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Abstract 13 

Background: Genetic evaluation is a central component of a breeding program. In advanced 14 

economies, most genetic evaluations depend on large quantities of data that are recorded on 15 

commercial farms. Large herd sizes and widespread use of artificial insemination create strong 16 

genetic connectedness that enables the genetic and environmental effects of an individual 17 

animal’s phenotype to be accurately separated. In contrast to this, herds are neither large nor 18 

have strong genetic connectedness in smallholder dairy production systems of many low to 19 

middle-income countries (LMIC). This limits genetic evaluation, and furthermore, the pedigree 20 

information needed for traditional genetic evaluation is typically unavailable. Genomic 21 

information keeps track of shared haplotypes rather than shared relatives. This information 22 

could capture and strengthen genetic connectedness between herds and through this may enable 23 

genetic evaluations for LMIC smallholder dairy farms. The objective of this study was to use 24 

simulation to quantify the power of genomic information to enable genetic evaluation under 25 

such conditions. 26 

Results: The results from this study show: (i) the genetic evaluation of phenotyped cows using 27 

genomic information had higher accuracy compared to pedigree information across all 28 

breeding designs; (ii) the genetic evaluation of phenotyped cows with genomic information 29 

and modelling herd as a random effect had higher or equal accuracy compared to modelling 30 

herd as a fixed effect; (iii) the genetic evaluation of phenotyped cows from breeding designs 31 

with strong genetic connectedness had higher accuracy compared to breeding designs with 32 

weaker genetic connectedness; (iv) genomic prediction of young bulls was possible using 33 

marker estimates from the genetic evaluations of their phenotyped dams. For example, the 34 

accuracy of genomic prediction of young bulls from an average herd size of 1 (=1.58) was 35 

0.40 under a breeding design with 1,000 sires mated per generation and a training set of 8,000 36 

phenotyped and genotyped cows. 37 
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Conclusions: This study demonstrates the potential of genomic information to be an enabling 38 

technology in LMIC smallholder dairy production systems by facilitating genetic evaluations 39 

with in-situ records collected from farms with herd sizes of four cows or less. Across a range 40 

of breeding designs, genomic data enabled accurate genetic evaluation of phenotyped cows and 41 

genomic prediction of young bulls using data sets that contained small herds with weak genetic 42 

connections. The use of smallholder dairy data in genetic evaluations would enable the 43 

establishment of breeding programs to improve in-situ germplasm and, if required, would 44 

enable the importation of the most suitable external germplasm. This could be individually 45 

tailored for each target environment. Together this would increase the productivity, 46 

profitability and sustainability of LMIC smallholder dairy production systems. However, data 47 

collection, including genomic data, is expensive and business models will need to be carefully 48 

constructed so that the costs are sustainably offset. 49 
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Background 50 

 The huge increase in milk yield of dairy cattle in advanced economies over the past 51 

century is a powerful example of the impact that selective breeding can have on improving 52 

livestock productivity. For example, in the US dairy industry, production of milk per cow 53 

doubled from an average of 20 litres to 40 litres per day between 1960 and 2000 [1]. 54 

Approximately 50% of this improvement can be attributed to breeding. However, despite the 55 

potential benefits, similar breeding practices have had poor efficacy and adoption in 56 

smallholder dairy production systems in many low to middle-income countries (LMICs). 57 

Recent estimates from Kenyan smallholder farms suggest that average productivity per cow is 58 

approximately 5 litres per day and there is little evidence of major genetic improvement in 59 

recent decades [2–5].  60 

 In Kenya and other East African countries, farms with five cows or less account for 61 

more than 70% of milk production [6,7], and farms with 10 cows or less account for around 62 

90% of milk production [8]. The low levels of productivity and its economic importance has 63 

stimulated renewed efforts to improve dairy cow productivity in LMIC smallholder dairy 64 

production systems [6,9–11]. These efforts include new approaches for collecting data from 65 

rural farms more effectively and the establishment of effective and penetrant genetic evaluation 66 

schemes [10,12–14], breeding programs and dissemination programs [15], all of which have 67 

been somewhat intractable to sustain over the long-term in the past. 68 

 Genetic evaluation is a central component of a breeding program. The properties of an 69 

ideal data set that enables an accurate genetic evaluation include: (i) genetic connectedness 70 

between herds or management groups [16]; (ii) sufficient numbers of animals; (iii) sufficiently 71 

large herd sizes; and (iv) accurate phenotype collection. Genetic evaluations have been very 72 

successful in advanced economies because large data sets are routinely assembled from 73 
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commercial farms with modest to large herd sizes (e.g., twenty to several thousand cows). 74 

Genetic connectedness between herds is high due to the widespread use of artificial 75 

insemination (AI). Typically, phenotypes are accurately measured (e.g., automatically on 76 

advanced milking machines). Such data enables the genetic and environmental effects of an 77 

individual animal’s phenotype to be accurately separated. All or many of these features are not 78 

present in many LMIC smallholder dairy production systems. For example, smallholder dairy 79 

farmers in East Africa have small herd sizes (e.g., herds with one to five cows), a low 80 

prevalence of AI (5-10%) [8], and an absence of automated phenotyping systems [17]. 81 

Traditionally, this has prevented the establishment of effective genetic evaluation systems in 82 

these settings. 83 

 Genomic evaluations use a genomic relationship matrix to capture the realised, rather 84 

than expected pedigree-derived relationships between animals [18,19]. The use of genomic 85 

information has been transformative for many genetic evaluation systems in advanced 86 

economies. For example, the accuracy, which is the square root of reliability, of prediction for 87 

milk yield of young bulls increased from 0.62 using pedigree best linear unbiased prediction 88 

(PBLUP) to 0.85 for genomic best linear unbiased prediction (GBLUP) [20]. In the context of 89 

LMIC smallholder dairy production systems, genomic data could be even more important than 90 

it has been in advanced economies. For the first time, genomic data could enable effective 91 

genetic evaluation systems based on relatively imprecisely measured phenotypes, collected on 92 

cows in very small herd sizes, which have relatively low levels of genetic connectedness. In 93 

such a setting, genomic data could capture and utilise information pertaining to haplotypes that 94 

are shared by animals in different herds. This information could reveal genetic connectedness 95 

that is unseen by pedigree information, which would, in turn, enable more accurate partitioning 96 

of the genetic and environmental effects on animal’s performance in small herds. This opens 97 

up the possibility of an in-situ breeding program based on in-situ performance data from LMIC 98 
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smallholder dairy farms. Given that such data reflects the performance of animals within the 99 

target management and environment settings, animals produced by such a breeding program 100 

would be most suited to the participating smallholder dairy farmers.  101 

 In genetic evaluations, the herd or management group is usually included in the 102 

statistical model to enhance the separation of the genetic and environmental effects of an 103 

animal's performance [21–24]. Herds can be modelled as fixed or random effects. Most genetic 104 

evaluations in advanced economies model herds as fixed effects because herd sizes are 105 

typically large, which leads to fixed and random effects models giving almost equal solutions 106 

[22,23]. When herd sizes are small, such as in many LMIC smallholder dairy production 107 

systems, modelling herd as a fixed effect leads to inaccurate solutions [25]. Modelling small 108 

herds as random effects may reduce this inaccuracy, providing estimated breeding values 109 

(EBVs) with higher accuracies. In combination with the use of genomic information, this could 110 

enable genetic evaluations to be performed using data recorded, in-situ, on LMIC smallholder 111 

dairy farms. 112 

 The aims of this study were to use simulation to quantify: (i) the power of genomic 113 

information to enable genetic evaluation based on phenotypes recorded on smallholder dairy 114 

farms and, under such conditions, the impact of: (ii) modelling herd as a fixed or random effect; 115 

(iii) the genetic connectedness of a breeding population; and (iv) the number of records on the 116 

accuracy of EBVs of phenotyped cows and young bulls.  117 

 Across a range of breeding designs, genomic data enabled accurate genetic evaluation 118 

of phenotyped cows using data sets that contained small herds with weak genetic connections 119 

(according to pedigree). The genetic evaluation of phenotyped cows using genomic 120 

information had higher accuracy compared to pedigree information across all breeding designs. 121 

The genetic evaluation of phenotyped cows with genomic information and modelling herd as 122 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 2, 2019. ; https://doi.org/10.1101/827956doi: bioRxiv preprint 

https://doi.org/10.1101/827956
http://creativecommons.org/licenses/by-nc-nd/4.0/


a random effect had higher or equal accuracy compared to modelling herd as a fixed effect. 123 

The genetic evaluation of phenotyped cows from breeding designs with strong genetic 124 

connectedness had higher accuracy compared to breeding designs with weaker genetic 125 

connectedness. The genomic prediction of young bulls was possible using marker estimates 126 

from the genetic evaluations of their phenotyped dams. For example, the accuracy of genomic 127 

prediction of young bulls from an average herd size of 1 (=1.58) was 0.40 under a breeding 128 

design with 1,000 sires mated per generation and a training set of 8,000 phenotyped and 129 

genotyped cows. Our results show that genetic evaluations with genomic information can 130 

provide a high accuracy of EBVs of phenotyped cows and young bulls when using data from 131 

smallholder dairy farms, and would, therefore, enable in-situ breeding programs based on 132 

performance measured in-situ. 133 

 134 
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Material and methods 135 

 Simulations were used to quantify the power of genomic information to enable genetic 136 

evaluation based on phenotypes recorded on smallholder dairy farms. Ten replicates of several 137 

scenarios were performed with the overall simulation scheme depicted in Figure 1. The 138 

simulations were performed using AlphaSimR [26] and were designed to: (i) generate whole 139 

genome sequence data; (ii) generate single nucleotide polymorphisms (SNP), quantitative trait 140 

loci (QTL) and phenotypes; (iii) generate pedigree structures for LMIC smallholder dairy 141 

populations; (iv) vary the population and average herd size; (v) vary the ratios of genetic, herd 142 

and environmental variances; and (vi) run genetic evaluations modelling herd as either fixed 143 

or random effects. Conceptually, the simulation scheme was divided into historical and 144 

evaluation phases. 145 

 Each of the 10 replicates consisted of: (i) a burn-in phase shared by all strategies; and 146 

(ii) an evaluation phase that simulated breeding with each of a number of different breeding 147 

designs. Specifically, the historical component was subdivided into three stages: the first 148 

simulated the species’ genome sequence; the second simulated founder genotypes for the initial 149 

parents; and the third simulated five generations of breeding using phenotypic selection. 150 

 The burn-in phase represented historical evolution, under the assumption that livestock 151 

populations have been evolving for tens of thousands of years, and historical breeding efforts 152 

that were represented by five generations of phenotypic selection. The evaluation phase 153 

represented six generations of animal breeding in which animals were selected on their 154 

phenotypes. In the evaluation phase, population parameters were varied (i.e., the number of 155 

sires mated per generation, large or small population sizes, large or small average herd sizes, 156 

and different proportions of the genetic, herd and environmental variances) to resemble a range 157 

of possible breeding designs (Figure 1). 158 
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Burn-In: Generation of whole genome sequence data 159 

 For each replicate, a genome consisting of 10 chromosome pairs was simulated for the 160 

hypothetical animal species similar to cattle. Sequence data was generated using the Markovian 161 

Coalescent Simulator (MaCS) [27] and AlphaSimR [26] for 4,000 base haplotypes for each of 162 

ten chromosomes. The chromosomes were each 100 cM in length comprising 108 base pairs 163 

and were simulated using a per site mutation rate of 1×10-8 and a per site recombination rate 164 

of 1×10-8. The Ne was set to 1,035 in the final generation of historical simulation, to Ne=6,000 165 

(1,000 years ago) to Ne=24,000 (10,000 years ago), and to Ne=48,000 (100,000 years ago) with 166 

linear changes in between [28]. The Ne of 1,035 was chosen to reflect the high genetic diversity 167 

found in cattle populations in Africa. 168 

Burn-In: Founder Genotypes 169 

 Simulated genome sequences were used to produce 2,000 founder animals. These 170 

founder animals served as the initial parents in the burn-in phase. Sites segregating in the 171 

founders’ sequences were randomly selected to serve as 5,000 SNP markers per chromosome 172 

(50,000 genome-wide in total) and 1,000 QTL per chromosome (10,000 genome-wide in total).  173 

Burn-In: Phenotype 174 

 A single trait representing total milk yield for a single lactation was simulated for all 175 

animals. The true breeding values (TBVs) were calculated by summing the average effects of 176 

the animal’s genotype at each QTL. QTL additive effects were sampled from a standard normal 177 

distribution, N(0,1), and linearly scaled to produce TBVs in the founder population with a 178 

variance (σa
2) of 0.2. Random error was sampled from a normal distribution, N(0, σe

2). The 179 

initial random error variance was set at σe
2=1.8. The TBVs and random error effects were 180 

summed to create the phenotypes of the animal. These phenotypes were used for selection 181 

during the burn-in and the first 5 years in the evaluation phases of the simulation. Additional 182 
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herd effects were added to the phenotypes of the animals, described in a later section, in the 183 

final generation of the evaluation phase of the simulation  184 

Recent (Burn-In) Breeding 185 

 Recent (burn-in) breeding for milk yield was simulated over 5 discrete generations of 186 

selective breeding on phenotype. The features of this breeding stage were: (i) 225 sires per 187 

generation, (ii) 1,000 dams per generation, and (iii) 2,000 offspring per generation. These 188 

numbers were chosen to match the base population Ne of 1,035 following the equation from 189 

Charlesworth et al. (2008) that accounts for the variable number of males and females as well 190 

as the mean and variance of family size. In the final generation of this stage, 80,000 offspring 191 

were generated to enable the full range of scenarios in the evaluation phase of the simulation. 192 

Evaluation Phase 193 

 The evaluation phase of the simulation modelled breeding using alternative breeding 194 

designs. Each design was simulated for an additional 6 generations following the recent 195 

breeding burn-in component so that each design could be evaluated with an equivalent starting 196 

point. A baseline design was constructed using parameters that are representative of the current 197 

smallholder farming system commonly observed in East Africa. We refer to this design as the 198 

LMIC design. Alternative breeding designs were modifications that used the LMIC design as 199 

a template (Figure 1). The common features across the simulation of all the breeding designs 200 

were: (i) all generations of selection produced 80,000 animals of equal sex ratio, (ii) for 201 

simplicity selection on sires was based on their phenotype, (iii) no selection was performed on 202 

dams. Alternate breeding designs varied: (i) the size of the training set; (ii) the number of sires 203 

mated per generation; (iii) the average herd size; and (iv) the proportions of genetic, herd and 204 

environmental variances. A schematic for the overall structure of the breeding designs, 205 

including the LMIC design, is given in Figure 1 and a detailed description follows. 206 
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LMIC Design 207 

 The LMIC design was developed to approximate the current smallholder farming 208 

system structure commonly observed in East Africa. The training set size was set at 8,000 209 

phenotyped cows and the number of sires mated per generation was set to 1,000. A trait 210 

heritability of 0.1 and ratio of 1:4 between genetic and herd effect variance ratios were chosen 211 

based upon unpublished data [29]. 212 

Genetic Evaluation Models 213 

 Breeding values were estimated using the following basic model: 214 

𝐲 = 𝐗𝐛 + 𝐙𝐮 + 𝐞,                  (1) 215 

where y is a vector of phenotype records measured on cows; 𝐛 is a vector of fixed effects; 𝐮 is 216 

a vector of breeding values for which we assumed that with the PBLUP 𝐮 ~ N(0, 𝐀σa
2) and 217 

with the GBUP 𝐮 ~ N(0, 𝐆σa
2), where A is the pedigree numerator relationship matrix based 218 

on 5 generations of the pedigree [30] and G is the genomic numerator relationship matrix based 219 

on 50k SNP chip [31]; e is a vector of residuals for which we assumes 𝐞 ~ N(0, 𝐈σe
2); X and Z 220 

are the incidence matrices linking phenotype records respectively to b and u. We have 221 

conducted three analyses with the basic model in relation to a herd effect: (i) we excluded it, 222 

which gave us the basic model with intercept as the only fixed effect; (ii) we modelled it as a 223 

fixed effect; and (iii) we modelled it as a random effect for which we assumed 𝐡 ~ N(0, 𝐈σh
2). 224 

We assumed that the variance of herd effects σh
2 , breeding values σa

2 and residuals σe
2 were 225 

known and set them to the simulated values of the LMIC design. Only the last generation of 226 

phenotype data was used in model 1 to mimic the recent introduction of phenotype, pedigree 227 

and genomic data recording. 228 
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PBLUP evaluations were run using the WOMBAT software [32]. GBLUP evaluations 229 

were run using the AlphaBayes software [33]. Three genetic evaluation models were fit: (i) 230 

excluding herd effects; (ii) herds modelled as fixed effects; and (iii) herds modelled as random 231 

effects. All models modelled the animal IDs as random effects. All other parameters were held 232 

constant at the values used in the LMIC design. 233 

Genetic Connectedness and Herd Size 234 

 Genetic connectedness was varied across different breeding designs in two ways; (i) 235 

herd connectivity – the distribution of related animals within and across different herds, and 236 

(ii) the recent Ne of the breeding design. The herd connectivity was varied by simulating 237 

different average herd sizes. To generate datasets with a range of different average herd sizes, 238 

the realised herd sizes were sampled from a Poisson distribution with a lambda of 1 ( = 1.58, 239 

2 = 0.66), 2 ( = 2.32, 2 = 1.60), 4 ( = 4.06, 2 = 3.78), 8 ( = 8, 2 = 8), 16 ( = 16, 2 = 240 

16.19) and 32 ( = 32, 2 = 31.92).  The recent Ne of the breeding design was varied using four 241 

different numbers of sires mated per generation: 100, 250, 1,000 and 5,000 sires. The number 242 

of dams per generation remained constant at 40,000. All other parameters were held constant 243 

at the values used in the LMIC design. 244 

Size of Training Set 245 

 The size of the training set used in the genetic evaluations was varied across different 246 

breeding designs using four different numbers of records: 2,000, 8,000, 16,000 and 32,000 247 

phenotyped cows. Phenotyped cows were sampled evenly across the population, to ensure the 248 

genetic connectedness was maintained. All other parameters were held constant at the values 249 

used in the LMIC design. 250 
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Trait Heritability and Herd Effect 251 

 To produce the final phenotype records, the TBVs were standardized and re-scaled, and 252 

herd and random error effects were sampled from a normal distribution with corresponding 253 

variances. In addition to the LMIC design, which had a trait with a narrow sense heritability of 254 

0.1 and herd effect variance ratio of 0.4, we simulated two other scenarios: (i) a trait with a 255 

narrow sense heritability of 0.3 and herd effect variance ratio of 0.4; and (ii) a trait with a 256 

narrow sense heritability of 0.5 and herd effect variance ratio of 0.4. For each of the three 257 

scenarios, the TBVs, herd effects and random errors were summed to create the final 258 

phenotypes of the cows. All other parameters were held constant at the values used in the LMIC 259 

design. 260 

Generation of young bull population 261 

 For each scenario we generated an additional generation of offspring to produce a 262 

validation set of 2,000, 8,000, 16,000 and 32,000 selection candidates, the young bulls that 263 

would have been genomically tested. Young bulls had no phenotypes recorded and as such 264 

served as forward validation of the model 1 fitted on phenotyped cows. 265 

Comparison of Breeding Designs 266 

 The various breeding designs resulted in 288 different scenarios which enabled multiple 267 

comparisons. The breeding designs were compared based upon the accuracy and bias of EBVs 268 

separately for each scenario and replicate – we report mean and 95% interval of estimates over 269 

replicates. Accuracy was measured as the Pearson’s correlation coefficient between the EBVs 270 

and TBVs. The bias of genomic prediction was measured as the slope of the regression of the 271 

TBVs on the EBVs. 272 
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Results 273 

 The various breeding designs resulted in 288 different scenarios which enabled multiple 274 

comparisons. Across a range of breeding designs, genomic data enabled accurate genetic 275 

evaluation of phenotyped cows using data sets that contained small herds with weak genetic 276 

connections. The main trends observed in our results show: (i) the genetic evaluation of 277 

phenotyped cows using genomic information had higher accuracy compared to pedigree 278 

information across all breeding designs; (ii) the genetic evaluation of phenotyped cows with 279 

genomic information and modelling herd as a random effect had higher or equal accuracy 280 

compared to modelling herd as a fixed effect; (iii) the genetic evaluation of phenotyped cows 281 

from breeding designs with strong genetic connectedness had higher accuracy compared to 282 

breeding designs with weaker genetic connectedness; (iv) the genomic prediction of young 283 

bulls was possible using marker estimates from the genetic evaluations of their phenotyped 284 

dams. For example, the accuracy of young bulls from an average herd size of 1 (=1.58) was 285 

0.40 under a breeding design with 1,000 sires mated per generation and a training set of 8,000 286 

phenotyped and genotyped cows. The accuracies of genomic prediction of young bulls 287 

followed similar trends to those observed in the evaluation of phenotyped cows, with a 288 

reduction of ~0.1 in overall accuracy.  289 

To ease the presentation, we break the results into 5 sections: (i) LMIC design; (ii) 290 

impact of herd effect modelling; (iii) impact of genetic connectedness and heritability; (iv) 291 

impact of training set size; and (v) prediction of young bulls.  292 

LMIC Design 293 

 The accuracy of genetic evaluation of phenotyped cows, from small, weakly genetically 294 

connected herds was quantified under the LMIC design. Genetic evaluation with phenotyped 295 

cows from intermediate and large average herd sizes had a higher accuracy than genetic 296 
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evaluation with phenotyped cows from small average herd sizes. Increases in average herd size 297 

had a diminishing effect on increases in accuracy of genetic evaluation of phenotyped cows. 298 

The genetic evaluation of phenotyped cows using genomic information had higher accuracy 299 

compared to pedigree information across all breeding designs. Table 1 reports the accuracy of 300 

EBVs of phenotyped cows with both genetic evaluation methods as average herd size was 301 

changed. The accuracies reported correspond to models with the herd modelled as a random 302 

effect. At an average herd size of 1 (=1.58), phenotyped cows had an accuracy of EBVs of 303 

0.40 with the PBLUP and 0.50 with the GBLUP (an increase of 0.10). At all other average herd 304 

sizes, the increase in accuracy of GBLUP compared to PBLUP was between 0.11 and 0.12. In 305 

what follows, results will only be presented for the GBLUP. 306 

Table 1. The impact of genetic evaluation method on EBV accuracy 307 

Method  

  
  

Size of Herd   
  

  1  2  4  8  16  32  

PBLUP  Accuracy  0.40 0.41  0.43  0.44  0.45  0.46  

GBLUP  Accuracy  0.50  0.53  0.54  0.56  0.57  0.57  

 308 
Comparison of the accuracy of genetic evaluation method under the LMIC design with different 309 
average herd sizes and using the PBLUP or GBLUP method. Herd is modelled as a random 310 
effect. Standard error was 0.01 or less.   311 

 312 

Impact of herd effect modelling 313 

 Genetic evaluations were run using three models: (i) excluding a herd effect, (ii) herd 314 

modelled as a fixed effect, and (iii) herd modelled as a random effect. The genetic evaluation 315 

of phenotyped cows that included a herd effect had higher accuracies across all breeding 316 

designs. The genetic evaluation of phenotyped cows with genomic information and modelling 317 

herd as a random effect had higher accuracy compared to modelling herd as a fixed effect at 318 
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low average herd sizes. However, the accuracies of the two modelling approaches converged 319 

once a herd size of 8 was reached. Figure 2 plots the average herd size against the accuracy for 320 

each of the three evaluation models. Figure 2 shows that excluding a herd effect gave an 321 

accuracy of 0.48, averaged across all herd sizes. At average herd sizes of 1.58 and 2.32, 322 

modelling herd as a random effect increased the accuracy by 0.10 and 0.05, compared to 323 

modelling herd as a fixed effect. At an average herd size of 8, the accuracies from the two 324 

modelling approaches had practically converged. 325 

Impact of genetic connectedness and trait heritability 326 

 In the simulations we varied genetic connectedness between herds in two ways; (i) herd 327 

connectivity – varied by simulating different average herd sizes; and (ii) the recent Ne of the 328 

breeding design - varied using different numbers of sires mated per generation. The genetic 329 

evaluation of phenotyped cows from breeding designs with strong genetic connectedness had 330 

higher accuracy compared to breeding designs with weaker genetic connectedness. Figure 3 331 

plots the average herd size against the accuracy of EBVs of phenotyped cows for each of the 332 

four breeding designs with different numbers of sires mated per generation. Figure 3 shows 333 

that at an average herd size of 1 (=1.58), a decrease in the number of sires mated per 334 

generation from 5,000 to 1,000, 250 and 100 increased the accuracy from 0.46 to 0.50, 0.55 335 

and 0.62, respectively. This shows the individual impact of the number of sires mated per 336 

generation on the accuracy. With 1,000 sires mated per generation, an increase in the average 337 

herd size from 1.58 to 32, increased the accuracy from 0.50 to 0.58. This shows the individual 338 

impact of the average herd size on the accuracy. An increase in the average herd size from 1.58 339 

to 32, and a decrease in the number of sires mated per generation from 1,000 to 100, increased 340 

the accuracy from 0.50 to 0.68. This shows the combined impact of the genetic connectedness 341 

of the breeding design on the accuracy. 342 
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 The genetic connectedness of the breeding design also showed interactions with the 343 

heritability of the trait. Across all trait heritabilities, the EBVs of phenotyped cows had lower 344 

accuracy in breeding designs that had weak genetic connections. The lower accuracy due to an 345 

increase in the number of sires mated per generation in the breeding design became more 346 

prominent at lower heritabilities. The lower accuracy due to a decrease in the average herd size 347 

of the breeding design was more prominent at higher heritabilities. Figure 4 plots the average 348 

herd size against the accuracy of EBVs of phenotyped cows for two of the four different 349 

numbers of sire mated per generation (100 and 1,000 sires). The three panels correspond to the 350 

heritability under the different breeding designs. Figure 4 shows that the highest accuracy 351 

(0.94) was achieved for a high heritability trait (0.5) and when genetic connectedness was 352 

strong (100 sires mated per generation and an average herd size of 32). A decrease in the 353 

average herd size from 32 to 1.58, reduced the accuracy by 0.07. An accuracy of 0.68 was 354 

achieved for a low heritability trait (0.1) and when genetic connectedness was strong (100 sires 355 

mated per generation and an average herd size of 32). An increase in the number of sires mated 356 

per generation to 1,000 sires mated per generation, reduced the accuracy by 0.10.  357 

Impact of Training Set Size 358 

 Genetic evaluation of phenotyped cows with a larger number of records had higher 359 

accuracies for all average herd sizes. Figure 5 plots the average herd size against the accuracy 360 

of EBVs of phenotyped cows for the four different training set sizes. Figure 5 shows an increase 361 

in the number of records in the training set increased the accuracy across all of the average 362 

herd sizes. At an average herd size of 1 (=1.58), an increase in the number of records in the 363 

training set from 2,000 to 8,000, 16,000 and 32,000 records increased the accuracy from 0.41 364 

to 0.50, 0.59 and 0.68, respectively. 365 
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Prediction of young bulls 366 

Genomic prediction of young bulls was possible using marker estimates from the 367 

genetic evaluations of their phenotyped dams. The accuracies of young bulls followed similar 368 

trends to those observed in the evaluation of phenotyped cows, with a reduction of ~0.1 in 369 

overall accuracy. Genomic prediction of young bulls with a larger number of records in the 370 

training set had higher accuracies. The accuracy of genomic prediction of young bulls from an 371 

average herd size of 1 (=1.58) was 0.40 under a breeding design with 1,000 sires mated per 372 

generation and a training set of 8,000 phenotyped and genotyped cows. Figure 6 plots the 373 

accuracy of EBVs of candidate young bulls against the average herd size for the four different 374 

training set sizes. Figure 6 shows that an increase in the number of records in the training set 375 

increased the accuracy across all of the average herd sizes. At an average herd size of 1 376 

(=1.58), an increase in the number of records in the training set from 2,000 to 8,000, 16,000 377 

and 32,000 records increased the accuracy from 0.28 to 0.40, 0.51 and 0.62, respectively. 378 

The accuracy was also affected by an interaction between the heritability of the trait 379 

and the genetic connectedness of the breeding design. The genetic connectedness of the 380 

breeding design was less important for traits with a higher heritability. Figure 7 plots the 381 

accuracy against the average herd size for two of the four different numbers of sire mated per 382 

generation (100 and 1,000 sires). The three panels correspond to the different trait heritabilities 383 

in the breeding designs. Figure 7 shows that an increase in the average herd size did not recover 384 

the loss of accuracy due to lower genetic connectedness (100 vs 1,000 sires mated per 385 

generation). This is different from what was observed with the accuracy for phenotyped cows. 386 

Figure 7 shows that for a high heritability trait (0.5) and an average herd size of 32, increasing 387 

the number of sires mated per generation from 100 to 1,000 sires mated per generation reduced 388 

the accuracy of young bulls by 0.04. 389 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 2, 2019. ; https://doi.org/10.1101/827956doi: bioRxiv preprint 

https://doi.org/10.1101/827956
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion 390 

 In this paper, we demonstrated that genetic evaluation using genomic information can 391 

provide accurate EBVs when using data recorded on smallholder farms across a range of 392 

breeding designs. Therefore, genetic evaluations using genomic information could enable in-393 

situ data recorded on smallholder farms to be used to drive in-situ genetic improvement 394 

programs and genetic importation programs to improve animal performance on such 395 

smallholder farms. This capacity would enable tailored improvement and importation of 396 

genetics for smallholder farms. The results of our study highlight three main points for 397 

discussion: (i) factors that impact the accuracy of genomic evaluations; (ii) limitations of the 398 

simulation; and (iii) prospects for animal breeding in LMIC smallholder dairy production 399 

systems. 400 

Factors that impact the accuracy of genomic evaluations 401 

Impact of Herd Size 402 

 The herd or management group is usually included in the statistical model of genetic 403 

evaluations to enhance the partitioning of the genetic merit of an individual from the non-404 

genetic effects underlying its phenotype [21–24]. Herds can be modelled as fixed or random 405 

effects. One of the reasons underlying the great success of genetic evaluations in advanced 406 

economies is that large data sets are routinely assembled from commercial farms with large 407 

herd sizes. This data structure is suited to modelling herd as a fixed effect. This data structure 408 

also enables accurate separation of genetic and environmental effects and reduces potential 409 

bias due to a difference in management effects between different herds.   410 

 However, LMIC smallholder dairy farms often have small herd sizes, typically between 411 

one and five cows. With herd sizes as small as this, LMIC smallholder dairy datasets sit at one 412 

extreme of the bias-variance trade-off [34]. Modelling herd as a fixed effect provides unbiased 413 
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estimates. However, when herd sizes are small, these estimates of herd effect may have large 414 

variance. Therefore, modelling herd as a fixed effect in the LMIC smallholder dairy genetic 415 

evaluations may lead to herd effect estimates with high variance and a reduced ability to 416 

correctly rank individuals by genetic merit [25].  This could lead to a decreased accuracy of 417 

EBVs. An alternative approach in such settings would be to model herds as random effects. 418 

Modelling herd as a random effect looks to minimize the variance of estimates, but the resulting 419 

estimates are inherently biased due to shrinkage applied during estimation. However, the 420 

shrinkage process allows phenotypes recorded in small herds to partially and proportionately 421 

contribute to the genetic evaluation. This is essential for LMIC smallholder dairy genetic 422 

evaluations with herd sizes typically between one and five cows. The results from our study 423 

support this and showed that when data is collected from herds between one and four cows, 424 

genomic evaluations modelling herd as a random effect outperformed modelling herd as a fixed 425 

effect. In the case of genomic evaluations using data from an average herd size of 1 (=1.58), 426 

modelling herd as a random effect increased the accuracy of EBVs of phenotyped cows by 0.10 427 

compared to modelling herd as a fixed effect. It was only when the average herd size was 8 or 428 

more that the accuracy of EBVs of phenotyped cows from the two models converged. Overall 429 

our results demonstrate that modelling herd as a random effect in LMIC smallholder dairy 430 

genetic evaluations: (i) increases the accuracy of genetic evaluations; (ii) enables phenotypes 431 

recorded in all herds to partially and proportionately contribute to the genetic evaluation; and 432 

(iii) enables the breeding values of all animals (even those in single cow herds) to be calculated. 433 

However, as is discussed later, modelling herd as a random effect may increase accuracy but 434 

bias may be generated when non-random associations between the genetic value of cattle and 435 

the herd management exist within the training set.  436 
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Impact of GBLUP as a tool to increase connectedness between herds 437 

 Sufficient genetic connectedness between herds is important for accurate genetic 438 

evaluations [16,35]. In dairy production systems in advanced economies, large herd sizes and 439 

widespread use of artificial insemination creates strong genetic connectedness between herds 440 

that enables accurate separation of genetic and environmental effects. Because strong genetic 441 

connectedness between herds is already established in dairy production systems in advanced 442 

economies, GBLUP has primarily increased the accuracy of EBVs compared to PBLUP by 443 

capturing and exploiting deviations from expected relationships between cattle caused by 444 

Mendelian sampling [36–38]. For example, the accuracy, which is the square root of reliability, 445 

of prediction for milk yield of young bulls have increased from 0.62 using pedigree best linear 446 

unbiased predictions (PBLUP) to 0.85 for genomic best linear unbiased predictions (GBLUP) 447 

[20]. We say “primarily” because most training populations are comprised of bulls that were 448 

progeny tested across a large number of herds. In this situation, modelling both the genetic and 449 

herd effects jointly is less of a concern. The single-step GBLUP method and the recent rise of 450 

cow genotyping will also enable improvements by jointly modelling of genetic and herd 451 

effects. In LMIC smallholder dairy production systems the benefit using GBLUP will be both 452 

due to exploiting deviations from expected relationships caused by Mendelian sampling and 453 

due to implicit increases of genetic connectedness between herds. 454 

 Generating sufficient genetic connectedness between herds is especially difficult and 455 

important in LMIC smallholder dairy production systems because herd sizes are often small, 456 

farms are geographically dispersed, and artificial insemination is not widely used [8]. In such 457 

production systems, the genetic and environmental effects are likely to be partially or fully 458 

confounded. This is most obvious in the case of a single cow herd where we cannot separate 459 

the genetic effect of the cow from the herd effect of the farm. However, a range of levels of 460 

confounding could also arise in small herds composed of cows sharing the same pedigree-461 
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derived relatedness, with the recent common ancestor or ancestors only used in that herd. In 462 

both of these circumstances, PBLUP has limited ability to partition a cow’s phenotype into its 463 

genetic and environmental components. In contrast, GBLUP can achieve this partitioning, 464 

because it is capable of tracking the different permutations of haplotypes shared between cattle 465 

in different herds. During a genetic evaluation, GBLUP implicitly estimates the effects of these 466 

haplotypes and from this also the EBV of each animal. This allows phenotypic records from 467 

cows with shared haplotypes in different herds to contribute to the implicit estimation of 468 

haplotype effects and the estimates of those haplotype effects allows the partitioning of those 469 

cow’s phenotypes into their genetic and herd environment components. Furthermore, through 470 

this implicit increasing of genetic connectedness between herds, GBLUP increases the number 471 

of herds and cows that contribute useable information to the genetic evaluation compared to 472 

PBLUP. All of these interlinked factors that underlie the advantages of GBLUP, firstly make 473 

genetic evaluations using data recorded in-situ on smallholder herds possible, and secondly, 474 

work to make those genetic evaluations more accurate than those of PBLUP. In our study, the 475 

increase in genetic connectedness provided by GBLUP resulted in genetic evaluations with 476 

approximately 0.1 higher accuracy of EBVs compared to PBLUP, independent of herd size. 477 

This result probably overestimates the power of PBLUP in such settings. We used five 478 

generations of error-free pedigree records in PBLUP. In reality, limited pedigree recording 479 

takes place in LMIC smallholder dairy production systems. We should emphasise though that 480 

LMIC smallholder dairy data structures likely do not enable very accurate estimation of 481 

individual haplotype effects and that the dataset size will continue to be an important factor. 482 

 Another benefit of the increased genetic connectedness of training sets provided by 483 

GBLUP, not assessed in our study, may be the mitigation of the bias of EBVs. In LMIC 484 

smallholder dairy production systems, natural sire mating is prevalent, pedigree recording is 485 

limited, herd sizes are often small and farms are geographically dispersed. This structure is 486 
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likely to lead to isolated family clusters in pedigrees. Therefore, when using PBLUP in LMIC 487 

smallholder dairy genetic evaluations, most of the information used to calculate the EBV for 488 

any particular individual will be provided by close relatives captured by this poorly connected 489 

pedigree. This may result in only a very small number of herds contributing effective 490 

information to the genetic evaluation of an animal or group of related animals. This becomes a 491 

problem if confounding exists between the environment and the genetics in the isolated clusters 492 

of herds. Confounding can occur when the same natural service bull is used by a cohort of 493 

farmers with farms that have a better or worse than average herd environment. This may lead 494 

to biased breeding values under PBLUP. In contrast, haplotypes are likely to be dispersed 495 

across more herds. Therefore, GBLUP could accumulate effective information from more 496 

herds and more cows and thus be less prone to having haplotypes confounded with the 497 

environment. 498 

Limitations of the simulation 499 

 Our simulations did not model the full complexity that would arise in practical genetic 500 

evaluations for LMIC smallholder dairy production systems. In this section we discuss three 501 

limitations of our simulations: (i) high genomic selection accuracy; (ii) a simplified distribution 502 

of animals across farms; and (iii) a simplified breeding goal. 503 

Impact of high genomic selection accuracy 504 

 The accuracies of EBVs of phenotyped cows and young bulls observed in these 505 

simulations are likely higher than what may be expected in practical genetic evaluations for 506 

LMIC smallholder dairy production systems. Several simplifications of the simulation are 507 

likely to have caused this, including the absence of genotyping and pedigree errors, additive 508 

genetic architecture, homogeneity of environment and a single breed. Also, fixed variance 509 

components were used in the estimation of EBVs. In practical LMIC genetic evaluations, the 510 
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estimation error of variance components may result in lower accuracies of EBVs. However, 511 

we believe that the main conclusion from this study (i.e., that GBLUP is more powerful than 512 

PBLUP in LMIC smallholder production systems for several reasons) would still hold for more 513 

realistic simulations or real data. For decades it has been difficult to sustain widespread 514 

recording and use of pedigree to drive genetic evaluations in LMIC dairy production systems. 515 

GBLUP, for the reasons we outline, offers a route to overcoming this problem. 516 

Impact of simplified distribution of animals across farms 517 

 The distribution of cattle across herds in the population impacts the choice of modelling 518 

herd as a fixed or random effect in genetic evaluations. Bias, detected in this study as an 519 

inflation or deflation of EBVs, can be generated when a non-random association between herd 520 

management and genetic potential of cattle exists. Such non-random associations can be 521 

generated, for example, by well-resourced farmers who use better management practices also 522 

being able to afford semen of higher genetic merit sires, or by the restriction of natural mating 523 

sires to herds in specific regions. As discussed previously, modelling herd as a fixed effect 524 

estimates the herd effects independently for each herd. When herd sizes are large, such as in 525 

advanced economies, this can reduce bias caused by differences in the genetic means of 526 

different herds. Herd sizes are not large in LMIC smallholder dairy production systems. In such 527 

circumstances, modelling herd as a random effect in genetic evaluations allows phenotypes 528 

recorded in small herds to partially and proportionately contribute to the genetic evaluation. 529 

This benefit extends to small herds composed of cows of varying relatedness, with the ancestral 530 

haplotypes only present in that herd. This is important in an LMIC smallholder dairy 531 

production systems context, with more than 70% of milk in Kenya produced by herds of one 532 

to five cows [6,7]. However, the choice between modelling herd as a random effect should 533 

consider the bias-variance trade-off [34]. This choice is particularly important if correlations 534 

between herd management and the genetic value of cows exist. Under this scenario, if the 535 
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differences in genetic means across herds are not accounted for, the herd effect of an animal 536 

may be partially assigned to the genetic effect when herd is modelled as a random effect. In 537 

our study, cattle were assigned to herds at random and no correlation between herd 538 

management and the genetic value of cows existed. Therefore, significant bias effects were 539 

only detected in genetic evaluations modelling herd as a fixed effect with an average herd size 540 

of one (results not shown). There is another impact of the simulation not modelling the full 541 

complexity of the distribution of cattle and its genetic effects across farms. The training sets 542 

likely had an increased genetic connectedness compared to practical genetic evaluations in 543 

LMIC smallholder dairy production systems. This resulted in accuracies of EBVs that are likely 544 

to be higher than expected in practical genetic evaluations in LMIC smallholder dairy 545 

production systems. However, our study also did not capture the full complexity of the 546 

interaction between genetic connectedness and herd size. Therefore, our results likely 547 

underestimated the benefits of GBLUP to increase genetic connectedness and more accurately 548 

separate the genetic and environmental components of each cow's phenotype in small herds in 549 

practical genetic evaluations in LMIC smallholder dairy production systems. With the 550 

projected increases in data recording, we expect that these effects will diminish or that the scale 551 

of the data will enable at least reasonably high accuracy to stimulate genetic progress. 552 

Impact of simplified breeding goal 553 

 The breeding program examined in this simulation only considered a single quantitative 554 

trait that did not interact with the environment. The breeding goal for practical LMIC 555 

smallholder dairy production systems would be much more complex in practice. It would 556 

comprise of several correlated traits (e.g., milk yield, milk components, fertility, feed 557 

requirements, heat tolerance, disease resistance) many of which would interact with the 558 

environment. The single quantitative trait with 10,000 QTL that we simulated is representative 559 

of such an index with a few additional assumptions: all traits are measured on all animals, all 560 
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traits are pleiotropic, and economic merit is linear. This study simulated a simplified genetic 561 

architecture without considering dominance, epistasis and gene by environment interaction. 562 

This will likely decrease the absolute values of accuracy reported in this study but the main 563 

conclusions of our study (i.e., that GBLUP is more powerful than PBLUP in LMIC smallholder 564 

dairy production systems for several reasons) will still hold.  565 

Prospects for animal breeding in LMICs 566 

 Our motivations for undertaking this study were to contribute to the enabling of the 567 

sustained and long-term use of animal breeding to improve agricultural productivity and 568 

sustainability in LMIC smallholder dairy production systems. Breeding has been hugely 569 

successful for improving animals and plants in advanced economies and for improving plants 570 

in LMICs. Breeding has had limited success in improving animals in LMICs. We believe that 571 

for animal breeding to be successful in LMIC smallholder dairy production systems it must be 572 

driven by data recorded in-situ on animals from such farms. We believe that the limited success 573 

of animal breeding in these contexts is due to the infrastructure and data structures that are 574 

prevalent in these systems, which make genetic evaluation using pedigree difficult, if not 575 

impossible. Specifically, the infrastructure required to record pedigree over long periods of 576 

time is typically absent in LMIC smallholder dairy production systems. The lack of widespread 577 

use of AI and the small herd sizes result in a data structure that has insufficient genetic 578 

connectedness between herds to facilitate genetic evaluations based on pedigree. We believe 579 

that genomic data offers a route to overcome these problems and the results of our study show 580 

this. However, our study did not quantify the long-term impacts of genomic data in LMIC 581 

smallholder dairy breeding programs. As an example, our study demonstrated that the EBVs 582 

of young bulls from an average herd size of 1 (=1.58) could be predicted with an accuracy of 583 

0.40. However, as well as increasing the accuracy of selection, genomic evaluations also offer 584 

an opportunity to reduce the generation interval of breeding programs. These reductions in the 585 
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generation interval have been the primary driver of the gain in the rate of genetic improvement 586 

in dairy breeding programs in advanced economies because they have approximately halved 587 

the generation interval, thereby doubling the rate of genetic gain [20]. In LMIC breeding 588 

programs, it is difficult to estimate the reductions in the generation interval that genomic 589 

evaluations could provide. This is due to the lack of pedigree recording and infrastructure for 590 

the widespread use of AI, already discussed. However, it is possible to say that genomic 591 

evaluations will allow LMIC breeding programs to drive the generation interval to near the 592 

biological and economic minimum for that system. The impact of this, and the other results 593 

from our study, on the long-term genetic gain of LMIC smallholder dairy breeding programs 594 

will need to be explored further. 595 

Genomic data is expensive and its requirement may create a new cost barrier to the 596 

success of animal breeding in LMIC smallholder dairy production systems. New business 597 

models are needed to overcome this barrier in a self-sustaining way. One such model could 598 

involve establishing an intertwined breeding and dissemination program for a target 599 

environment. The cost of operating the breeding program would need to be proportionate to 600 

the market that it would serve via its dissemination program. The breeding program could 601 

comprise an informal set of nucleus animals distributed across many small herds within the 602 

target environment. These nucleus animals could be genotyped and phenotyped and this data 603 

used for a genetic evaluation using GBLUP. The best animals from this nucleus could be 604 

disseminated via artificial insemination (with or without a subsequent progeny testing scheme), 605 

as natural service sires, or as heifers. Further, the genomic prediction equation calculated for 606 

the genetic evaluation could be used to select any external animals that would be imported into 607 

the region. To reduce the costs of data recording in the nucleus and to increase the value of 608 

what would be disseminated a whole range of additional technologies and services could be 609 

bundled together. For example, nucleus herds could also serve as demonstration herds and the 610 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 2, 2019. ; https://doi.org/10.1101/827956doi: bioRxiv preprint 

https://doi.org/10.1101/827956
http://creativecommons.org/licenses/by-nc-nd/4.0/


dissemination program could provide additional extension services (e.g., a text message for a 611 

small fee with management or market information). Or improved animal genetics could be 612 

packaged together with other technology (e.g., improved seeds) which may have higher 613 

adoption rates. Overall, a business model could be constructed that bundles technology, data 614 

recording, extension services, and a marketplace for LMIC smallholder farmers. This type of 615 

self-sustaining platform would maximize the benefits and cost-efficiency of any component 616 

(e.g., the genotyping and phenotyping of animals). This business model could leverage the 617 

successes of established technologies and practices to drive adoption of those that have been 618 

traditionally more intractable. The Africa Dairy Genetic Gains [14], the Public Private 619 

Partnership for AI Dissemination [15] projects and the emerging social enterprises (e.g., One 620 

Acre Fund [39], and electronic marketplaces for agricultural products in LMICs (e.g., 621 

Livestock 247 [40]) show that many components of such a model are already in place. 622 
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Conclusions 623 

 This study has demonstrated the potential of genomic information to be an enabling 624 

technology in LMIC smallholder dairy production systems by facilitating genetic evaluations 625 

with in-situ records collected from farms with herd sizes of four cows or less. Across a range 626 

of breeding designs, genomic data made it possible to accurately predict EBVs of phenotyped 627 

cows and young bulls using data sets that contained small herds that had weak genetic 628 

connections. The use of in-situ smallholder dairy data in genetic evaluations would establish 629 

breeding programs to improve in-situ germplasm and, if required, would enable the importation 630 

of the most suitable external germplasm. This could be individually tailored for each target 631 

environment. Together this would increase the productivity, profitability and sustainability of 632 

LMIC smallholder dairy systems. However, genomic data is expensive and business models 633 

will need to be carefully constructed so that the costs are sustainably offset. 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 
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Figures  772 

 773 

Figure 1. Simulation scenarios. The conventional breeding design is highlighted in green. Breeding 774 

designs were compared for each design parameter individually (horizontally), while keeping all other 775 

design parameters fixed at the values of the conventional breeding design.  776 

   777 

Figure 2. The impact of the model on EBV accuracy of cows. Comparison of the statistical modelling 778 

of herd under the LMIC design with GBLUP. The accuracy of estimated breeding values as a function 779 

of average herd size (1-32) and the herd effect (i) excluded from the model ([Symbol]), (ii) modelled 780 

as a fixed effect ([Symbol]) and (iii) modelled as a random effect.   781 
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 782 

Figure 3. The impact of genetic connectedness on EBV accuracy of cows. Comparison of genetic 783 

connectedness of the training set with GBLUP. The accuracy of estimated breeding 784 

values are presented as a function of average herd size (1-32) and the number of sires (100, 250, 1000 785 

& 5000). The number of records in the training set is 8000. Herd is modelled as a random effect.  786 

 787 

Figure 4. The impact of genetic connectedness and heritability on EBV accuracy of cows. 788 

Comparison of the heritability of the trait and genetic connectedness with GBLUP. The accuracy of 789 

estimated breeding values as a function of average herd size (1-32) and the genetic connectedness of 790 
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the training set (100 & 1,000 sires per generation). The three panels correspond to the heritability of 791 

the trait (0.1, 0.3 & 0.5). Herd is modelled as a random effect.  792 

 793 

Figure 5. The impact of training set size on EBV accuracy of cows. Comparison of the number of 794 

records in the training set with GBLUP. The accuracy of estimated breeding values of cows as a 795 

function of average herd size (1-32) and the number of records in the training set (2000, 8000, 16000 796 

& 32000). Herd is modelled as a random effect.  797 

 798 

Figure 6. The impact of training set size on EBV accuracy of young bulls. Comparison of the number 799 

of records in the training set and genetic connectedness with GBLUP. The accuracy of genomic 800 

estimated breeding values of young bulls as a function of average herd size (1-32) and the number of 801 

records in the training set (2000, 8000, 16000 & 32000. Herd is modelled as a random effect. 802 
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 803 

Figure 7. The impact of genetic connectedness and heritability on EBV accuracy of young bulls. 804 

Comparison of the heritability of the trait with GBLUP. The accuracy of genomic estimated breeding 805 

values of young as a function of average herd size (1-32) and the genetic connectedness of the 806 

training set (100 & 1,000 sires per generation). The three panels correspond to the heritability of the 807 

trait (0.1, 0.3 & 0.5). Herd is modelled as a random effect. 808 
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