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Abstract 

Optimal tissue imaging methods should be easy to apply, not require use-specific algorithmic 

training, and should leverage feature relationships central to subjective gold-standard assessment. 

We reinterpret histological images as landscapes to describe quantitative pathological landscape 

metrics (qPaLM), a generalisable framework defining topographic relationships in tissue using 

geoscience approaches. qPaLM requires no user-dependent training to operate on all image datasets 

in a classifier-agnostic manner to quantify occult abnormalities, derive mechanistic insights, and 

define a new feature class for machine-learning diagnostic classification. 
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Main 

Traditional diagnostic pathology remains the gold-standard means of assessing tissue but is a 

subjective and poorly-reproducible craft. Progress has been made to introduce objectivity and 

reproducibility into the field by computational interrogation of digital histological images1 but there 

are conceptual short-comings and practical obstacles in current approaches. Current image analysis 

methods require application-specific algorithm training by end-users, an impediment to widespread 

use. Further, current approaches are unable to extract understanding from the histological context 

of observable features, the most critical component informing skilled subjective assessment. We 

address these short-comings by reinterpreting images as histological landscapes to describe 

quantitative pathological landscape metrics (qPaLM), a generalisable scale-independent framework 

that leverages essential feature relationships using geoscience approaches. qPaLM requires no 

further user-dependent training to operate on image datasets in a classifier-, species-, and disease-

agnostic manner within computational workflows. This provides a pathologically intuitive framework 

that identifies occult abnormalities, derives mechanistic insights, and defines a new feature class for 

machine-learning disease classification. 

A significant impediment to the widespread adoption of current quantitative digital pathology 

methods is the necessity for study-specific algorithm training. This is time-consuming, and critically 

precludes inter-study comparison of measured outputs or outcomes in animal modelling of disease 

or clinical trials. Only by developing methods that can be extensively validated and applied uniformly 

and intuitively across studies without a need for specialist input can quantitative digital pathology 

disrupt classical subjective assessment in a research setting or within routine practice. 

Feature recognition is central to both traditional and computational methods. Although advances in 

computational feature annotation using deep-learning methods2–5 have increased the accuracy of 

image segmentation, ‘real-world’ diagnostic acuity is a function of histological literacy - an 

appreciation of the histological context and relationships between features – rather than accurate 
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feature recognition alone. Understanding from these feature relationships is not currently exploited 

computationally, representing a significant opportunity for a more creative approach to harness 

concepts with proven, real-world value. We reasoned that any annotated histological image could be 

conceptualised as a simple two-dimensional landscape in a generalisable manner to permit 

quantitation of feature relationships by methods developed for landscape analysis in geosciences 

and ecology. To this end, we have developed qPaLM, a framework that applies spatial point and 

categorical landscape pattern analysis in a histopathological context. 

The analytic input for qPaLM is a landscape pattern created by manual or computational annotation 

of a histological image. Complex computational methods to fully classify histological images are 

available, and their ease-of-use and accuracy continue to increase. The output of classifiers such as 

U-net2 can be a categorical landscape equivalent to those generated in large-scale mapping and 

geoscience studies. Whilst the scales differ, the fundamental nature of the data representation is the 

same (Figure 1a). Categorical landscape patterns are mosaics of discrete areas (‘patches’) belonging 

to defined conditions (‘classes’). In landscape ecology, patches are environmentally homogeneous 

areas with patch boundaries reflecting the significant change in conditions between them. 

Conceptually, the histological landscape also consists of a mosaic of ‘environmentally’ similar areas 

represented by tissues or cells and extracellular microarchitectural structure. Analysis of categorical 

landscape patterns can generate metrics describing individual patches, the patch class, or defining 

the landscape as a whole. Class and landscape-level metrics describe the histological topography in a 

holistic and novel language whilst individual patch-level metrics provide metrics complementary to 

single-cell/group histological phenotyping6 provided by existing methods. 

As proof-of-principle, we trained a basic machine-learning classifier to deconvolve routine 

haematoxylin and eosin staining in histological images of normal liver and primary liver cancer 

(hepatocellular carcinoma), creating three classes – nuclei, cytoplasm and vascular channels. We 

developed a pipeline using the classified images to analyse the landscape patterns using methods 
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derived from the FRAGSTATS suite7,  a spatial pattern analysis program for categorical maps 

originally developed in association with the USDA Forest Service, as well as more recently described 

measures of landscape complexity8 (Figure 1b). 

The four holistic metrics of landscape complexity8 provide single values derived from each 

landscape. These four metrics alone can be used as quantitative descriptors of the complete 

histological landscape to describe differences between paired tumour and normal liver, augmenting 

the subjective diagnosis (Figure 1c). The four metrics in combination were used for unsupervised 

clustering and provided good disease discrimination (Figure 1d). 

The large number of metrics generated from categorical histological landscapes (Supplementary file 

1) can be used in downstream applications such as machine-learning driven diagnostic classification. 

Selected metrics were used as features for model training. A random forest model was constructed 

from the selected features, and the predictive value of the model determined on a test set (Figure 

1e), demonstrating the applicability of this type of landscape feature metrics in pertinent down-

stream uses. Examination of variable importance measures in this application indicates that features 

derived from the ‘nuclear’ class in ‘aggregation’ and ‘area and edge’ categories are the most highly 

ranked (Supplementary figure 1). These metrics represent nuclear morphology and distribution, 

critical cytological features used by pathologists to make a subjective diagnosis. Further, the most 

highly ranked interactions were between nuclear and vascular channel features, indicating that the 

histological context of nuclei is computationally determined to be critical. This demonstrates that a 

fully computational landscape approach independently identifies and utilises features used in gold-

standard subjective practice but in a quantitative and intuitive manner. 

Although computational annotation is convenient, manual annotation remains most accurate for 

many applications. Targeted, high-fidelity, manual annotation of specific features permits 

hypothesis-driven interrogation using spatial point pattern landscape analysis. A spatial point 

pattern of marked features in 2-dimensional space allows simple measures of feature density and 
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distances to be calculated, and the clustering and dispersal of annotated features can be quantified 

by well-characterised specialised mathematical functions (Figure 2a)9. 

Spatial point patterns were derived from manual annotations of large vascular structures in images 

of normal liver and end-stage scarred (cirrhotic) liver and their distributions evaluated (Figure 2b). 

For liver pathologists, the loss of the regular hepatic architecture is the subjective histological sine 

qua non of end-stage liver disease. Landscape reinterpretation allowed this to be quantified and 

statistically validated for the first time (Figure 2c). A tendency towards clustering offers support for 

the development of cirrhosis through a mechanism of parenchymal extinction that ‘draws together’ 

adjacent structures10. The same approach was applied to peripheral liver from cases with central 

tumours, all clinically reported as having normal microarchitecture. The distribution of portal tracts 

in liver with central tumours demonstrated greater dispersal than in normal liver (Figure 2d). 

Additional annotation of central veins (Supplementary figure 2) allowed the size of liver lobules, a 

microarchitectural functional unit, to be modelled to demonstrate pathological but subjectively 

occult enlargement (Figure 2e). Thus, complementary landscape metrics readily defined previously 

unquantifiable and poorly recognised disease-related structural changes.  

Image sets from obstructed and normal renal cortex (Supplementary figure 3), and normal pancreas 

(Supplementary figure 4), were also examined to demonstrate multi-organ applicability. Glomerular 

and Islet of Langerhans distributions, respectively, could be quantified by the same functions. The 

renal cortex in centrally obstructed kidneys did not demonstrate derangement of normal 

architecture equivalent to that found in the liver, suggesting fundamental differences in organ 

plasticity and response to injury.  

The relational context of cells, as well as tertiary structures, can also be defined by a landscape 

approach to generate additional mechanistic insight. A dataset of images from a rodent model of 

early scarring in fatty liver disease was used for manual annotation of both the positions of scar-

orchestrating myofibroblasts (MFBs)11 and the focal point of injury, central veins. Spatial point 
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patterns of MFBs and the central vein circumference were used to define the relative cell positions. 

The distribution of MFB-to-central vein distances and relative scar axis, based on peak MFB density, 

was determined for each animal (Figure 2f). Examination of this fundamental disease process in 

relation to a fixed histological landmark revealed that scarring is initiated in a bipolar manner, rather 

than along all possible axes of scar development, indicating an unknown property of scar initiation 

(Figure 2g). The distribution of MFBs with respect to distance from the same landmark could also be 

calculated as a phenotypic feature (Supplementary figure 5). 

Our framework depends upon a conceptual shift to consider a histological section as a tissue 

landscape, releasing the rich topography for interrogation by the methodologies of geosciences and 

landscape ecology. In this manner, features describing normality can be quantified to permit 

deviation from these norms to be identified. The approach can leverage histologically fluent manual 

annotation in hypothesis-driven work, limited only by creativity. The user-specified suite of metrics 

describes previously unquantifiable feature relationships over all microarchitectural scales. Critically, 

given the proliferation of computational methods to quantify images, this approach to a fully 

segmented image permits a complete suite of new metrics to be generated in a species-, tissue-, 

disease-, or segmentation methodology-agnostic manner without any additional training 

requirement.   
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Figures 

 

Figure 1. Fully classified histological images can be considered categorical maps and analysed as part of a fully 

computational pipeline using landscape ecology and geosciences methodologies. A. Categorical representations of the 

landscape are routinely evaluated in landscape ecology and geosciences and can be evaluated by specific tools. The 

generation of a fully segmented output image from a histological input, by any available method, is an analogous process 

differing only in scale. B. A pipeline using fully segmented images generated by a WEKA classifier converts the images to an 

appropriate file format feeds through the landscapemetrics package in R, generating the complete suite of metrics 

described in FRAGSTATS, and other holistic landscape measures of complexity and organisation. C. Individual complexity 

metrics (for example, form lesional liver and hepatocellular carcinoma) can be used as discrete phenotyping measures 

(violin plot with kernel density and median (centre line), first and third quartiles (lower and upper box limits), 1.5x 

interquartile range (whiskers); p-values of Welch paired two-sided two-sample t-test for each metric, n=54) or combined to 

allow unsupervised clustering (D). E. The complete suite of landscape metrics can be used for machine-learning applications 

such as diagnostic classification (for example, classification as normal or hepatocellular carcinoma, Area Under the Receiver 

Operating Characteristics curve for diagnostic accuracy on test set). 
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Figure 2. Spatial point pattern analysis of discrete features quantifies occult pathological feature relationships. A. Ripley’s L-

function describes the organisation of features to quantify clustering or dispersal; clustered features are above, and 

dispersed features below, the horizontal line (yellow) representing complete spatial randomness. B. Example annotation of 

portal tracts by identification of hepatic artery branches in human liver, and plotted companion points. Scale bar 1 mm.  C. 

Spatial point pattern analysis quantifies a traditional and previously subjective central tenet of liver disease, proving 

significant portal tract dispersal in normal liver that is lost in end-stage chronic liver disease (Ripley’s L-function with 95% 

confidence intervals, n=10). Scale bars 1 mm. D. In peripheral liver with subjectively normal architecture from in patients 

with hilar tumours, spatial point pattern analysis demonstrates that portal tracts are significantly more dispersed (Ripley’s 

L-function with 95% confidence intervals, n=10) with increased lobular size (E, data represented as individual points with 

median (centre line), first and third quartiles (lower and upper box limits), 1.5x interquartile range (whiskers), n=10, *Welch 

unpaired two-sample two-sided t-test p=0.0005835). F. Spatial point patterns of scar-orchestrating (α-smooth muscle actin 

positive) cells and central vein profiles after profibrotic injury allow the radial distributions of cells to be aligned to quantify 

the fundamental orientation of scar formation. Scale bar 100 μm. G. Liver scarring is organised with a dominant scarring 

axis accompanied by a single secondary directly-opposed axis rather than developing uniformly along all available central-

central axes. 
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Supplementary figure 1. The suite of landscape metrics generated from fully segmented images can be used for machine-

learning disease classification. Fully segmented images were generated from paired hepatocellular carcinoma or non-

lesional liver using a simple WEKA haematoxylin and eosin stain deconvolution classifier identifying nuclei, cytoplasm and 

vasculature. Images were used in a patch landscape analytic pipeline, and the FRAGSTATS suite of metrics and other 

landscape complexity measures were generated. Metrics were used to train a random forest classifier to predict diagnosis. 

The individual top-ranked metrics by multiple measures; A. Accuracy decrease – mean decrease of prediction accuracy after 
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variable is permuted, Gini decrease – mean decrease in the Gini index of node impurity by splits on variable, p-value – p-

value of test determining whether the observed number of successes (number of nodes in which variable was used for 

splitting) exceeds the theoretical number of random successes. B. Mean minimal depth of variable, Number of times used as 

a root - total number of trees in which variable is used for splitting the root node, Number of nodes - total number of nodes 

that use variable for splitting. C. Interactions between nuclear features and those of the sinusoidal vasculature were most 

important/frequent (class 0 - nuclei, class 1 - cytoplasm, class 2 - vascular channels).  

 

 

 

Supplementary figure 2. Portal-central vascular relationships can be quantified by separate annotations. In qualitatively 

normal liver, portal tract (yellow, identified by the presence of a hepatic artery branch) and central vein profiles (blue) can 

be separately annotated to allow the separate spatial point patterns to be interrogated to model lobule size and 

organisation. Scale bars 1 mm (left) and 100 μm (right). 
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Supplementary figure 3. Renal cortical landscape assessment by spatial point pattern analysis. A. Fields from the cortex of 

normal kidney and from the kidneys with tumours of the renal pelvis were annotated to mark the glomeruli. Scale bars 3 

mm left, 1 mm centre, 100 μm right. B. Glomerular positions were used to create spatial point patterns. C. Groupwise 

comparisons of Ripley’s L-function demonstrate glomerular dispersal that is unchanged in obstructed organs (Ripley’s L-

function with 95% confidence intervals, n=8).  
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Supplementary figure 4. Pancreatic landscape assessment by spatial point patterns. A. Islets of Langerhans were annotated 

in images of normal pancreas and used to create spatial point patterns (B). Scale bars 3 mm left, 1 mm centre, 200 μm right 

C. The distribution of islets throughout the pancreas was not statistically separable from complete spatial randomness by 

Ripley’s L-function evaluation, n=10. 
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Supplementary figure 5. Landscape quantification of scar-orchestrating cell populations in disease models. A. The positions 

of scar-orchestrating cells in livers of mice chronically injured with CCl4 and the central vein profile were annotated, and 

separate spatial point patterns generated. The shortest distance of each cell from the central vein could be calculated, and 

the kernel density estimates (left) or individual distances for all cells (right, data represented with median (centre line), first 

and third quartiles (lower and upper box limits), 1.5x interquartile range (whiskers)) of each animal quantified. B. The angle 

of each cell with respect to the central vein centroid and an arbitrary pole could be calculated, and the axes aligned for each 

central vein profile based on the direction of the peak population density (left), and kernel density estimated of the aligned 

radial angle of each cell plotted for each animal. 

Methods 

Human tissue access 

Human tissue was obtained by approved application to the Lothian NRS Human Annotated 

Bioresource that is authorised to provide unconsented anonymised tissue under ethical approval 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 2, 2019. ; https://doi.org/10.1101/828004doi: bioRxiv preprint 

https://doi.org/10.1101/828004


14 
 

number 15/ES/0094 from the East of Scotland Research Ethics Service REC 1. All tissue was from 

cases from 2006 onwards and received anonymised to all details other than aetiology. 

For manual annotation studies, single haematoxylin and eosin-stained sections from the deep 

hepatic parenchyma, sampled as part of the standard diagnostic specimen pathway, were used. No 

additional sections were required. Sections were obtained from cirrhotic explants with the 3 

dominant patterns of fibrosis; primary biliary disease (n=11), steatohepatitis (n=10), and chronic 

Hepatitis C virus infection as a cause of lobular hepatitis (n=10). 10 non-lesional deep parenchymal 

blocks (> 5 cm from hilar lesional tissue) from liver with hilar cholangiocarcinoma were also 

obtained. 10 non-lesional liver sections from partial hepatectomies for metastatic disease (8 

colorectal carcinomas, 1 melanoma) or a benign biliary cyst (single case) were used to represent 

normal liver.  

8 cases of non-lesional pancreas from pancreaticoduodenectomies (Whipple’s procedure) for 

extrahepatic cholangiocarcinoma arising proximal to the confluence with the pancreatic duct were 

used to represent normal pancreas. 

Routinely sampled blocks of non-lesional renal cortex from nephrectomies from 10 cases of 

conventional clear cell renal cell carcinoma, representing normal renal cortex and analogous to non-

lesional blocks from partial hepatectomies for intrahepatic mass lesions, and from 10 cases ureteric 

or renal pyloric urothelial carcinoma, analogous to the hilar cholangiocarcinomas, were used. 

For automated segmentation, single haematoxylin and eosin-stained sections including lesional 

(hepatocellular carcinoma) and adjacent non-lesional liver were obtained from 54 explants or 

resections containing hepatocellular carcinoma, without selection for aetiology or tumour grade. 

Murine model of liver fibrosis 

Liver fibrosis was induced in cohorts of wild type C57Bl6 male mice by 8 weeks Carbon Tetrachloride 

(CCl4) injection twice weekly, 0.25 µl/g body weight in a 1:3 ratio with sterile olive oil12 or vehicle 
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alone. Animals were not randomised to injury or control groups. Blinding to control or injury groups 

was not possible as injury is macroscopically and microscopically apparent. Animals were housed in a 

specific pathogen-free environment and kept under standard conditions with a 12 h day/night cycle 

and access to food and water ad libitum. All animal experiments were carried out under procedural 

guidelines, severity protocols and with ethical approval from the University of Edinburgh Animal 

Welfare and Ethical Review Body (AWERB) and the Home Office (UK). 

Scanning and image generation methods 

Whole slide images of haematoxylin and eosin-stained human sections in .ndpi format were 

acquired using a Hamamatsu NanoZoomer to x20 depth. Tiled-TIFF thumbnails were generated from 

the .ndpi files using ndpisplit from the NDPITools suite13, and tiled-TIFF files converted to standard 

TIFF (for automated segmentation) or JPEG (for manual annotation) format compatible with ImageJ 

14 by command-line ImageMagick. 

Immunofluorescence methods 

Antigen retrieval of murine sections was achieved by microwaving in Tris-EDTA pH 9.0 for 15 

minutes. 

For immunofluorescent staining of aSMA, sections of murine liver were labelled with a monoclonal 

mouse antibody (Sigma A2547, clone 1A4, 1:1500 dilution, 1-hour incubation at room temperature). 

Staining was visualized with donkey anti-mouse IgG (H and L) Alexa Fluor 555 conjugated secondary 

antibody (ThermoFisher Scientific), and sections mounted in VECTASHIELD HardSet Antifade 

Mounting Medium with DAPI (Vector Laboratories). Negative controls were performed using 

identical concentrations of species and isotype-matched non-immune immunoglobulin in place of 

primary antibody or omission of primary antibody. 

10 x20 objective fields centred on a central vein (in keeping with the pattern of damage of CCl4) were 

acquired using a Zeiss Axioplan II microscope and Photometrics CoolSNAP HQ2 camera, and separate 

TIFF images of each channel exported. 
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Manual identification and annotation of histological features 

For human liver tissue, a central 5.32 mm x 7.11 mm (37.8 mm2) rectangular field from each .jpeg 

thumbnail whole slide image, the largest that could be taken from every scan, was cropped in FIJI15 

and used to mark, as separate region of interest (ROI) sets, the centre of each central vein (from 

normal or centrally obstructed) and centre of each hepatic artery (identifying portal tracts when 

paired with a portal vein branch and/or bile duct). Marking was informed by viewing the WSIs in 

NDPIviewer (Hamamatsu) alongside to allow accurate identification. 

For human pancreatic tissue, a central 5.32 mm x 7.11 mm (37.8 mm2) rectangular field from each 

.jpeg thumbnail whole slide image was used to mark the centre of each islet of Langerhans. 

For human kidney, a 4.54 mm x 2.72 mm (12.35 mm2) rectangular field of renal cortex from each 

.jpeg thumbnail whole slide image was used to mark the centre of each glomerulus. 

For murine myofibroblast (MFB) images, multichannel images were created in FIJI using the Image5D 

plugin, and the nucleus of each aSMA-positive MFB marked manually as a ROI set, excluding nuclei 

of concentrically arranged smooth muscle cells in vessel walls. The circumference of the central vein 

lumen also marked as a separate line segment ROI. 

Computational image segmentation 

1mm2 ROIs from lesional (HCC) and non-lesional liver from each resection or explant case were 

selected manually and used to create 4 contiguous tiles from each. 

A WEKA machine-learning classifier was trained in FIJI by a specialist liver transplant pathologist at 

the national liver transplant centre to simply deconvolve the staining into haematoxylin (nuclei), 

eosin (cytoplasm) and unstained areas (sinusoids/vessels). The classifier was applied to all tiles using 

a script that generated a classified TIFF output image. 
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Spatial point pattern generation and analysis 

Spatial point pattern and statistical analysis were undertaken in RStudio16. For each image, FIJI 

generated ROIs were imported using the RImageJROI package17 read.ijroi() function, and converted 

into spatstat package18 spatial point patterns using the ij2spatstat() function.  

Spatial point pattern analysis was performed using the spatstat package. For distribution analysis of 

tertiary and quaternary structures in human tissue (portal tracts, central veins, islets of Langerhans, 

glomeruli), Ripley’s L-function9 was implemented with the Lest() function with the default edge 

corrections (Ripley’s isotropic, translation and border) applied; global envelopes using Monte-Carlo 

simulations of the theoretical L-function of complete spatial randomness (CSR) were derived by the 

envelope() function. Ripley’s L-functions of groups were compared with the studpermu.test() 

function. 

To estimate individual lobule size based on the classical lobule depiction as a regular hexagon in 

normal and obstructed human liver, the distances from each central vein to the 6 nearest portal 

tracts were calculated with the nndist() function. For each central vein, the mean to the 6 distances 

(r) was used to calculate the area of the lobule ( √( ).r2). 

For analysis of central vein-MFB radial distances, the nncross() function was used to determine the 

shortest distance to the central vein circumference for each aSMA-positive cell nucleus. For MFB 

directional analysis, the centroid of the central vein for each image was calculated using the 

centroid.owin() function, and used as (0,0). The position of each MFB was converted to polar 

coordinates to calculate the angle (i) from an arbitrary reference. Kernel density estimation of all 

MFB i for each image was calculated with the density() function of the core stats package, and the 

angle of peak density (peak) determined. To allow comparison with distributions of MFBs from other 

images, all MFBs were effectively rotated about the central vein centroid such that peak was 90°.  
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Patch-based landscape analytics 

Classified TIFF output images from WEKA/FIJI were used in a pipeline in RStudio that first converted 

each to a GeoTIFF image using the Universal Transverse Mercator projection and World Geodetic 

System (WGS) 84 datum using rgdal package accessing the Geospatial Data Abstraction Library19 and 

PROJ.420. GeoTIFF images were used as input for the landscapemetrics package21 to analyse the 

categorical landscape patterns using metrics based on the FRAGSTATS suite7 as well as more recently 

developed measures of landscape complexity8. 

Machine learning disease classification 

The paired HCC and non-lesional classified image set was used. Eighty per cent of cases were 

randomly chosen as a training set and the remainder used only as a validation set.  

Landscape and class level metrics of the ‘aggregation’, ‘area and edge’, ‘diversity’, and ‘complexity’ 

groups were used as features for model training after near-zero variance features were removed 

using caret::nearZeroVar22. Features of the training set were optimally normalised using 

bestNormalize23, and features selected for model training by removal of those that were highly 

correlated (>0.75). A random forest model with 10000 trees was constructed to predict disease 

classification (HCC or non-lesional) using randomForest24. Variable importance measures of the 

constructed forest25,26 were calculated using randomForestExplainer. 

Third-party images 

A satellite image from the European Space Agency Copernicus Sentinel-2B satellite L1C 2019-02-26 

dataset was retrieved using the Sentinel Hub EO Browser under CC BY 4.0. The corresponding 

mapped region was retrieved from OpenStreetMap and used under CC BY-SA 2.0 (© OpenStreetMap 

contributors) to generate the composite image.  
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Statistical methods 

Distributions of MFB subpopulations were evaluated with a bootstrap version of the Kolmogorov–

Smirnov test, ks.boot(), in the Matching package27.  

For inter-group comparison of lobular area and central vein-MFB distances, normality of data was 

determined using Shapiro-Wilk testing and by examination of qq plots. After assumptions of 

normality were satisfied, the Welch (unequal variance) t-test was used to compare two groups28.  
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