group is removed from the reference matrix and the query remains intact. The x-axis lists methods 699 

with rejection options (e.g. allowing ‘unlabeled’ samples), and the y-axis is the classification 700 

metrics score excluding the hold-out group. (D) Boxplots showing the accuracy of methods in (C), 701 

when assigning ‘unlabeled’ class to the leave-out group in the query. 702 

Figure 5  Speed and memory usage comparison 703 

Speed and memory comparison on six pairs of simulation data with increasing numbers of cells 704 

(5000, 10,000, 15,000, 20,000, 25,000, 50,000). True assay (without dropouts) is used as the 705 

reference and the raw assay (with dropout) is used as the query. Both reference and query contain 706 

the same number of cells. Color depicts different annotation methods. (A) Natural log of running 707 

time (y-axis) vs. cell size (x-axis) over five repetitions in each data point. (B) Natural log of peak 708 

memory usage (y-axis) vs. cell size (x-axis) over five repetitions in each data point. 709 

Figure 6  Benchmark Summary 710 

Summary of the classification performance in each evaluation. Each row is a method and each 711 

column is evaluations from intra-data and inter-data prediction (Intra-Inter), cell-cell similarity 712 

(DE-Scale), increased classification labels, downsampling of genes, downsampling of reads, rare 713 

group detection, unknown population detection (rejection), time and memory utilization. The 714 

heatmap shows individual method’s rank based on averaged metric scores over overall accuracy, 715 

adjusted rand index, and v-measure for each evaluation indicated in the bottom column. Time and 716 

memory are ranked by utilization. Grey box indicated that the method does not participate in the 717 
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evaluation. The methods in the heatmap are arranged in ascending order by their average rank over 718 

inter-data and intra-data prediction. 719 

Note: pop_overall: averaged metric scores for all simulations in rare population detection. 720 

Low_count: averaged metrics scores for classifying cell types < 1.56% in population. 721 

rej_exe_overall: averaged classification metrics score excluding the hold-out group. rej_overall: 722 

accuracy of assigning ‘unlabeled’ class to the leave-out group in the query. 723 

 724 

Tables 725 

Table 1  List of Single-Cell RNA-sequencing/Methylation Cell Annotation tools 726 

benchmarked in this study 727 

Table 2  Datasets used in this study 728 

Supplementary material 729 

Supplementary Figures 730 

Supplementary Figure 1  Benchmark Workflow 731 

Illustration of the workflow for this study consists of 1) preprocessing 2) prediction 3) evaluations. 732 

Supplementary Figure 2  Cell-type specific accuracy for top 5 performing methods on PBMC 733 

cross-dataset prediction 734 

Confusion matrix of cell-type specific accuracy for PBMC inter-dataset predictions among top 735 

performing annotation methods (Seurat, SingleR, CP, singleCellNet, RPC). The x-axis is the 736 

predicted label from each algorithm, and the y-axis is the true label in the query data.  737 

Supplementary Figure 3  Inter-data prediction using aligned reference and query matrix 738 

For each of the four pairs of experimental data used in cross-data evaluation, we  aligned both 739 

reference and query dataset using CCA from the Seurat data integration function. Then we 740 

separated the aligned datasets and performed the cross-dataset evaluation again. (A) Inter-data 741 

accuracy comparison, shown as heatmaps of three classification metrics (overall accuracy, 742 
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adjusted rand index (ARI), and v-measure). (B) Boxplots illustrating the averaged metrics scores 743 

before and after alignment for each method. The x-axis is the methods, and the y-axis is the 744 

classification metrics score. 745 

Supplementary Figure 4  Rare population detection evaluation for remaining 5 methods 746 

(A) Boxplots illustrating the averaged overall accuracy and adjusted rand index over all the rare 747 

population detection simulation data. The x-axis is the methods evaluated, and the y-axis is the 748 

metric score. (B) Rare population detection results for the five methods with lower overall 749 

accuracy and ARI. The x-axis is the cell groups in the descending order for their cell proportions, 750 

and the y-axis is the cell-type specific classification score. 751 

Supplementary Figure 5  Hold-out two cell type rejection evaluation 752 

“Hold-out two cell type” experiment was performed on the same simulation dataset pair used in 753 

cross-dataset prediction. In this experiment, signatures of any combination of two cell types were 754 

removed in the reference matrix while keeping the query intact. The evaluation was repeated ten 755 

times for all ten different combinations. (A) The x-axis lists methods with rejection options (e.g. 756 

allowing ‘unlabeled’ samples), and the y-axis is the classification metrics score excluding the hold-757 

out groups. (B) Boxplots showing the accuracy of methods in (A), when assigning ‘unlabeled’ 758 

class to leave-out groups in the query. 759 

Supplementary Figure 6  The optimal number of highly variable genes (HVG) to be used in 760 

CP and RPC algorithms 761 

The highly variable genes are identified from reference dataset and ranked by standardized 762 

variance from mean-variance feature selection methods with variance-stabilizing transformation. 763 

(A) The boxplot depicts the overall accuracy averaged over five pairs of inter-dataset predictions 764 

(pbmc, pancreas, tabula-Full, tabula-Lung, and simulation) with the top 100, 200, 500, 1000, 2000, 765 

and 5000 highly variable genes as input features for CP and RPC methods.  The x-axis is the 766 

number of highly variable features, and the y-axis is the overall accuracy. Methods are reflected 767 

by different box colors. (B) The boxplot represents the condition number of the pseudo-bulk 768 

reference matrix averaged over four combinations of cross-dataset predictions with the top 100, 769 
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200, 500, 1000, 2000, and 5000 highly variable genes as input features. The x-axis is the number 770 

of highly variable features, and the y-axis is the condition number. 771 

 772 

Supplementary Tables 773 

Supplementary Table 1   Composition of cell-types in each real dataset 774 
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Table 1  List of Single-Cell RNA-sequencing/Methylation Cell Deconvolution tools benchmarked in this study. 

Software Method/Algorithm 
Bulk/Single 

Reference 

Require Pre-

defined Marker 

Genes 

Allow Unknown 

Version 

Under R 3.6.0 

Reference 

SingleR Correlation-based with Iterative 

Tuning 

Bulk No No SingleR_1.0.0 [12] 

CP Reference-based method using 

Constrained Projection 

Bulk No No EpiDISH_2.0.2 [18] 

RPC Reference-based Robust Partial 

Correlations 

Bulk No No EpiDISH_2.0.2 [18] 

Garnett Elastic net Multinomial Regression Single Yes Yes garnett_0.1.4 [16] 

SCINA Bimodal Distribution assumption 

for marker genes 

Single Yes Yes SCINA_1.1.0 [17] 

Seurat Define anchor with CCA, L2-norm 

and MNN 

Single No No Seurat_3.0.1 [10] 

singleCellNet Multi-Class Random Forest Single No No singleCellNet_0.

1.0 

[14] 

CHETAH Correlation-based with Hierarchical 

Classification 

Single No Yes CHETAH_1.1.2 [13] 
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scmap K-nearest-neighbor classification 

with cosine similarity 

Single No Yes scmap_1.6.0 [11] 

scID Fisher's Linear Discriminant 

Analysis-like Framework 

Single No Yes scID_0.0.0.9000 [15] 
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Table 2  Datasets used in this study 

Dataset Name Protocol No. of Cells 
No. of 

Genes 

No. of 

Cell 

Types 

Species/Tissue/ 

Description 

Reference 

PBMC-Sorted 10X 91,649 18,986 7 Human Peripheral Blood Mononuclear 

Cells 

[33] 

PBMC-3K 10X 2467 13,714 6 Human Peripheral Blood Mononuclear 

Cells 

10X 

Genomics 

Pancreas-Sorted CEL-Seq2 2285 34,363 13 Human Pancreas [10, 31] 

Pancreas Fluidigm C1 638 34,363 13 Human Pancreas [10, 32] 

Tabula Muris-Sorted Smart-Seq2 24,622 22,252 37 Mouse [3] 

Tabula Muris 10X 20,000 17,866 32 Mouse [3] 

Tabula Muris Lung-Sorted Smart-Seq2 1563 22,253 10 Mouse Lung [3] 

Tabula Muris Lung 10X 1303 17,866 8 Mouse Lung [3] 

Simulation1_true Splatter 2000 4000 5 Simulation data for inter-data 

prediction 

 

Simulation1_raw Splatter 2000 4000 5 -  
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Simulation2_true Splatter 2000 10,000 9 Simulation data with descending cell 

proportion for each cell group, repeat 

with 10 random seeds. 

 

Simulation2_raw Splatter 2000 10,000 9 -  

Simulation_Low_true Splatter 2000 10,000 5 Simulation data with low differential 

expression scale for each cell group, 

repeat with 5 random seeds. 

 

Simulation_Low_raw Splatter 2000 10,000 5 -  

Simulation_Low_Moderate

_true 

Splatter 2000 10,000 5 Simulation data with low-moderate 

differential expression scale for each 

cell group, repeat with 5 random seeds. 

 

Simulation_Low_Moderate

_raw 

Splatter 2000 10,000 5 -  

Simulation_Moderate_true Splatter 2000 10,000 5 Simulation data with moderate 

differential expression scale for each 

cell group,  repeat with 5 random 

seeds. 

 

Simulation_Moderate_raw Splatter 2000 10,000 5 -  
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Simulation_High_true Splatter 2000 10,000 5 Simulation data with high differential 

expression scale for each cell group, 

repeat with 5 random seeds. 

 

Simulation_High_raw Splatter 2000 10,000 5 -  

Simulation3_true Splatter 10,000 20,000 10;20;30;

40;50 

Simulation data with increased cell 

type labels from 10 to 40 cell types. 

 

Simulation3_raw Splatter 10,000 20,000 10;20;30;

40;50 

-  

Simulation4_true Splatter 5000/10,000/ 

15,000/20,000/ 

25,000/50,000 

20,000 5 Simulation data with increased cell 

number from 5000 to 50,000. 

 

Simulation4_raw Splatter 5000/10,000/ 

15,000/20,000/ 

25,000/50,000 

20,000 5 -  

Note: Raw data is true simulation data with the addition of dropouts. Sorted data were generated from Fluorescence-activated cell 

sorting (FACS) sorted method 
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Supplementary Table 1  Composition of cell-types in each real dataset 

PBMC-Sorted PBMC-3K 
Pancreas-

celseq2 

Pancreas-

Fluidigm 

Tabula Muris-

Lung-

smartseq2 

Tabula Muris-

Lung-10X 

Tabula Muris-Full-

smartseq2 

Tabula Muris-Full-

10X 

B cells (10,084) B cells (342) Acinar 

(274) 

Acinar 

(21) 

B cells 

(57) 

B cells 

(140) 

B cells 

(2029) 

B cells 

(5615) 

CD14+ 

Monocytes 

(2,465) 

CD14+ 

Monocytes 

(2,465) 

Activated 

stella 

(90) 

Activated 

stella 

(16) 

Cilliated 

columnar cell 

(25) 

- Basal cell 

(1340) 

 

Basal cell 

(27) 

 

CD34+ 

(6,312) 

- Alpha 

(843) 

Alpha 

(239) 

Classical 

monocyte 

(90) 

Classical 

monocyte 

(4) 

Basal cell of epidermis 

(1648) 

Basal cell of 

epidermis 

(2020) 

CD4+ T cells 

(42,166) 

CD4+ T cells 

(479) 

Beta 

(445) 

Beta 

(258) 

Leukocyte 

(35) 

Leukocyte 

(9) 

Basophil 

(25) 

- 

CD8+ T cells 

(22,138) 

CD8+ T cells 

(308) 

Delta 

(203) 

Delta 

(25) 

Lung endothelia 

cell 

(693) 

Lung 

endothelia cell 

(24) 

Bladder cell 

(695) 

Bladder cell 

(192) 
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Dendritic cells 

(99) 

Dendritic 

cells 

(33) 

Ductal 

(258) 

Ductal 

(36) 

Monocyte 

(65) 

- Bladder urothelial cell 

(683) 

Bladder urothelial 

cell 

(141) 

NK cells 

(8,385) 

NK cells 

(155) 

Endothelial 

(21) 

Endothelial 

(14) 

Myeloid cell 

(85) 

Myeloid cell 

(2) 

Blood cell 

(206) 

 

Blood cell 

(153) 

 

- - Epsilon 

(4) 

Epsilon 

(1) 

Natural killer 

cell 

(37) 

Natural killer 

cell 

(113) 

Cardiac muscle cell 

(133) 

- 

- - Gamma 

(110) 

Gamma 

(18) 

Stromal cell 

(423) 

Stromal cell 

(888) 

Cilliated columnar cell 

(25) 

- 

- - Macrophage 

(15) 

Macrophag

e 

(1) 

T cell 

(53) 

T cell 

(123) 

Classical monocyte 

(90) 

Classical monocyte 

(4) 

- - Mast 

(6) 

Mast 

(3) 

- - DN1 thymic pro-T cell 

(32) 

- 

- - Quiescent 

stella 

Quiescent 

stella 

- - Endocardial cell 

(165) 

Endocardial cell 

(1) 
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(12) (1) 

- - Schwann 

(4) 

Schwann 

(5) 

- - Endothelial cell 

(3319) 

Endothelial cell 

(971) 

- - - - - - Endothelial cell of 

hepatic sinusoid 

(182) 

- 

- - - - - - Epithelial cell 

(201) 

Epithelial cell 

(99) 

- - - - - - Fibroblast 

(2189) 

Fibroblast 

(4) 

- - - - - - Granulocyte 

(761) 

Granulocyte 

(73) 

- - - - - - Granulocytopoietic cell 

(221) 

Granulocytopoietic 

cell 

(14) 

- - - - - - Hematopoietic precursor 

cell 

(265) 

Hematopoietic 

precursor cell 

(24) 
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- - - - - - Hepatocyte 

(391) 

Hepatocyte 

(374) 

- - - - - - Immature B cell 

(344) 

Immature B cell 

(3) 

- - - - - - Immature T cell 

(1337) 

Immature T cell 

(222) 

- - - - - - Keratinocyte 

(330) 

Keratinocyte 

(1035) 

- - - - - - Kidney collecting duct 

epithelial cell 

(121) 

Kidney collecting 

duct epithelial cell 

(24) 

- - - - - - Late pro-B cell 

(306) 

Late pro-B cell 

(14) 

- - - - - - Leukocyte 

(683) 

Leukocyte 

(19) 

- - - - - - Luminal epithelial cell 

of mammary gland 

Luminal epithelial 

cell of mammary 

gland 
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(578) (35) 

- - - - - - Lung endothelial cell 

(693) 

Lung endothelial cell 

(24) 

- - - - - - Macrophage 

(395) 

Macrophage 

(208) 

- - - - - - Mesenchymal cell 

(830) 

Mesenchymal cell 

(5200) 

- - - - - - Mesenchymal stem cell 

(499) 

Mesenchymal stem 

cell 

(169) 

- - - - - - Monocyte 

(331) 

Monocyte 

(42) 

- - - - - - Myeloid cell 

(1208) 

Myeloid cell 

(2) 

- - - - - - Natural killer cell 

(171) 

Natural killer cell 

(142) 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2020. ; https://doi.org/10.1101/827139doi: bioRxiv preprint 

https://doi.org/10.1101/827139
http://creativecommons.org/licenses/by-nd/4.0/


- - - - - - Skeletal muscle satellite 

cell 

(540) 

Skeletal muscle 

satellite cell 

(11) 

- - - - - - Stromal cell 

(863) 

Stromal cell 

(1153) 

- - - - - - T cell 

(793) 

T cell 

(1985) 

Note: Values are indicated as Cell Type (Cell count) 
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