
 

Data architecture for a large-scale     
neuroscience collaboration 
The International Brain Laboratory, Niccolò Bonacchi ​1​, Gaelle Chapuis​2​, Anne Churchland ​3​,          
Kenneth D. Harris​2​, Max Hunter​2​,Cyrille Rossant​2​, Maho Sasaki ​4​, Shan Shen ​4​, Nicholas A.            
Steinmetz​5​, Edgar Y. Walker​4​, Olivier Winter​1​, Miles Wells​2  
1​Champalimaud Center for the Unknown, Av. Brasília, 1400-038 Lisboa, Portugal 
2​Institute of Neurology, University College London, London WC1N 3BG, UK 
3​Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA 
4​DataJoint Neuro, Houston, Texas, 77021 
5​Department of Biological Structure, University of Washington, Seattle, WA 98195, USA 

Correspondence: ​info+data@internationalbrainlab.org 

Abstract 
Effective data management is a major challenge for neuroscience labs, and even greater for 
collaborative projects. In the International Brain laboratory (IBL), ten experimental labs spanning 
7 geographically distributed sites measure neural activity across the brains of mice making 
perceptual decisions. Here, we report a novel, modular architecture that allows users to 
contribute, access, and analyze data across this collaboration. Users contribute data using a 
web-based electronic lab notebook (Alyx), which automatically registers recorded data files and 
uploads them to a central server. Users access data with a lightweight interface, the Open 
Neurophysiology Environment (ONE), which searches data from all labs and loads it into 
MATLAB or Python. To analyze data, we have developed pipelines based on DataJoint, which 
automatically populate a website displaying a graphical summary of results to date. This 
architecture provides a new framework to contribute, access and analyze data, surmounting 
many challenges currently faced by neuroscientists.  

Introduction 
Three changes in the field of neuroscience have given rise to new challenges in data               
management. First, datasets are becoming vastly larger. For instance, advances in neural            
measurement technology have made it possible to collect neural activity from hundreds of             
neurons in daily experiments​1,2​. These neural datasets are often accompanied by increasingly            
large behavioral datasets, often including video data tracking of the animal ​3–6​. Second, many             
neuroscientists are now assembling into teams that include multiple researchers and           
universities and even spanning several countries​7–10​. This team approach to neuroscience           
necessitates that data are made immediately accessible to team members at multiple sites, thus              
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demanding a more rigorous data management system than is required in an individual lab.              
Finally, the field has come to appreciate the need for public data sharing. Data sharing allows a                 
single dataset to generate many insights into brain function, often far beyond those that were               
the focus of the original research. In order for a dataset to be successfully shared, it must be                  
formatted so that it is readable by new users, must include relevant metadata, and must be                
stored reliably to ensure access.  
 
Despite the widespread need for improved data management, many neuroscience labs lack the             
infrastructure needed to improve their current systems. Methods of data storage have not             
evolved to support the increasingly large datasets being generated. Newly established           
collaborations struggle to find affordable and efficient ways to pool and visualize data across a               
large team. Finally, standardized data formats​11,12 have not been fully adopted, especially            
compared to data formats in other fields such as genomics and astronomy.  
 
The International Brain Laboratory (IBL) is a collaboration of 21 neuroscience laboratories            
studying the computations supporting decision-making ​7​. The collaboration ​is generating         
unprecedented amounts of behavioral and neural data which must be available immediately to             
all members of the collaboration, and later to the general public. ​Data management within IBL is                
made simpler by our initial focus on a single behavioral task implemented with standardized              
experimental instrumentation ​13​. Nevertheless, the scale and diversity of the data produced, and             
the requirement for immediate access across a geographically-distributed collaboration required          
us to develop new tools for data management. 

An initial goal of the IBL project is to collect a brain-wide activity map: sampling 270 recording                 
sites twice each using Neuropixels probes​1​, along with a single site that is sampled more heavily                
to assess repeatability across laboratories. This will generate recordings from ~200,000           
neurons. In addition to this brain-wide map, individual IBL scientists will perform diverse             
experiments applying other recording modalities to the same task (e.g. two photon calcium             
imaging, fiber photometry of neuromodulators), or perform additional manipulations such as           
optogenetic stimulation or inactivation of specific cell populations. All these data must be put              
into a standard form and collected into a single central location. 

Public release of these data will require careful quality control and manual curation, and will only                
occur after sufficient time has allowed for this (planned for September 2020). In the meantime               
however internal IBL scientists require access to these data from multiple international            
locations. Different scientists require different data items, to perform tasks such as developing             
quality control metrics and analyzing behavioral learning curves. Data sharing solutions that            
require researchers to download the entire dataset to access specialized data items would             
therefore be impractical, adding unnecessary obstacles to the already difficult task of analyzing             
and exploring complex datasets. Furthermore, scientists need to be able to search for             
experiments and data items matching specified criteria. We have now established our core data              
pipeline and sharing architecture, which solves these problems, and will also form the basis of               
our external sharing system when the data are publicly released. As of January 2020, this               
system stores information on 16,000 behavioral sessions (currently 400,000 files).  
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Here, we describe the methods and open-source software IBL has developed to contribute,             
access and analyze data. This data architecture is composed of three modules (Figure 1), which               
are described in detail below. The first, “Alyx,” allows users to contribute data via a web-based                
electronic lab notebook system. Alyx stores metadata concerning experimental subjects,          
experiments, and data files, and automatically transfers recorded data to a single central             
location. The second, “Open Neurophysiology Environment” is a simple, flexible, and extensible            
protocol for accessing data files. Finally, a data pipeline based on Datajoint ​14​, automatically              
analyzes incoming data, and powers a web viewer for monitoring behavioral performance of             
mice, and viewing activity of individual neurons. These modules are all available as open              
source, and can be adopted individually or together by other projects, as their needs require. 

Figure 1 ​. IBL data architecture. Data and metadata contributed from each lab are integrated into a                
relational database storing metadata, and a bulk file server storing binary files, via read-only connections.               
Users can access these data either directly through the Open Neurophysiology Environment (ONE)             
protocol, or via DataJoint, which also allows automatic pipelined analysis, and presents basic analyses on               
a website. 

 

Table 1: Terminology 

 What is it? What is an example?  What is it for? 

Bulk data Large-scale raw 
recordings or derived 
preprocessed results. 

Raw electrophysiology 
signal, spike sorting results, 
behavioral outcomes 

Bulk data are processed, analyzed, and 
visualized to draw scientific conclusions. 
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Metadata Small data items that 
provide information on 
bulk data. 

Mouse strain/sex/lineage, 
electrode location, 
experimenter ID, recording 
hardware configuration and 
lab 

Metadata allows users to search for bulk 
datasets they want to analyze, and is 
essential to interpret results. 

Relational 
Database 

A system that stores 
complex information in 
easily-searchable and 
interdependent tables. 

PostgreSQL, MySQL Users search the database to find data 
they need. Searches are flexible, and 
include queries not originally conceived of 
by the designers, eg, “Find all data run on 
male mice on a Tuesday”. 

Data 
Standard 

A set of rules specifying 
how data will be 
represented on a 
computer system. 

Open Neurophysiology 
Environment, Neurodata 
Without Borders 

A data standard allows users to read data 
from multiple providers without having to 
learn a new convention each time. 

Analysis 
Language 

A high-level 
programming language 
allowing data 
processing. 

Python, MATLAB Used by scientists to process and analyze 
bulk data.  

Data 
Pipeline 

A software tool that 
allows complex 
multi-step computations 
to be run automatically.  

DataJoint​, ​joblib ​, ​Dask Allows a standard analysis to be run 
repeatedly on multiple standardized 
datasets, saving intermediate results and 
continuing after interruptions. 

 

Contributing data: an electronic lab notebook for metadata 
A key challenge is to ensure that metadata (Table 1) are comprehensive and accurate. While               
metadata about the experiments themselves can be collected by the recording hardware,            
metadata about the experimental subjects must be entered by lab members. Ensuring this             
happens reliably is primarily a problem of “social engineering” rather than software, and we              
have solved it by creating a user-friendly web-based client that connects from all IBL labs to our                 
central database, termed “Alyx” (Fig. 1). Alyx is accessible via a web interface that allows data                
entry for example real-time note taking during surgery or experiments. It is also             
programmatically accessible via an API. This allows the experimental control software to            
communicate directly with the database, so metadata such as experiment time, the amount of              
water delivered, as well as the locations and types of all recorded data files, can be                
automatically registered.  

The Alyx system functions as an electronic colony management / electronic lab notebook             
system storing details on all labs’ mice, such as age and surgical history. These are critical                
because mouse behaviour is affected by a large number of factors​15​. Alyx allows metadata to be                
entered at the time of collection, for example recording each subject’s weight before every              
experiment, which ensures data are entered more reliably than would occur by transcribing from              
paper lab notebooks. The system also performs other functions, such as generating email             
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notifications telling the experimenter how much supplementary water is needed after training,            
and recording delivery of these supplements. Other types of metadata (e.g. genotype results),             
are entered as soon as they are generated, which ensures their accuracy, in contrast to later                
entry of paper-based notes. Preprocessing software (eg. spike sorting, compression) also           
communicates with the database to register the files it has produced. This registration of files               
enables automatic transfer of data to the central server.  

Alyx can function as a system for colony management and registration of experiments and data,               
independently of the remainder of the IBL data architecture. Indeed, it was first developed by               
one of the IBL member labs for this purpose prior to IBL’s founding, and is now used by several                   
other labs to perform colony management for non-IBL mice. It can be installed on a local                
computer or on a remote cloud server (eg. AWS) accessed by web interface. A user guide to                 
Alyx is available as Appendix 5 of this paper.  

Contributing data: preprocessing and transfer of bulk data 
The experimental data are generated via neural and behavioral measurements during a            
dynamic decision-making task for mice ​7​. Data are collected daily at multiple experimental sites,             
during both initial training and neurophysiological recordings in expert subjects. In addition to             
neural recordings, these data include the output of rotational sensors on the wheel that subjects               
use to report choices, video recordings of the face and body from 3 high-speed cameras, a                
microphone recording of sound inside the apparatus, and measurements from additional           
sensors that track ambient environmental parameters (e.g. temperature).  

Preprocessing and compression run on a local data server in each experimental lab. This server               
runs on a widely used Linux distribution and is assembled using consumer grade components:              
gaming GPU, 64 Gb of RAM, solid state system drive plus extra hard drives for temporary                
storage. Prior to upload, to save space and bandwidth on the bulk dataserver. Video is               
compressed using ​ffmpeg h264 codec (compression level crf 29)​, and tracking of body parts              
is performed with DeepLabCut​4​. Raw electrophysiology is compressed by a factor of ~3 using a               
custom ​lossless compression algorithm ​we have developed specifically for this purpose           
(​https://github.com/int-brain-lab/mtscomp ​; Appendix 3). Spike sorting is performed using        
kilosort2 (​https://github.com/MouseLand/Kilosort2 ​). A versioning system ensures that the        
software version used to generate these processed files is recorded, so future improvements in              
preprocessing will be handled gracefully. The data produced by these experiments are stored             
primarily as .npy files - a simple format consisting of flat binary data plus a small header. These                  
files can be natively accessed by Python, and can be accessed by MATLAB using a simple                
interface (​https://github.com/kwikteam/npy-matlab ​). Files are named using a convention based         
on ONE dataset types (Appendix 1).  

Data are automatically uploaded to the bulk data server (Table 1, Fig. 1, middle) via Globus                
Online, a system that allows transfer of large data sets, allowing for features such as automatic                
restart and parallelization over multiple Transmission Control Protocol (TCP) connections. This           
transfer is initiated at 2am local time by the central Alyx database server. The database keeps                
a record for each dataset including the version and the file hash, plus an additional linked record                 
for each physical copy of a dataset. Any datasets whose presence is registered as residing on                

 
5 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2020. ; https://doi.org/10.1101/827873doi: bioRxiv preprint 

https://github.com/int-brain-lab/mtscomp
https://github.com/MouseLand/Kilosort2
https://github.com/kwikteam/npy-matlab
https://doi.org/10.1101/827873
http://creativecommons.org/licenses/by/4.0/


 

the lab server, but not the central server, are uploaded and their presence on the central server                 
is registered when the upload completes. 

The IBL experiment control software, including software for automatically training mice, as well             
as all hardware designs are open source and available for scientists who wish to study this                
behavior task (​https://www.internationalbrainlab.com/resources​). The software for data       
compression and transfer are open source (​https://www.internationalbrainlab.com/resources​),       
with remote data transfer also requiring an account with Globus Online. 

Accessing the data 
Data on the central server is standardized and shared within the collaboration using the Open               
Neurophysiology Environment (ONE), a simple protocol developed for this purpose (Fig. 1;            
https://ibllib.readthedocs.io/en/latest/04_reference.html#open-neurophysiology-environment​). 
ONE is a development from the Neurodata Without Borders (NWB) standard ​11,12​, that adds              
additional features required for use in a distributed collaboration such as IBL. A Jupyter hub               
allowing public access to ​the behavioral data of the companion paper​13 via ONE is available at                
https://one.internationalbrainlab.org ​.  

ONE comprises a set of conventions for naming the datasets associated with an experiment,              
and a lightweight interface allowing users to search for experiments of interest, and load              
required data from these experiments directly into in MATLAB or Python (Appendix 1). The user               
thus need not worry about underlying file formats or network connections, and data are cached               
on their local machine to avoid repeated downloads.  

The key to ONE's standardization is the “dataset type". When a user loads data from one of                 
these types​, they are guaranteed to be returned predictable information, organized in a             
predictable way, and measured in a predictable unit. For example, if a user requests ​the dataset                
spikes.times ​for a particular experiment, they are returned the times of all extracellularly             
recorded spikes, measured in seconds relative to experiment start, formatted as a            
1-dimensional column vector. The current list of ONE-standard dataset types is an extension of              
the NWB data schema, and is shown in Appendix 2. Datasets need not be two-dimensional               
numeric arrays – they can be arrays of any dimensionality, lists of strings, movies, or arrays of                 
structures. The user is guaranteed when loading a dataset of a given type that they will be                 
returned data organized the same way, regardless of which experiment they load from. 
 
Dataset types are named in a specific way, formalizing relations between data. Each dataset              
type has a two-part name: the “object” (before the period) and the “attribute” (after the period).                
Multiple dataset types with the same object (e.g. ​spikes.times ​and ​spikes.clusters​), always            
have the same number of rows, describing multiple attributes of the same object: in this case,                
the times and cluster assignments of each spike. If the attribute of one dataset matches the                
object of another, this represents a cross-reference. For example, ​spikes.clusters ​contains           
an integer cluster assignment for each spike, while ​clusters.brainLocation ​contains a           
structure array with information on the physical location of each of these cells. The values in                
spikes.clusters ​can be used as indices to the rows of ​clusters.brainLocation. 
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ONE was designed to be an extensible data standard (Table 1) that can be used beyond IBL,                 
allowing other data providers to extend it as required while still maintaining compatibility. Data              
that are expected to be common across projects are encoded in standard dataset types (such               
as ​spikes.times)​, and all providers of data containing these types should return arrays of the               
specified dimension and measurement units. However, providers can also add their own            
project-specific dataset types, by defining their own “namespace”. Names beginning with an            
underscore are guaranteed never to be standard. For example the dataset type            
_ibl_trials.stimulusContrastLeft ​contains information specific to the IBL project, and no          
other projects would be expected to use it.  

ONE can be used as a stand-alone module, independently of the full IBL data architecture. To                
enable users to implement ONE without the rest of the architecture, we have provided an               
implementation termed ONE light (​https://github.com/int-brain-lab/ibllib/tree/onelight/​) . To share        
data with ONE light, a data provider gathers their data files into experiment directories, with files                
named according to the standard dataset types. They then run a script that automatically              
uploads the files to ​figshare. This system has been used to share large-scale electrophysiology              
recordings collected in a different task​16 (​https://figshare.com/articles/steinmetz/9974357 ​). A        
user can access this data using the same standard library functions as for the main IBL dataset.                 
ONE light can also be used to access data stored on a user’s local machine, and we have                  
provided access to IBL’s behavioral data using this system         
(​https://figshare.com/articles/A_standardized_and_reproducible_method_to_measure_decision-
making_in_mice_Data/11636748 ​).  

Once curation is complete, data will also be made available via Neurodata Without Borders              
(NWB)​11,12​. NWB ​was created by neurophysiologists and software developers ​to be a unified             
data standard (Table 1) suitable for diverse neurophysiological and behavioral data. NWB can             
store multimodal experimental data in a single file and thus is well suited for long-term               
distribution and storage. ONE has additional features that make it suitable for a growing data               
set with frequent contributions and diverse access needs (for example, the ability to load a               
single data item such as behavior performance from all experiments without downloading all full              
data files). ONE’s standardized data access functions will facilitate production of NWB files, and              
will also allow flexibility as neurodata standards evolve in the future. Release of data in NWB                
format has been successfully piloted by individual laboratories within the collaboration ​17,18​. 

Analyzing data 
The final part of the data architecture is the system for analyzing data collected by the project.                 
This component of the architecture is built on DataJoint​14​: a workflow management system that              
integrates a relational database (Table 1) with automatic processing of analyses. While            
DataJoint and Alyx are both based on relational databases, the design philosophy and intended              
uses of these systems is different, and they are hosted on different servers. Unlike Alyx, whose                
table structure is not designed to change, DataJoint is a dynamic system that allows individual               
users to create and delete new tables containing results of ad-hoc analyses. It thereby allows               
users to rapidly explore new analysis methods, and easily scale them up to run on the entire IBL                  
data set. Furthermore, because all computation results are stored in the database, the system              
allows users to quickly build secondary analyses making use of the results of previous              

 
7 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2020. ; https://doi.org/10.1101/827873doi: bioRxiv preprint 

https://github.com/int-brain-lab/ibllib/tree/onelight/oneibl#one-light
https://figshare.com/articles/steinmetz/9974357
https://figshare.com/articles/A_standardized_and_reproducible_method_to_measure_decision-making_in_mice_Data/11636748
https://figshare.com/articles/A_standardized_and_reproducible_method_to_measure_decision-making_in_mice_Data/11636748
https://doi.org/10.1101/827873
http://creativecommons.org/licenses/by/4.0/


 

computations. The analyses in the companion paper​13 were made using this system, and a              
Jupyter hub allowing public access to IBL data via DataJoint, together with sample code for               
some of these figures, is available at ​https://jupyterhub.internationalbrainlab.org.  

Figure 2 ​: ​An analysis pipeline (created through DataJoint) automatically generates plots of behavioral             
data each time a subject is run. Plots generated by this pipeline are instantly available to all team                  
members via a web browser. Data from a single mouse are shown. Left: daily trial counts and session                  
duration; middle: Proportion correct and reaction time on high contrast (easy) trials; Right: Accuracy for all                
contrast levels over a training period. Note that early training days (left) include only high contrast trials                 
while later training days (right) include a mix of contrasts.  

In addition to allowing dynamic access to data, we have used the DataJoint system to build a                 
web system for monitoring the behavioral progress of all mice. ​As new data are recorded, they                
are automatically ingested into the DataJoint system, and analyses summarizing the behavioral            
performance of all mice are automatically updated. Figures summarizing mouse progress are            
produced, and made available via a web site (Fig. 2). This web system is used by team                 
members who are training mice to monitor progress, or to compare the performance of many               
animals, and also allows newcomers to the group to quickly get a sense of the behavioral data                 
without needing to write their own analysis routines. A curated subset of these behavioral data               
are available on a ​public website (​http://data.internationalbrainlab.org ​)​.  

The data analyses displayed on the website are performed using a growing toolbox of standard               
and emerging analyses for analysis of electrophysiological and behavioral data. The toolbox,            
termed Brainbox, is written in Python and can operate independently of DataJoint. These tools              
are publicly available at ​https://github.com/int-brain-lab/ibllib/tree/master/brainbox​, and can be        
used by neuroscientists independently from the rest of the data architecture.  

Outlook 
Data management, standardization and sharing has proven challenging within neuroscience.          
Datasets have grown in size, complexity and diversity in recent years, but few neuroscientists              
have prior experience or formal training in data management. Although the IBL is still at an early                 
stage, our experience thus far has shown it is possible to develop a reliable, easy-to-use data                
architecture, that generates and organizes data suitable for sharing within a large collaboration,             
and beyond. The IBL, as a large collaboration, has benefitted from outstanding technical staff              
who work full time on data management, but most individual labs do not have the resources to                 
do this. As a result, data management problems slow down projects, data sharing has not been                
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universally adopted, and many shared datasets are lacking metadata. In this regard,            
neuroscience is substantially behind other scientific domains, such as genomics, astronomy, or            
particle physics.  

We end with some thoughts on how the lessons we have learned in IBL could inform data                 
management practices in individual labs. One possibility is for individual labs to nominate             
individuals to focus on data management. However, the time commitment required should not             
be underestimated: organizing, documenting, sharing, and supporting the data collected in even            
a medium-sized lab that uses modern neurophysiological methods is essentially a full-time job.             
An alternative possibility is for labs to rely on third-party companies that offer data management               
solutions (such as DataJoint Neuro, who have partnered with IBL as well as several individual               
labs outside the collaboration). In addition to the cost, however, this solution might not appeal to                
users hesitant to fully rely on a third party, fearing that this will limit flexibility and the ability to                   
nimbly update workflows. 

We hope that the open-source tools developed by IBL will help contribute to a solution allowing                
individual labs to curate and share data, without requiring dedicated full-time staff or external              
contractors. Our Alyx colony management system provides a solution to the problem of             
contributing and storing metadata. The ONE Light protocol allows data producers to “upload and              
forget” datasets at the time of publication, while allowing users a standardized and searchable              
protocol to access data from multiple producers. The Brainbox library contributes a growing set              
of analysis tools, and our DataJoint pipeline provides a template data providers can adapt to               
provide web-based data visualization. We are keen to support the use of these tools by non-IBL                
labs, so we can continue to to make them more useful and easy to apply by the general                  
community. Our hope is that the IBL’s data management plan can help pave the way forward to                 
a new era of large scale data in neuroscience in which data from all labs is shared on a routine                    
basis. 
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Appendix 1: Open Neurophysiology Environment details 
The Open Neurophysiology Environment (ONE) user interface consists of four simple API 
functions that allow data consumers to search for experiments of interest and load data from 
them. This interface allows multiple backend instantiations, so data consumers can run the 
same exact code to process data from multiple data producers, even if these different producers 
store data in different locations. The main IBL data is provided via an ONE implementation that 
requires a backend SQL database, but we have also provided an “ONE light” implementation 
that allows data producers to share data simply by uploading files to a web server, or to figshare 
(a site offering free hosting for scientific data). The same implementation also supports data 
stored in a local file system, as long as the hierarchical organization into subfolders and file 
names matches the same ONE convention. These files can be uploaded in a variety of standard 
formats (npy, csv, json, hdf5, mpeg, etc.), organized with one directory per experiment 
containing appropriately-named data files. 
 
ONE clients have been implemented in Python and MATLAB, and are documented at 
https://ibllib.readthedocs.io/en/develop/index.html ​. Below, we describe how to use ONE in 
Python. 
 

Importing ONE  
Users can access data from different projects by loading and configuring appropriate            
implementations of the ONE library. For example, to access IBL’s main data in Python they               
would type 

from oneibl.one import ONE 

one = ONE() 

  

whereas to access data from Steinmetz et al. ​16 via the ONE light figshare interface, they would                 
type  

from oneibl.onelight import ONE 

one = ONE() 

one.set_figshare_url("https://figshare.com/articles/steinmetz/9974357") 

 

In both cases, the user is returned an object named ​one ​, ​that allows the same commands to be                  
run whichever ONE implementation is running behind the scenes. 

Dataset types 
The key to ONE's standardization is the “dataset type". When a user loads data from one of                 
these types​, they are guaranteed to be returned predictable information, organized in a             
predictable way, and measured in a predictable unit. For example, if a user requests ​the dataset                
spikes.times ​for a particular experiment, they are guaranteed to be returned the times of all               
extracellularly recorded spikes, measured in seconds relative to experiment start, and returned            
as a 1-dimensional column vector. The current list of ONE-standard dataset types was derived              
from the NWB data schema, and is shown in Appendix 2. 
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Datasets need not be two-dimensional numeric arrays – they can be arrays of any              
dimensionality, lists of strings, movies, or arrays of structures. In fact, a dataset can by anything                
with the concept of a “row” – i.e. any data structure that can be addressed by an integer                  
subscript, for example a leading dimension of a structure array, or frame number in a movie.  
 

Dataset types are named in a specific way, which formalizes relations between data. Each              
dataset type has a two-part name, with the part before the period called the “object” and the part                  
after called the “attribute”. When there are multiple dataset types with the same object (e.g.               
spikes.times ​and ​spikes.clusters​), it is guaranteed that they will have the same number of              
rows, describing multiple attributes of the same object: in this case, the times and cluster               
assignments of each spike. If the attribute of one dataset matches the object of another, this                
represents a cross-reference. For example, ​spikes.clusters ​contains an integer cluster          
assignment for each spike, while ​clusters.brainLocation ​contains a structure array          
containing information on the physical location of each of these cells. The values in              
spikes.clusters ​can be used as indices to the rows of ​clusters.brainLocation. 

Dataset types have specified measurement units. For example, locations in the brain are given              
in Allen CCF coordinates​19​, measured in mm. The units of measurement for all dataset types are                
specified in the documentation.  

Some attributes have predefined meanings. For example it is guaranteed that any dataset type              
whose attribute is of the form ​times or ​*_times will represent the times of events, measured in                 
seconds relative to experiment start. Datasets whose attribute is ​intervals ​or           
*_intervals ​are guaranteed to be two-column arrays giving start and end times of particular              
events in seconds relative to experiment start. Datasets whose attribute is ​timestamps            

contain timestamps for each sample of not-necessarily evenly sampled timeseries data, whose            
unit is again seconds relative to experiment start.  

Not all data can be standardized. Data that are common across projects will be encoded in                
standard dataset types, and providers of data containing these types should return arrays of the               
specified dimension and measurement units. However, providers can add their own           
project-specific dataset types, by defining their own “namespace”. Names beginning with an            
underscore are guaranteed never to be standard. For example the dataset type            
_ibl_trials.stimulusContrastLeft ​contains information specific to the IBL project, and no          
other projects would be expected to use it. A list of standard dataset types will be maintained                 
centrally, and will start small but increase over time as the community converges on good ways                
to standardize more information. The current list of standard and IBL-specific dataset types is in               
appendix 2. 

Searching for data 
Each experiment is characterized by a unique string known as the experiment ID (eID). The               
format of this string is determined by the implementation: ONE light uses directory pathnames,              
while the main IBL implementation uses hexadecimal UUIDs. Within an implementation, a            
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specific eID is always guaranteed to refer to the same experiment, allowing data consumers to               
hard-code eID strings into their analysis software. 

To search for experiments they want to analyze, a user runs the function ​one.search ​that               
returns a list of eIDs for all experiments matching the requested criteria. ONE currently allows               
searching for experiments by user (i.e. experimenter); by experimental subject; by date; and by              
the dataset types associated with the experiment. For example, to search for all experiments on               
subject ‘IBL_123’ performed in the month of August 2019, for which spike-sorted extracellular             
electrophysiology and video eye tracking are available, one would type 

 

eID_list = one.search(subject='IBL_123', date_range=['2019-08-02', 

'2019-08-31'], dataset_types=['spikes.times', 'spikes.clusters',eye.xyPos']) 

  
This command returns a list of eIDs for all experiments matching the specified criteria.              
Optionally, the search command also returns full metadata on each matching experiment in a              
structure list.  

Loading data 
Once a user knows the eID of an experiment they want to analyze, they can load data from this                   
experiment in one of two ways. The first way is to load an individual dataset. For example, to load                   
spike times, the user would type: 

st = one.load_dataset(eID, 'spikes.times') 

  

The second way is to load all datasets belonging to an object. For example the command 

spikes = one.load_object(eID, 'spikes') 
 
will return a dictionary with one entry for each dataset associated with that object ( ​times,               

clusters, depths, amps,​ etc.).  
 
Importantly, the user need not be concerned with the physical location or format of the raw data files                  
- they just type these commands to load them into their analysis software. In practice, the data are                  
cached on the user's local machine, so it need only be downloaded once for many uses; however                 
details of the caching, as well as the underlying file formats are hidden from the user.  

Listing available data  
The fourth and final ONE function ​one.list(eID) ​simply lists the dataset types available for a               
given experiment. 

 

Appendix 2: ONE dataset types 
The table below lists the dataset types currently used in the IBL’s implementation of the ONE                
standard. The standard namespace contains data we believe can be standardized with other             
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projects; these are largely adopted from the NWB data model. The _ibl_ namespace contains              
data likely to be specific to our task or recording hardware. ​A live list of dataset types is                  
maintained at ​https://www.internationalbrainlab.com/resources​. The dataset types as of the time          
of writing are listed below. 

We have provided a “ONE Light” interface, that allows any scientists to share data via ONE                
protocols, without needing to run a backend database. To do so, they create a data directory for                 
each experiment, containing one data file for each of the dataset types they wish to provide. The                 
files can be in multiple formats, but the standard is .npy files: flat binary files encoding numerical                 
arrays, with a small header indicating the size and datatype. These files can be loaded and                
saved natively from numpy, and from MATLAB via ​this toolbox​. For example, to store spike               
times, the experiment directory would contain a file “spikes.times.npy”. Once a data sharer has              
created directories are creating containing these data files on their local machine, they run a               
command using ​this library ​to automatically upload them to figshare or to a web server. Data                
users can then search and download data using the standard ONE interface, though currently              
with simpler search capabilities than with the backend database. 

 
ONE Dataset Type  Dimension Description 

spikes.times  [nspi] 
Times of spikes (seconds, relative to experiment onset). 
Note this includes spikes from all probes, merged 
together. 

spikes.clusters  [nspi] 
Cluster assignments for each spike (integers counting 
from 0). Cluster assignment reflects the result of manual 
curation. 

spikes.depths  [nspi] 
Depth along probe of each spike (µm; computed from 
waveform center of mass). 0 means deepest site, positive 
means above this. 

spikes.amps  [nspi]  Peak amplitude of each spike (µV). 

spikes.templates  [nspi] 
Template ID for each spike as originally assigned by                 
spike sorting software, prior to manual curation. 

spikes.samples  [nspi] 
Time of spikes, measured in units of samples in their own 
electrophysiology binary file. 

templates.waveforms 
[ntemp, 
nsw, 
nchSub] 

Waveform of each template spike (stored as a sparse 
array, only for a subset of channels with large 
waveforms). 

templates. 
waveformsChannels 

[ntemp, 
nchSub] 

Channels of the raw recording on which the template 
waveforms are defined. 

clusters.metrics 
[nc, 
nmetrics] 

Quality control metrics for each cluster. 

clusters.mlapdv  [nc, 3] 
Estimated coordinates of the cell relative to bregma (mm) 
in Allen Common Coordinate Framework (CCF)​15​. See 
Appendix 4. 

clusters.brainAcronyms  nc  Estimated cluster brain location acronym using Allen CCF 
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notation. See Appendix 4. 

clusters.waveforms 
[nc, nsw, 
nchSub] 

Mean unfiltered waveform of spikes in this cluster (NB: 
Neuropixels 1.0 data will have been hardware filtered). 

clusters. 
waveformsChannels 

[nc, 
nchSub] 

Identities of the channels that are represented in 
clusters.meanWaveforms for each cluster sorted by 
amplitude. 

clusters.depths  [nc] 
Depth of mean cluster waveform on probe (µm). 0 means 
deepest site, positive means above this. 

clusters._phy_annotation  [nc] 
Manual curation of spike cluster quality. 0 = noise, 1 = 
MUA, 2 = Good, 3 = Unsorted, 4-100 = manual quality 
score. 

clusters._phy_ids  [nc]  Original cluster index assigned in Phy (counting from 0). 

clusters.peakToThrough  [nc]  Trough to peak time of mean cluster waveform (ms). 

clusters.amps  [nc]  Mean amplitude of each cluster (µV). 

clusters.channels  [nc, nch] 

Channel which has the largest amplitude for this cluster. 
NB this counts all channels from all probes; to find this 
cluster's brain location index like so: 
channels.brainLocation[clusters.peakChannel[i],:] 

clusters.probes  [nc, np]  Which probe this cluster came from (counting from zero). 

probes.trajectory  [np, 7]  Trajectory coordinates of probe.  See Appendix 4. 

probes.description  [np] 
Text description of probe: label (folder name), Model 
(3A, 3B1, 3B2), Serial Number, Original file name. 

channels.probes  [nch] 
Probe assignments for each channel (integers counting 
from 0). Can be used as direct indexing for the probes.* 
attributes. 

channels.rawInd  [nch] 
Array of indices in the raw recording file (of its home 
probe) that each channel corresponds to (counting from 
zero). 

channels._phy_ids  [nch] 
Array of indices in Phy that each channel corresponds to 
(counting from zero). 

channels.brainAcronyms  [nch, 4]  Channel brain location acronym using Allen CCF notation. 

channels.mlapdv  [nch, 3] 
Channel location relative to bregma (mm) in Allen CCF​. 
See Appendix 4​. 

channels.localCoordinates [nch, 2] 

Location of each channel relative to probe coordinate 
system (µm): x (first) dimension is on the width of the 
shank; (y) is the depth where 0 is the deepest site, and 
positive above this. 

channels.shank  [nch] 
Array giving shank number (or other channel group) of 
each channel, used for spike sorting. 

eye.timestamps 
[nEyeSamp
les, 2] 

Timestamps for pupil tracking timeseries: 2 column array 
giving sample number and time in seconds. 
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eye.raw 
[nEyeSamp
les, nX, 
nY] 

Raw movie data for pupil tracking. 

eye.area 
[nEyeSamp
les] 

Area of pupil (pixels^2). 

eye.xyPos 
[nEyeSamp
les, 2] 

Matrix with 2 columns giving x and y position of pupil 
(in pixels). 

eye.blink 
[nEyeSamp
les] 

Boolean array saying whether eye was blinking in each 
frame. 

licks.times  [nLicks]  Times of licks is seconds. 

spontaneous.intervals 
[nSpontIn
t, 2] 

Times when no other protocol was going on for at least 30 
seconds. 

_ibl_wheel.position 
[nWheelSa
mples] 

Absolute linear displacement of wheel (cm).  

_ibl_wheel.timestamps 
[nWheelSa
mples, 2] 

Times of position in seconds relative to session start, 
continuous (evenly spaced). 

_ibl_wheel.velocity 
[nWheelSa
mples] 

Tangential velocity of the wheel (cm/s) where positive = 
CW. 

_ibl_wheelMoves.intervals 
[nWheelMo
ves,2] 

2 column array of onset and offset times of detected 
wheel movements in seconds relative to session start. 

_ibl_wheelMoves.type 
[nWheelMo
ves] 

String array containing classified type of movement 
('CW', 'CCW', 'Flinch', 'Other'). 

_ibl_trials.intervals 
[nTrials,
2] 

Start (i.e. beginning of quiescent period) and end (i.e. 
end of iti) times of each trial in seconds relative to 
session start. 

_ibl_trials.included  [nTrials] 

Boolean array of which trials to include in analysis, 
chosen at experimenter discretion, e.g. by excluding the 
block of incorrect trials at the end of the session when 
the mouse has stopped. 

_ibl_trials.repNum  [nTrials] 
The trial repetition number, i.e. how many trials have 
been repeated on this side (counting from 1). 

_ibl_trials.goCue_times  [nTrials] Time of go cue tone in seconds relative to session start. 

_ibl_trials. 
goCueTrigger_times 

[nTrials] 
Time of go cue trigger command was sent in seconds 
relative to session start. 

_ibl_trials. 
response_times 

[nTrials] 
Time in seconds relative to session start when a response 
was recorded (end of the closed loop state in bpod). 

_ibl_trials.choice  [nTrials] The response ID: -1 (turn CCW), +1 (turn CW), or 0 (nogo) 

_ibl_trials.stimOn_times  [nTrials] 
Times of stimulus onset in seconds relative to session 
start. 

_ibl_trials.stimOnTrigger
_times 

[nTrials] 
Times of stimulus onset trigger command in seconds 
relative to session start. 

_ibl_trials.contrastLeft  [nTrials] Contrast of left-side stimulus (0-1, nan if stimulus is 
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on the other side). 

_ibl_trials.contrastRight [nTrials] 
Contrast of right-side stimulus (0-1, nan if stimulus is 
on the other side). 

_ibl_trials.feedback_time
s 

[nTrials] 
Time of feedback delivery (reward or noise) in seconds 
relative to session start. 

_ibl_trials.feedbackType  [nTrials] 
Whether feedback is positive or negative (-1 for 
negative, 1 for positive, 0 for no feedback). 

_ibl_trials.rewardVolume  [nTrials] Volume of reward given each trial (µl). 

_ibl_trials.itiDuration  [nTrials] Inter-trial interval duration for each trial (seconds). 

_ibl_trials.deadTime  [nTrials] 
Time between state machine trial end and restart for 
every trial. 

_ibl_trials. 
probabilityLeft 

[nTrials] 
Probability (0-1) that the stimulus will be on the 
left-hand side.  

_ibl_passiveTrials. 
included 

[nPassive
Trials] 

Boolean suggesting which passive trials to include in 
analysis, chosen at experimenter discretion. 

_ibl_passiveTrials. 
stimOn_times 

[nPassive
Trials] 

Times of stimulus onset in seconds relative to session 
start. 

_ibl_passiveTrials. 
contrastLeft 

[nPassive
Trials] 

Contrast of left-side stimulus (0-1, nan if stimulus is 
on the other side). 

_ibl_passiveTrials. 
contrastRight 

[nPassive
Trials] 

Contrast of right-side stimulus (0-1, nan if stimulus is 
on the other side). 

_ibl_passiveValveClicks. 
times 

[nPassive
Trials] 

Times of valve opening during passive trial presentation 
in seconds relative to session start. 

_ibl_passiveBeeps.times 
[nPassive
Trials] 

Times of the beep, equivalent to the go cue during task, 
in seconds relative to session start. 

_ibl_passiveWhiteNoise. 
times 

[nPassive
Trials] 

Times of white noise bursts, equivalent to the negative 
feedback sound during the task, in seconds relative to 
session start. 

_ibl_passiveNoise. 
intervals 

[nPassive
Trials,2] 

Passive noise trial start and end (i.e. end of iti) times 
in seconds relative to session start. 

_ibl_sparseNoise.xy 
[nSparseN
oise,2] 

2 column array giving x and y coordinates on screen of 
sparse noise stimulus squares.  

_ibl_sparseNoise.times 
[nSparseN
oise] 

Times of sparse noise stimulus onset in seconds relative 
to session start. 

_ibl_extraRewards.times 
[nExtraRe
wards] 

Times of extra rewards in seconds relative to session 
start. 

camera.dlc 
[nframes, 
npoints x 
3] 

Coordinates of DeepLabCut (DLC) points (x position, y 
position, likelihood). Total points = 19 (fingers-8, 
nose-2, spout-2, tongue-2, eye-4). 

camera.times  nframes 
Time of each frame acquisition (leftCamera only for 
behavior, and right and bodyCameras for ephys rigs). 
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Appendix 3: Lossless compression algorithm 
Our aim in developing the compression algorithm was to reduce data size, while maintaining not               
only the full signal available in the original data, but also maintaining the ease of random-access                
available with flat binary files. To do this, we took advantage of the temporal correlations in                
electrophysiological recordings, which show an approximate 1/f power spectrum.  

The input to the algorithm is ​represented as a flat binary multiplexed file of 2-byte integers. Data                 
are compressed independently in consecutive chunks of one second, which allows random            
access to any part of the recording without decompressing the whole signal. To compress a               
chunk, we first compute discrete time differences independently for each channel, which            
approximately whitens the signal. We then compress the result using the zlib lossless             
compression algorithm. The initial values for each chunk and compressed difference signals are             
then appended to a compressed binary file on a chunk-by-chunk basis, and a companion JSON               
file is saved storing the byte offset of every chunk. A decompression algorithm reads the JSON                
and binary files allowing random “slices” of the data to be retrieved on the fly without                
decompressing the whole file. The compression code is unit-tested with 100% coverage. In our              
benchmarking we could achieve a ~3x compression ratio of our data. For our ~400 channel               
recordings, compression is ~4x faster and decompression is ~3x faster than real time on a Intel                
i9 10-core computer. To the best of our knowledge, this simple compression algorithm has not               
been previously described, and could be used in other applications that rely on multichannel              
time series of approximate 1/f spectrum, within and beyond neuroscience. 
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Appendix 4: Coordinate system within Allen CCF 
Bregma is defined as Voxel ML-566, AP-540, DV-33 within the 10μm volume of the Allen CCF 
mouse Atlas​19​. 
 

 

Coordinate System: ​A​) Standard polar angles are used, alongside the standard [x,y,z] base. In total, an                
electrode trajectory registers 7 entries (3 angles, 3 coordinates, depth) to define a probe insertion. ​B​) The                 
coordinate system is aligned to the ML (x, Right: positive), AP (y, A: positive), DV (z, D: positive)                  
stereotaxic axis and zeroed at Bregma. The bounds for each angle are indicated. 
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