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Abstract 11 

Two distantly-related North American montane monkeyflower species, Mimulus lewisii and 12 

Mimulus tilingii, possess glandular trichomes. In this study, we characterized the 13 

morphological and histochemical features of these glandular trichomes. For each species, we 14 

used traditional light microscopy and scanning electron microscopy (SEM) to examine 15 

morphological characteristics, and determined the main components of the secretory products 16 

using histochemical and thin layer chromatography (TLC) staining techniques. We identified 17 

type VI glandular trichomes on leaf surfaces in both species of monkeyflowers. These 18 

trichomes exhibited stalk-cell lengths and head-cell counts that varied across adaxial and 19 

abaxial leaf surfaces, stems, and sepals. Both species contained secretory products within the 20 

cuticle of the trichome head, which releases the subcuticular metabolites when ruptured. 21 

Histochemical tests in both M. lewisii and M. tilingii confirmed that secretions contained 22 

lipids and polysaccharides. TLC plate staining indicated the presence of UV active 23 
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compounds with polyalcohols, lipids, and amines. The common morphology and chemistry 24 

of the glandular trichomes suggests an analogous response to similar environmental 25 

conditions in these evolutionary distant montane monkeyflowers.  26 

 27 

Keywords: Glandular trichome, Secretions, Morphology, Histochemistry, TLC stains,  28 

Mimulus 29 

 30 

1. Introduction 31 

Trichomes are small hairlike structures that protrude from the epidermis of above-ground 32 

vegetative and reproductive tissue (Theobald et al., 1979; Holeski et al., 2013). Leaf trichome 33 

morphology, function, and density varies considerably across individuals, populations, and 34 

species (Kärkkäinen and Ågren, 2002; Dalin et al., 2008). Nearly one third of all vascular 35 

plants contain glandular trichomes, which often cooccur with non-glandular trichomes on the 36 

same plant (Holeski et al. 2010; Huchelmann et al. 2017). Glandular trichomes are capable of 37 

excreting secondary metabolites that may serve a variety of defensive and physiological roles 38 

that contribute to plant fitness (Payne, 1973; Ehleringer, 1984; Wagner, 1991; Agren and 39 

Schemske, 1993; Kärkkäinen and Ågren, 2002; Wagner et al., 2004; Schilmiller et al., 2008; 40 

Holeski et al., 2010, 2013; Meira et al., 2014; Huchelmann et al., 2017; Tissier et al., 2017; 41 

Liu et al., 2019). These secretory structures display high morphological and chemical 42 

diversity across the plant kingdom, including variation in the length of the trichome stalk cell 43 

relative to the size of the glandular head (Theobald et al., 1979). For example, capitate 44 

trichomes have a stalk cell twice as long as their multicellular head, and can serve as physical 45 

barriers to increase the leaf boundary layer, thereby regulating leaf temperature and water 46 
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loss (Theobald et al., 1979; Ehleringer, 1984; Körner, 2003; Glas et al., 2012; Liu et al., 47 

2019). Trichomes may protect tissues from extreme temperatures by reducing heat damage, 48 

controlling transpiration, increasing freeze-tolerance, and protecting against damage by UV 49 

light (Ehleringer, J., 1984; Gravano et al., 1998; Werker, 2000; Larcher, 2001; Kärkkäinen 50 

and Ågren, 2002; Körner, 2003; Wagner et al., 2004; Combrinck et al., 2007; Huttunen et al., 51 

2010; Mershon et al., 2015). Further, glandular trichome secretions can have important roles 52 

in pollination, seed dispersion, and inter-plant signaling (Levin, 1973; Wagner, 1991; 53 

Holeski et al., 2010; Kärkkäinen and Ågren, 2002; Schilmiller et al., 2008; Holeski et al., 54 

2013; Meira et al., 2014; Tissier et al., 2017; Liu et al., 2019). Some leaf trichomes protect 55 

plants from herbivory by secreting fluids that interfere with insect activity (Levin, 1973; 56 

Wagner, 1991; Agren and Schemske, 1993; Elle and Hare, 2000; Malakar and Tingey, 2000; 57 

Handley et al., 2005; Holeski et al., 2010; Kärkkäinen and Ågren, 2002; Schilmiller et al., 58 

2008; Holeski et al., 2013; Meira et al., 2014; Tissier et al., 2017; Liu et al., 2019). Trichome 59 

secretions that possess antifungal, antibiotic, and antithrombotic properties can also defend 60 

the plant form pathogens (Dos Santos Tozin and Rodrigues, 2017; Haratym and Weryszko-61 

Chmielewska, 2017; Tissier et al., 2017; Liu et al., 2019). Indeed, secretions from several 62 

plant species have been harvested for pharmacological studies as possible alternatives to 63 

conventional synthetic antibiotics (Liu et al., 2019). The molecular characteristics of the 64 

trichome secretion compounds, such as terpenes and acyl sugars, dictate their function 65 

(Gershenzon and Dudareva, 2007; Schilmiller et al., 2008; Huchelmann et al., 2017; Liu et 66 

al., 2019).  67 

 68 
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The genus Mimulus (Phrymaceae, updated to Erythranthe  by Barker et al., 2012; but see 69 

Lowry et al. in press) contains 160-200 species that exhibit tremendous phenotypic variation, 70 

and has served as a model system for ecological adaptation, speciation, and chromosomal 71 

evolution (Wu et al., 2008; Yuan, 2019). In this study, we compare trichome morphology and 72 

function of two distantly related species of monkeyflowers, Mimulus lewisii (section 73 

Erythranthe) and M. tilingii (section Simiolus; Beardsley et al., 2004). These two species 74 

exhibit substantial range overlap that encompasses montane environments in western North 75 

America, likely experience similar environmental conditions, and are characterized by 76 

glandular trichomes (Greene, 1895; Schnepf and Busch, 1976; Abrams, 1984; Bohm, 1992; 77 

Baldwin et al., 2012.) 78 

 79 

Here we performed a comparative analysis of the vegetative glandular trichome morphology 80 

and secretion histochemistry of Mimulus lewisii and M. tilingii. We examined morphology 81 

using both light microscopy and scanning electron microscopy (SEM; Ascensão and Pais, 82 

1998; Haratym and Weryszko-Chmielewska, 2017; Rodriguez et al., 2018). We used 83 

histochemical tests to elucidate categories of compounds found in the glandular secretions 84 

from each species and used TLC to identify the functional groups of the compounds in the 85 

secretions. We ask whether the ecological overlap in the range of these two species is 86 

reflected in similar trichome structure and function, in spite of their evolutionary distance 87 

(Beardsley et al., 2004; Nie et al., 2006). 88 

 89 

2. Material and Methods 90 

2.1. Plant materials 91 
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Plants used in this study originated from field-collected lineages centrally-located within the 92 

geographic range of each species. Seeds from a Mimulus lewisii population in the south-93 

central Oregon, USA, portion of the Modoc Plateau were provided by Paul Beardsley, and 94 

belong to the northern race of M. lewisii (Heisey et al., 1971; Beardsley et al., 2004; Baldwin 95 

et al., 2012). Mimulus tilingii seeds were collected from a population in the White Mountains 96 

in Inyo County, California, USA (N 37°12.720’ and W 118°36.627’). For both species, we 97 

propagated the lineages through self-fertilization for three generations in the greenhouse to 98 

reduce maternal effects. Seeds were planted in Fafard 4P potting soil, stratified at 4°C for 7 99 

days, then germinated and maintained in a walk-in custom-built growth chamber 100 

(Environmental Growth Chambers, Chagrin Falls, Ohio, USA) under long-day photoperiod 101 

conditions (16h light at 22°C/8 h dark at 18°C) and 50% relative humidity. Plants were 102 

watered daily to soil saturation, with Peters Professional 20-15-20 fertilizer at 300 ppm added 103 

weekly. We sampled vegetative material from leaves, stems, and sepals plants that were in 104 

full bloom. 105 

 106 

2.2. Morphology and distribution of glandular trichomes 107 

To study the morphological features of trichomes in these species, we used multiple 108 

complementary microscopy techniques to obtain a thorough characterization of their 109 

structure. 110 

 111 

2.2.1. Light microscopy 112 

We imaged the glandular trichomes using temporary wet mounts. Fresh leaf tissue was 113 

collected from the edge of mature leaves using a razor blade, cut into ca. 5 mm2 pieces, and 114 
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placed on a slide with a droplet of distilled water. Photomicrographs of wet mount leaves 115 

were made with a Nikon CoolPix 990 digital camera fitted with a Martin Microscope S/N 116 

0120 adapter on a Nikon Optiphot compound light microscope and Nikon SMZ10 dissecting 117 

microscope. 118 

 119 

2.2.2. Trichome density 120 

We calculated trichome density on both abaxial and adaxial leaf surfaces for both species 121 

from the light micrographs. Trichomes were counted at 4.9X magnification under a 122 

dissecting microscope, and trichome density was calculated using FIJI software (Schindelin 123 

et al., 2012) on the adaxial (M. lewisii n=7; M. tilingii n=6) and the abaxial (M. lewisii n=5; 124 

M. tilingii n=6) surfaces. The densities between species and between the leaf surfaces were 125 

compared with two-sample t-tests.  126 

 127 

2.2.3. Scanning Electron Microscopy (SEM) 128 

To examine the three dimensional structure of trichomes, we captured images using SEM. 129 

Following the protocol of Talbot and White (2013), 17 subsections of Mimulus lewisii and 11 130 

subsections of M. tilingii leaves (5 mm x 5 mm each) were fixed in 100% methanol for 25 131 

min at room temperature. Subsequently, the plant material was dehydrated twice in 100% 132 

ethanol for 30 min. Once dehydrated, the samples were critical-point dried in an EMS 850 133 

Critical Point Dryer, and sputter coated with gold-palladium following manufacturer’s 134 

protocols for the Denton Desk IV sputter coater. The adaxial and abaxial leaf surfaces were 135 

imaged under a JOEL JSM-6360LV scanning electron microscope at 10kV accelerating 136 

voltage.  137 
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 138 

2.3. Secretion Chemistry 139 

To characterize chemical characteristics of the trichome glandular secretions, we used 140 

histochemical techniques and other staining processes following thin layer chromatography 141 

(TLC). The glandular secretions for Mimulus lewisii and M. tilingii were analyzed with 142 

staining techniques both in vivo on the trichomes and in vitro after isolating the secretions 143 

from the leaves.  144 

 145 

2.3.1. Histochemistry 146 

The main classes of metabolites present in Mimulus lewisii and M. tilingii leaf glandular 147 

secretions were determined using protocols from Haratym and Weryszko-Chmielewska 148 

(2017) for the following histochemical tests: potassium dichromate for tannins (Gabe, 1968), 149 

Toluidine Blue O for polysaccharides (Serrato-Valenti et al., 1997), Ruthenium Red for 150 

polysaccharides that are not cellulose (Johansen, 1940), Nile Blue for acidic and neutral 151 

lipids (Jensen, 1962), Sudan Black B and Sudan III for lipids (Johansen, 1940; Lison, 1960), 152 

and Neutral Red for essential oils and lipids (Clark, 1981). All stains were matched with an 153 

unstained control. We imaged freshly stained tissue following the light microscopy 154 

techniques described previously (Section 2.2.1) on a Nikon Eclipse E600 microscope. 155 

 156 

2.3.2. Extraction and isolation of secretions 157 

Mimulus lewisii and M. tilingii trichome secretions were isolated from plant tissue using 95% 158 

ethanol leaf washes. Leaf washes allow isolation of the trichome secretions without 159 

disrupting the leaf integrity (Asai et al., 2012). After optimizing the method from Asai et al. 160 
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(2012), each freshly-collected leaf was rinsed for 15 seconds. To obtain sufficient material 161 

for subsequent analyses, 699 individual leaf washes of Mimulus lewisii were pooled together, 162 

as well as 500 leaf washes for M. tilingii. After removing the solvent with a Buchi Rotavapor 163 

R-210, secretions were resuspended in ethyl acetate. To screen for functional groups, we 164 

spotted the secretions on thin layer chromatography (TLC) silica plates prior to exposure to 165 

the staining solutions. Plates were visualized following standard procedures from Tuchstone 166 

(1992), including: UV light only for conjugated pi-systems; vanillin-sulfuric acid for 167 

alcohols, ketones, bile acids, and steroids; phosphomolybdic acid for steroids and lipids; 168 

cerium ammonium molybdate for polyalcohols; potassium permanganate for alkenes, 169 

alkynes, alcohols, and amines; p-anisaldehyde for polysaccharides; ninhydrin for amines; 170 

diphenylamine in EtOH for nitrate esters; copper(II) sulfate for sulfur containing glycosides; 171 

and 2, 4-dinitrophenylhydrazine for aldehydes and ketones.  172 

 173 

3. Results  174 

3.1. Morphology and distribution of glandular trichomes 175 

Both Mimulus lewisii and M. tilingii leaves possess predominantly capitate glandular 176 

trichomes on the adaxial and abaxial surfaces (Figs. 1 and 2).  177 

 178 

3.1.1. Trichome density and relative size 179 

In both species, trichomes were distributed regularly across the leaf surface (Figs. 2A and 180 

3A). However, trichome density was nearly twice as high in Mimulus tilingii (mean ± SE 181 

35.5 ± 2.30 trichomes per mm2) than in M. lewisii (17.4 ± 1.17 trichomes per mm2; two-182 

sample t-test, n = 24, df = 22, t=-6.99, p < 0.001), with no significant difference between 183 
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abaxial and adaxial leaf surfaces within a given species (Table 1; two-sample t-test, each 184 

n=12, df=10, M. lewisii contrast t= 0.81and M. tilingii contrast t= -0.37; both p > 0.05). 185 

Qualitatively, the trichomes appeared overall longer, though more variable in length, in M. 186 

lewisii than in M. tilingii (Fig. 1). 187 

 188 

3.1.2. Trichome types 189 

The glandular trichomes on Mimulus lewisii and M. tilingii show extensive morphological 190 

similarity (Fig. 1). Leaves from both species contain capitate trichomes with a single cell 191 

stalk, a unicellular neck, and a multicellular head that is surrounded by a cuticle containing 192 

the secretory compounds (Figs. 1 and 2). Trichomes with these characteristics are generally 193 

classified at type VI (Luckwill, 1943; Channarayappa et al., 1992; Glas et al., 2012).  194 

 195 

Mimulus lewisii glandular trichomes are long projecting structures from the epidermal 196 

surfaces, with consistent density and morphology across all the tissue examined. In SEM 197 

micrographs of M. lewisii, the whole trichome surfaces have smooth surfaces (Fig. 2B-E). 198 

Most trichomes had a single basal cell, although occasionally larger trichomes appeared to 199 

have more than one basal cell (Fig. 1B). In all samples analyzed, the stalks and the necks 200 

were single cells (Figs. 1B, C and 2B, D, E). Within each species, the length of the stalk cell 201 

was the most variable component of the trichomes (Figs. 1B, C and 2A, F). The heads 202 

contained 2-4 cells arranged in a single plane, which could be observed through SEM only 203 

after the cuticle was removed in the fixation process (Fig. 2B-E). We could also observe the 204 

multicellular heads with the compound light microscope, which revealed the cuticle with the 205 

secretions above or surrounding the cells (Fig. 1B,C).  206 
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 207 

Mimulus tilingii glandular trichomes also have consistent density and morphology across the 208 

leaf surface, although they appeared generally shorter than M. lewisii trichomes. SEM 209 

micrographs showed trichomes that were minutely verrucose and, like M. lewisii, had a 210 

single basal cell (Fig. 2G-I). As in M. lewisii, the M. tilingii trichomes varied in height 211 

primarily due to varied lengths of the stalk cells (Figs. 1C and 2F). Mimulus tilingii 212 

trichomes also had a single neck cell that was thinner than the head and the stalk (Figs. 1C-D 213 

and 2H). We consistently observed tetracellular heads in the glandular trichomes of M. 214 

tilingii (Fig. 2G-I). In some of the SEM images, the secretions were still visible on the 215 

trichome heads despite the harsh dehydration process (Fig. 2G-I). Some light microscopy 216 

images showed the cuticle with the subcuticular secretions, consistent with secretions being 217 

released following cuticle rupture (Fig. 3P).  218 

 219 

3.2. Histochemical analysis 220 

3.2.1. In vivo analysis 221 

Histochemical staining revealed numerous substances in trichome secretions of both Mimulus 222 

lewisii and M. tilingii (Table 2). Fresh unstained sections appeared transparent both species 223 

(Fig. 3A, I). Trichome secretions stained positively for polysaccharides and lipids, but did 224 

not stain for tannins (Fig. 3). No substantial staining of tannins was observed in the 225 

secretions with potassium dichromate treatment, but the cell walls appear darker (Fig. 3B, J). 226 

A high polysaccharide concentration was visible in the head cells of both with Toluidine 227 

Blue O (Fig. 3C, K), and was also observed in the stalk cell of M. lewisii (Fig. 3C). 228 

Ruthenium Red treatment also indicated polysaccharides in the secretions of the two species 229 
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(Fig. 3D, L). Both species were positive for acid lipids based on staining with Nile Blue (Fig. 230 

3E, M), and positive for lipids when stained with Sudan Black B, Sudan III, and Neutral Red 231 

(Fig. 3F-H, N-P). When treated with Sudan III, only small lipidic vesicles were visible in 232 

both species (Fig. 3G, O). While Neutral Red stains the head cells of both species, M. tilingii 233 

shows higher lipidic concentrations in the surrounding secretions based on stain intensity 234 

(Fig. 3H, P).  235 

 236 

3.2.2. Thin layer chromatography 237 

Mimulus lewisii and M. tilingii leaf glandular secretions responded positively to all tests for 238 

functional groups within the compounds we examined (Table 3). When M. lewisii and M. 239 

tilingii glandular secretions were spotted on TLC plates and exposed to short-wave UV light, 240 

the spots from both species fluoresced, indicating the presence of conjugated pi systems in 241 

the compounds. Vanillin-sulfuric acid tested positive for alcohols, ketones, bile acids or 242 

steroids for both species, though coloration was darker in M. lewisii. Steroids, lipids and 243 

antioxidants were also present in the secretory compounds, as evidenced by spots in 244 

phosphomolybdic acid. Polyalcohols were positively characterized with cerium ammonium 245 

molybdate. Potassium permanganate stained the glandular secretions from both species for 246 

alkenes, alkynes, alcohols, and amines, suggesting the presence of double bonded 247 

components. The stain for sugars, p-anisaldehyde, were darkly spotted. Staining with 248 

ninhydrin indicated low amounts of amines in the secretions for both M. lewisii and M. 249 

tilingii. Nitrate esters were also weakly detected as indicated by yellow spots on 250 

diphenylamine in EtOH. Copper (II) sulfate lightly stained for sulfur containing glycosides. 251 

Finally, the orange spots on the 2, 4-dinitrophenylhydrazine stained plate confirmed the 252 
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presence of aldehydes and ketones. Overall, the compounds of both species appear to contain 253 

alcohols, lipids, alkynes, sugars, amines, nitrate esters, and some sulfur-containing 254 

glycosides.  255 

 256 

4. Discussion  257 

We determined that two distantly-related montane monkeyflower species, Mimulus lewisii 258 

and M. tilingii, both contain type VI glandular trichomes on vegetative tissues that are 259 

characterized by a stalk cell, a neck cell and a multicellular head that produce lipids and 260 

polysaccharides. This structure is consistent with the only prior morphological 261 

characterization in M. tilingii of which we are aware (Schnepf and Busch, 1976) that 262 

identified a tetracellular trichome head using light microscopy, and is similar to the straight, 263 

unicellular trichomes described in the closely related species M. guttatus (Holeski 2007; 264 

Holeski et al. 2010). 265 

 266 

Capitate trichome morphologies have been classified into eight categories, largely based on 267 

the number of cells, length, and shape (Luckwill, 1943; Channarayappa et al., 1992; Glas et 268 

al., 2012). The trichome morphology of both Mimulus species studied here are consistent 269 

with type VI, which have a single stalk cell, a neck cell, and a multicellular head within the 270 

same plane (Luckwill, 1943; Channarayappa et al., 1992; Glas et al., 2012). Most trichomes 271 

observed in M. lewisii are bicellular or tricellular in the glandular head, while M. tilingii have 272 

primarily tetracellular heads, consistent with descriptions by Schepf and Busch (1976). Other 273 

montane species, Solanum lycoperiscum and S. tuberosum, also have type VI glandular 274 

trichomes with tetracellular heads (Kang et al., 2010; Bergau et al., 2015; Cho et al., 2017). 275 
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The presence of a cuticle protecting the secretions in the subcuticular space of the trichomes 276 

that we observed in M. lewisii and M. tilingii was also identified in S. lycoperiscum and S. 277 

tuberosum, suggesting this structure could function to sequester and store the secretions until 278 

a physical disturbance, such as water droplets or insect visitation, causes the cuticle to 279 

rupture (Tissier et al., 2017). This extracellular structure thus may prevent intracellular 280 

accumulation and self-toxicity (Tissier et al., 2017).   281 

 282 

Trichome length, size, and density have been found to vary in response to the environment 283 

factors in dicotyledonous angiosperms (Theobald et al., 1979; Malakar and Tingey, 2003; 284 

Holeski, 2007; Holeski et al. 2010). In species such as Potentilla glandulosa growing in the 285 

Sierra Nevada mountains, trichome density decreases with altitude, which was attributed to 286 

responses to herbivory and oviposition, rather than elevational factors (Levin, 1973). In other 287 

systems , however, decreased trichome density with altitude has been proposed as a response 288 

to a reduced number of herbivores present in the higher ranges, such that the resources can be 289 

allocated elsewhere (Wilkens et al., 1996; Kofidis and Bosabaldis, 2008; Horgan et al., 290 

2009). In contrast, trichome density has been reported to increase with altitude in potatoes 291 

(Horgan et al., 2009), tomatoes (Wilkens et al., 1996), and salva-de-marajó (Tozin et al., 292 

2015). Among perennial coastal M. guttatus populations, average trichome density also 293 

varies with elevation. Holeski (2007) suggested density changes inversely with elevation as a 294 

response to herbivory, and also shows phenotypic plasticity. It is possible that, like Mimulus 295 

guttatus, M. lewisii and M. tilingii  may exhibit plasticity in trichome density, largely in 296 

response to herbivory (Holeski, 2007; Holeski et al., 2010), although future studies are 297 

needed. Additionally, although our study did not include density measurements between 298 
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populations, we suspect that the trichome density in M. lewisii and M. tilingii could have 299 

other functionalities beyond herbivore defense.  300 

 301 

Trichomes tend to be precocious structures that develop before the leaf fully matures 302 

(Rodriguez et al., 2018). As leaf maturation proceeds, intercalary growth increases the 303 

average distance between trichomes, such that greater intercalary growth produces a larger 304 

leaf with reduced trichome density (Rodriguez et al., 2018). We hypothesize that mature 305 

leaves of M. lewisii, which are larger than those of M. tilingii, may have lower trichome 306 

density in part because of such greater intercalary growth. Interestingly, we found that the 307 

trichome density did not differ significantly between the adaxial and abaxial surfaces within 308 

each species, yet other studies have reported density variation between the opposing leaf 309 

surfaces in other species (Bergau et al., 2015; Rodriguez et al., 2018). For example, in the 310 

fern Notholanea sulphurea, trichomes in the adaxial surface are only present in younger 311 

plants, purportedly for protection during early developmental stages (Ascensão et al., 1995; 312 

Werker, 2000; Rodriguez et al., 2018). 313 

 314 

Trichome secretions of both monkeyflower species contained polysaccharides and lipids, but 315 

no tannins. Polysaccharides are common secretory compounds for external defense in several 316 

other species, including Marriubium vulgare and Notholaena sulphurea (Schmilmiller et al., 317 

2008; Keefover-Ring et al., 2014; Haratym and Weryszko-Chmielewska, 2017; Rodriguez et 318 

al., 2018; Liu et al., 2019). Additionally, the presence of lipophilic compounds has been 319 

widely described in glandular secretions of numerous species, especially terpenoids and 320 

flavonoids (Asai et al., 2012; Liu et al., 2019). For instance, terpenoids are a common lipidic 321 
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compound category, which are biosynthetically derived from five-carbon rings, such as 322 

salvorin A and (-)-menthol (Liu et al., 2019). Additionally, flavonoids are also commonly 323 

present in glandular trichomes secretions across numerous species (Wollenweber and 324 

Schneider, 2000; Kang et al., 2010; Haratym and Weryszko-Chmielewska, 2017; Rodriguez 325 

et al., 2018; Liu et al., 2019). Bohm (1992) characterized the secondary chemistry of the 326 

entire leaf in M. lewisii and described several flavonoids, but these were not present in our 327 

analysis of the trichome secretions of either Mimulus species. Because we instead 328 

specifically isolated external trichome secretions, this divergence in flavonoid detection 329 

between our study and that of Bohn (1992) suggests separate metabolic pathways or 330 

metabolic packaging in the production of internal compounds and those that are excreted 331 

through the trichomes.  332 

 333 

Polysaccharides are present in the secretory products from both Mimulus species. Consistent 334 

with our positive Toluidine Blue O staining, Schnepf and Busch (1976) hypothesized that the 335 

secretions of M. tilingii contain carbohydrates based on their observations of Golgi bodies in 336 

the trichome head cells. Interestingly, the polysaccharides in the secretions of M. lewisii were 337 

present in the head cell as well as the stalk cell, which suggests certain compounds are 338 

produced in the Golgi of stalk cells, then transported to the multicellular head prior to 339 

secretion. It is possible that the polysaccharides stained are precursors of lipidic compounds, 340 

which have been suggested to play a role in environmental stress response (Schilmiller et al., 341 

2008). The high concentrations of lipids in the glandular heads of both M. lewisii and M. 342 

tilingii suggests that they are produced in the trichome head primarily for secretion, as 343 

compounds produced in the trichomes are generally not transported back to the rest of the 344 
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plant because they can often be hazardous to its internal metabolism (Schilmiller et al., 2008; 345 

Tissier et al., 2017). Furthermore, the TLC plate spotting of the isolated glandular secretions 346 

revealed a variety of functional groups present in both species including alcohols, lipids, 347 

alkynes, sugars, amines, nitrate esters, and some sulfur-containing glycosides. Many studies 348 

have found these functional groups in terpenes, a common natural product biosynthesized 349 

from five-carbon compounds (Gershenzon and Dudareva, 2007; Huchelmann et al., 2017; 350 

Liu et al., 2019). Secretions from both species have conjugated pi systems which also 351 

correspond with terpenoids (Schilmiller et al., 2008). Terpenes are commonly synthesized by 352 

similar capitate trichomes across several species such as tomatoes (Schilmiller et al., 2008). 353 

Additional characterization of the molecular characteristics of the compounds in the 354 

secretions may further our understanding their functional role, such as freeze tolerance or 355 

protection against other stresses  (Gershenzon and Dudareva, 2007; Schilmiller et al., 2008; 356 

Huchelmann et al., 2017; Liu et al., 2019). Other studies have found that trichome secretions 357 

can serve as pathogen defenses based on antifungal, antibiotic, and antithrombotic properties 358 

(Dos Santos Tozin and Rodrigues, 2017; Haratym and Weryszko-Chmielewska, 2017; 359 

Tissier et al., 2017; Liu et al., 2019), or provide protection against UV light and other abiotic 360 

stresses (Liu et al., 2019). Additional analyses are needed to determine the specific functional 361 

role of these compounds in M. tilingii and M. lewisii. 362 

 363 

The similarities between the species studied here include the trichome structural type, general 364 

morphology, and secretion chemistry. Mimulus lewisii and M. tilingii are exposed to similar 365 

environmental stresses found in montane environments, such as below-freezing temperatures 366 

and high UV light (Körner, 2003; Wu et al., 2008; Baldwin et al., 2012). Therefore, these 367 
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trichomes might serve as a physical barrier to prevent intracellular ice formation by creating 368 

an air space between the trichome heads and the epidermis, forming an insulation layer to 369 

protect the leaves (Azocar et al., 1988; Zhen and Ungerer, 2008; Li et al., 2018). In addition, 370 

the lipids produced by these glandular trichomes may serve as a hydrophobic layer that 371 

reduces the accumulation of water on the adaxial leaf surface, further limiting freezing within 372 

the epidermal tissue. Minimizing the damage from cold temperatures that may occur late in 373 

the spring or early in the fall could potentially extend the reproductive period (Körner, 2003). 374 

Since M. lewisii and M. tilingii have similar trichome structures and chemistry, yet belong to 375 

different species complexes within the genus (Beardsley et al., 2004), these trichome 376 

characteristics could reflect convergent evolution in response to common environmental 377 

pressures. 378 

 379 

5. Conclusions 380 

The results of this work suggest that trichomes of the montane species Mimulus lewisii and 381 

M. tilingii may have converged to a similar form and function in response to shared 382 

environmental conditions that characterize their natural range across western North America. 383 

Both species have the same type VI glandular trichomes and almost no non-glandular leaf 384 

trichomes. The main components of the secretory products from both species were identified 385 

as lipids and polysaccharides, with possibly additional terpenoid compounds. A study of the 386 

environmental factors these species face will be necessary to determine the functional role of 387 

these convergent structures.  388 

 389 
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Figures 635 

 636 

Fig. 1. Long-stalk-multicelled glandular trichomes found on leaf surfaces of both Mimulus 637 

lewisii and M. tilingii visualized by light microscopy. The stalk cell length varies in M. lewisii 638 

(A, B) trichomes, but remains relatively constant in M. tilingii (C, D) trichomes. Trichomes on 639 

both species have a single-celled stalk, a neck cell, and a multicellular head that is surrounded by 640 

the secretions, corresponding to type VI trichome. The glandular secretions (A,B) the head of M. 641 

lewisii trichomes are indicated by arrows. Note the scalebars.  642 
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 643 

Fig. 2. Morphology of Mimulus lewisii (A-E) and M. tilingii (F-I) glandular trichomes visualized 644 

by SEM consistent with type VI capitate glandular trichomes that have a single-cell stalk, a neck 645 

cell, and multicellular heads. Both, M. lewisii (A) and M. tilingii (F), have evenly distributed 646 

trichomes in adaxial (shown) and abaxial (not shown) leaf surfaces. The stalk cells are the main 647 

source of height variability among all the trichomes in Mimulus. Although bicellular trichome 648 

heads (B-C) are the most common type VI trichome structure present in M. lewisii, tricellular (C-649 

D) and tetracellular glandular heads (E) were also observed in a single plane. The glandular 650 

trichomes of M. tilingii had only tetracellular glandular heads (G-I) in a similar planar structure. 651 

The secretions of M. tilingii trichomes are visible after the cuticle has been removed (G). Note 652 

scalebar differences among panels.  653 
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 654 

Fig. 3. Histochemical characterization of secretions of Mimulus lewisii (A-H) and M. tilingii (I-655 

P) visualized by light microscopy. The main classes of metabolites in the resins of both species 656 
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were investigated using fresh leaf sections with seven histochemical tests, using protocols 657 

modified from Haratym and Weryszko-Chmielewska (2017). Unstained M. lewisii (A) and M. 658 

tilingii (I) capitate trichomes, with visible secretory glandular bicellular head, neck cell, and stalk 659 

cell. Staining with potassium chromate indicate a lack of tannins in trichomes of M. lewisii (B) 660 

and M. tilingii (J). Polysaccharides stained with Toluidine blue in the stalk cell and head cell of 661 

M. lewisii (C) and only the head cells of M. tilingii (K). Low relative abundance of 662 

polysaccharides stained with Ruthenium red was seen in M. lewisii (D) and M. tilingii (L) 663 

trichomes. Neutral lipids stained with Nile blue in the glandular head of M. lewisii (E) and M. 664 

tilingii (M). There is an abundant lipidic resin stained with Sudan Black B on the secretions of 665 

M. lewisii (F) and M. tilingii (N). Lower concentration of lipids in the resin stained with Sudan 666 

III in M. lewisii (G) and M. tilingii (O). Lipids stained with Neutral red in the glandular head of 667 

M. lewisii (H) and the subcuticular area and head cells of M. tilingii (P).  668 
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Tables 669 

Table 1  670 

Average trichome densities (mean  SEM trichome/mm2, n=12 leaves per species) of mature 671 

Mimulus leaf surfaces. 672 

Leaf surface M. lewisii M. tilingii 

Adaxial 17.1  1.87 36.34  2.60 

Abaxial 17.7  1.30 34.6  4.04 

Average across surfaces 17.4  1.17 35.5  2.30 

 673 

Table 2 674 

Histochemical identification of compounds in the capitate type VI trichomes of Mimulus lewisii 675 

and M. tilingii. Staining responses summarized from Haratym and Weryszko-Chmielewska 676 

(2017). Representative images of staining results are shown in Figure 1.  677 

Stain Compound 
Color 

observed 

Target response 

M. lewisii M. tilingii 

Potassium 

dichromate 
Tannins Brown - - 

Toluidine Blue O Polysaccharides Blue/purple + + 

Ruthenium Red Polysaccharides Crimson (+) (+) 

Nile Blue Acid lipids Blue + + 

Sudan Black B Lipids Dark blue + + 

Sudan III Lipids Orange - - 

Neutral Red Lipids Red + + 

- negative response, (+) subtle response, + positive response 678 

  679 
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Table 3  680 

Functional group identification in compounds from the extracted secretions of Mimulus lewisii 681 

and M. tilingii leaves using TLC plate staining, following methods from Tuchstone (1992). 682 

TLC plate treatment Compound Color observed 
Target response  

M. lewisii M. tilingii 

UV light only 
Any short wave UV 

response 
Dark blue + + 

Vanillin-sulfuric acid  
Alcohols, ketones, bile 

acids, and steroids 
Brown  + (+) 

Phosphomolybdic acid 
Steroids, lipids, 

antioxidants 
Blue + + 

Cerium ammonium 

molybdate  
Polyalcohols Dark blue + + 

Potassium permanganate 
Alkenes, alkynes, 

alcohols, and amines 
Brown + + 

P-anisaldehyde Sugars Dark blue/brown + + 

Ninhydrin Amines Yellow (+) (+) 

Diphenylamine in EtOH Nitrate esters Yellow (+) (+) 

Copper(II) sulfate 
Sulfur containing 

glycosides 
Brown (+) (+) 

2,4-Dinitropheylhydrazine 

(DNP) 
Aldehydes and ketones Orange + + 

- negative response, (+) subtle response, + positive response 683 
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