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ABSTRACT 18	

Limiting microbial growth during drinking water distribution is achieved either by maintaining a 19	

disinfectant residual or through nutrient limitation without the use of a disinfectant. The impact of 20	

these contrasting approaches on the drinking water microbiome is not systematically understood. 21	

We utilized genome-resolved metagenomics to compare the structure, metabolic traits, and 22	

population genomes of drinking water microbiomes across multiple full-scale drinking water 23	

systems utilizing these two-distinct microbial growth control strategies. Microbial communities 24	

cluster together at the structural- and functional potential-level based on the presence or absence 25	

of a disinfectant residual. Disinfectant residual concentrations alone explained 17 and 6.5% of the 26	

variance in structure and functional potential of the drinking water microbiome, respectively, 27	

despite including samples from multiple drinking water systems with variable source waters and 28	

source water communities, treatment strategies, and chemical compositions. The drinking water 29	

microbiome is structurally and functionally less diverse and less variable across disinfected 30	

systems as compared to non-disinfected systems. While bacteria were the most abundant domain, 31	

archaea and eukaryota were more abundant in non-disinfected and disinfected systems, 32	

respectively. Community-level differences in functional potential were driven by enrichment of 33	

genes associated with carbon and nitrogen fixation in non-disinfected systems and γ-aminobutyrate 34	

metabolism in disinfected systems which may be associated with the recycling of amino acids. 35	

Metagenome-assembled genome-level analyses for a subset of phylogenetically related 36	

microorganisms suggests that disinfection may select for microorganisms capable of using fatty 37	

acids, presumably from microbial decay products, via the glyoxylate cycle. Overall, we find that 38	

disinfection exhibits systematic and consistent selective pressures on the drinking water 39	

microbiome and may select for microorganisms able to utilize microbial decay products 40	

originating from disinfection inactivated microorganisms. 41	

  42	
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INTRODUCTION 43	

Drinking water systems harbor diverse and complex microbial communities in bulk water, biofilms 44	

on pipe wall, suspended solids, and in loose deposits1-5. While treatment processes at the drinking 45	

water treatment plants (DWTPs) shape the microbial community that leaves the DWTP6-9, multiple 46	

factors can influence the structure and function of the drinking water microbiome in the drinking 47	

water distribution systems (DWDSs). These factors include, but are not limited to, DWDS size, 48	

pipe materials and ages, water age within the DWDS and similar factors within premises plumbing 49	

(PP) in buildings and homes10-14. Managing the microbiological quality of drinking water during 50	

transport through the DWDS and into the PP is essential for the provision of safe drinking water. 51	

Unwanted microbial growth and/or changes in the drinking water microbiome composition during 52	

transit through the DWDS and PP are associated with several detrimental outcomes. For instance, 53	

this could lead to proliferation of opportunistic pathogens15-19 and an eukaryotic microbes14, 16, 20, 54	
21, taste and odor issues22, and impact infrastructure via corrosion damage23, 24. 55	

Source-to-tap differences in drinking water systems can range from source water type (e.g., 56	

surface, ground, reuse water), process configurations at the DWTP, heterogeneity and condition 57	

of the DWDS and PP; yet globally there are two fundamental approaches for managing the 58	

drinking water microbiome during transport to the consumer25. The first and most widely used 59	

approach involves maintenance of a disinfectant residual (e.g., chlorine) in the DWDS. This is 60	

accomplished by ensuring the water leaving the DWTP has a chlorine residual and/or by using 61	

booster stations in large complex DWDSs to compensate for disinfectant residual decay26. 62	

Disinfectant residuals counteract microbial growth through inactivation, thus ensuring stable 63	

microbial concentrations during distribution. While disinfectant residuals are effective in 64	

managing microbial growth in the DWDS, there are some key issues associated with them. These 65	

include aesthetic and corrosion related problems25, 27, 28, but more importantly the formation of 66	

harmful disinfection byproducts (DBPs)29-31, which are also regulated. Further, there is an 67	

increasing recognition that the disinfectant residuals may be associated with selection of some 68	

opportunistic pathogens16, 32 and antibiotic resistance genes (ARGs) in drinking water33-35. 69	

The second approach for managing microbial growth in the DWDS, primarily practiced in parts 70	

of western Europe (e.g., Netherlands, Denmark, and Switzerland), involves distribution of drinking 71	

water without any disinfectant residuals36. These systems focus on minimizing nutrient availability 72	
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in the DWDS to limit microbial growth using high-quality source waters and/or multi-barrier 73	

treatment. While some of these drinking water systems may also use chlorine or other chlorine 74	

compounds (e.g., chlorine dioxide) at the DWTP, they ensure that chlorine is not detectable prior 75	

to distribution. The efficacy of this approach is supported by evidence that incidences of microbial 76	

contamination and associated waterborne illnesses are comparable to systems that maintain a 77	

disinfectant residual25, 37. This suggest that with appropriate source water quality management, 78	

treatment, and well maintained infrastructure, drinking water can be safely distributed without 79	

disinfectant residuals25.  80	

Despite reports of comparable biological water quality between systems with and without 81	

disinfectant residuals, there are a limited number of studies that have systematically compared the 82	

microbial community between these two types of systems. Bautista et al (2016)38 conducted a 83	

meta-analyses study involving collation, curation, and comparison of 16S rRNA gene amplicon 84	

sequencing data from previously published datasets. While this study was confounded my 85	

methodological differences between datasets being used, the key conclusions were that 86	

presence/absence of disinfectant residuals impact microbial community structure and membership 87	

and that systems without disinfectant residuals are more diverse than their disinfected counterparts. 88	

Recently, Waak et al (2019)39 compared biofilms between two drinking water systems, one 89	

chloraminated systems and one without a disinfectant residual. Consistent with previous findings 90	

they observed higher cell numbers and higher diversity in the system without disinfectant residual, 91	

with higher proportional abundance (proportion of total community) of deleterious microbes (i.e., 92	

mycobacteria, nitrifiers, corrosion causing bacteria) in the chloraminated system. Both, Bautista 93	

et al (2016)38 and Waak et al (2019)39 utilized gene-targeted assays (i.e., 16S rRNA gene) to probe 94	

drinking water microbiome composition and its differences. While gene-targeted assays can 95	

provide valuable information on microbial community structure and membership information, 96	

they do not provide insight into metabolic differences that may drive the observed differences in 97	

community structure. Further, gene-targeted assays can be limited by primer-bias and can result in 98	

non-detection of microbial community members. Both challenges can be overcome by utilizing 99	

metagenomics which can provide insights into structure and functional potential of a microbial 100	

communities without being biases against or towards specific community members. This comes 101	

with the limitation that differences between samples/systems emerging from low-abundance 102	

microbes may not be detected as this may require ultra-deep sequencing.  103	
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We used metagenome analyses and genome-resolved metagenomics to investigate the potential 104	

influence of disinfectant residuals on the drinking water microbiomes by comparing drinking water 105	

systems from the United Kingdom (with disinfectant residual) and the Netherlands (without 106	

disinfectant residual). The goals of this study were (1) to determine the extent to which disinfectant 107	

residual shapes the structure and functional potential of the drinking water microbiome, (2) to 108	

determine whether the selective pressures of disinfection are conserved across drinking water 109	

systems, and (3) identify metabolic pathways underpinning differences in structure and functional 110	

potential of the drinking water microbiome. Addressing these questions across different drinking 111	

water systems with inherent system-to-system variability (e.g., source water, water chemistry, 112	

treatment process, etc.) but one consistent difference - i.e., presence or absence of disinfectant 113	

residual - will help highlight disinfection that are conserved and thus generalizable across systems. 114	

MATERIALS AND METHODS 115	

Sample collection and processing. 116	

Drinking water samples were collected from 12 drinking water systems in Netherlands (n=5) 117	

between October to December 2013 (Non-disinfected, i.e. ND) and the United Kingdom (n=7) 118	

between April to August in 2015 (Disinfected, i.e. D). Samples were collected at two to four 119	

locations in each DWDS which resulted in 23 D and 18 ND samples. A total 15 liters of water was 120	

filtered through three sterile Sterivex filters with 0.22𝜇m pore size polyethersulfone membrane 121	

(EMD MilliporeTM SVGP01050) using a peristaltic pump (Watson-Marlow 323S/D) to harvest 122	

microbial cells. Immediately after filtration, the membranes were removed aseptically from the 123	

Sterivex cartridge, cut into pieces and then transferred to Lysing Matrix E tubes. The membranes 124	

were stored at 4°C for 24 hours or less before being transported to the laboratory and stored at -125	

80°C. Further details of sample treatments and preservation are described in Sevillano-Rivera et 126	

al.35, along with detailed description of chemical analyses. Briefly, Orion 5 Star Meter (Thermo 127	

Fisher Scientific, Waltham, MA) was used to measure temperature, pH, conductivity and dissolved 128	

oxygen, total chlorine, and phosphate was also determine on-site using DR 2800 VIS 129	

Spectrophotometer (Hach Lange, the UK) and EPA approved HACH kits. Nitrogen species were 130	

measured according to standard method, 4500-NH3-F for ammonia, 4500-NO2-B for nitrite, and 131	
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4500-NO3-B for nitrate respectively in laboratory40, while total organic carbon (TOC) was 132	

determined using Shimadzu TOC-LCPH Analyzer (Shimadzu, Kyoto, Japan). 133	

DNA extractions. 134	

The total genomic DNA was extracted directly from filter membranes using Maxwell16 DNA 135	

extraction system (Promega) and LEV DNA kit (AS1290, Promega, Madison, WI, US). The filters 136	

with collected biomass in lysing matrix E tubes were incubated with 300𝜇L of lysing buffer and 137	

30𝜇L of Proteinase K and incubated at 56°C. A total of 500𝜇L of chloroform:isoamyl alcohol 138	

(24:1, pH 8.0) was added to the tube, vortexed and this was followed by bead beating for 40 s at 6 139	

m/s using a FastPrep 24 instrument (MP Biomedicals, Santa Ana, CA, USA), and centrifugation 140	

at 14,000g for 10 min. The bead beating and centrifugation steps were repeated twice more with 141	

transfer of supernatant to clean tube followed by replacement of the aqueous phase with fresh 142	

lysing buffer. The aqueous phase was then subject to DNA purification using the Maxwell LEV 143	

DNA kit. The extracted DNA was quantified using Qubit HS dsDNA assay with Qubit 2.0 144	

Fluorometer (Life Technologies, UK). Negative controls consisting of reagent blanks (no input 145	

material) and filter blanks (filter membranes from unused Sterivex filters) were processed 146	

identically as the samples for DNA extraction. Genomic DNA extracted from mock community, 147	

consisting of 10 organisms, detailed previously35, was spiked into negative controls extracted 148	

(n=8) from the reagent and filter blanks. These negative controls were also included in following 149	

library preparation and high-throughput sequencing (see below). 150	

Library preparation and Illumina sequencing. 151	

Sequencing libraries were prepared using the Nextera XT DNA Sample Preparation Kit (Illumina 152	

Inc.). All DNA extracts (including negative controls) were cleaned up with HighPrep PCR 153	

magnetic beads (MagBio Inc.) to remove short fragments after library preparation and quantified 154	

with qPCR according to Illumina guidelines. All libraries were pooled together in equimolar 155	

proportion and pooled library was quantified with Qubit HS dsDNA assay and further concentrated 156	

using HighPrep PCR magnetic beads (MagBio Inc). Metagenomic sequencing on prepared 157	

libraries were performed on four lanes of Illumina HiSEQ 2500 flow cell (2x250-bp read length, 158	

Rapid Run Mode) at University of Liverpool Centre for Genomic Research (Liverpool, UK). 159	
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Metagenomic read based analyses. 160	

The FASTQ files were trimmed using Cutadapt v1.2.1 (Martin 2014) with a ‘-O 3’ flag, and Sickle 161	

v1.200 (Joshi and Fass 2011) using a threshold of window quality score (≥ 20) and read length 162	

after trimming (≥ 10 bp). A further trimming was applied using Trimmomatic v0.3541 to remove 163	

any remaining Illumina Nextera adaptors and trim reads according to quality score with a 4-base 164	

wide sliding window and a minimum average quality score of 20 and singlet reads were excluded 165	

in downstream analyses as well. To estimate metagenome diversity and coverage for each sample, 166	

Nonpareil 3.042 was used in kmer mode on the quality filtered reads. Diversity and coverage 167	

information for each metagenome was estimated using command ‘Nonpareil.set()’ in R package 168	

‘Nonpareil’. MicrobeCensus43 was used on quality trimmed reads to estimate average genome size 169	

across samples with flag ‘-n 100000000’ for all samples. To eliminate the potential effects of 170	

bacteria with small genomes (i.e., Patescibacteria) on average genome size estimations, pre-171	

processed reads were mapped against 12 Patescibacteria metagenome assembled genomes 172	

(MAGs) from this study (see below) and 1,037 Patescibacteria genomes from GTDB-tk44. The 173	

reads mapped in proper pair to Patescibacteria were removed using samtools (‘-F2’ flag). 174	

MicrobeCensus was used again to estimate average genome size using the same parameters. 175	

Metagenome assembly and mapping. 176	

Filtered pair-ended reads were then pooled from each drinking water system for co-assembly, 177	

which resulted in 12 paired-end FASTQ files for co-assembly, including seven from disinfected 178	

(Dis) and five from non-disinfected (NonDis) systems. De novo co-assembly was performed using 179	

MetaSPAdes v3.10.145 with recommended k-values for 2x250bp reads (21,33,55,77,99,127). All 180	

scaffolds shorter than 500bp were discarded and UniVec_Core build 10.0 (National Center for 181	

Biotechnology Information 2016) was used for contamination vector screening and any scaffold 182	

with a significant hit to the UniVec database was removed. Reads from each samples were then 183	

mapped back to the filtered scaffolds using BWA-MEM v0.7.12 with default settings46. 184	

To eliminate the scaffolds that may have originated from sample or post-processing contamination, 185	

reads from negative controls were first mapped back to mock community genomes using BWA-186	

MEM v0.7.1246, and all reads not mapped in proper pair were extracted using samtools v1.3.1 (Li 187	

et al. 2009) with ’-f2’ flag and were considered "contaminant reads". Sample reads (S), 188	
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contaminant reads (C) and negative control reads (NC) were mapped back to filtered scaffolds in 189	

each co-assembly. Properly-paired mapped reads were extracted using samtools v1.3.1 with ’-f2’ 190	

flag from the BAM files. Relative abundance and normalized coverage deviation of each scaffold 191	

was calculated using reads from samples and those identified as contaminant reads in negative 192	

controls: 193	

Relative abundance# =
Scaffold coverage#
 &

'() Scaffold coverage#
 194	

Relative abundance* =
Scaffold coverage*
 &

'() Scaffold coverage+*
 195	

Normalized coverage deviation =
Standard deviation of scaffold coverage

Average scaffold coverage
 196	

To distinguish true scaffolds from contamination, relative abundance (RA) and normalized 197	

coverage deviation (NCD) estimated using sample reads (S) and contaminant reads (C) was 198	

compared for all scaffolds: 199	

Scaffold =
True scaffold, if 

𝑅𝐴* = 0
𝑅𝐴#  >  𝑅𝐴* and 𝑁𝐶𝐷#  <  𝑁𝐶𝐷*

Contaminant scaffold, if 
𝑅𝐴# = 0
𝑅𝐴*  >  𝑅𝐴# and 𝑁𝐶𝐷*  <  𝑁𝐶𝐷#

 200	

True scaffolds, the scaffolds with higher RA and lower NCD in samples compared to negative 201	

controls, were kept for downstream analyses while contaminant scaffolds were excluded from all 202	

further analyses. 203	

Nucleotide and protein composition analyses. 204	

MASH v1.1.147 was used to estimate the dissimilarity between samples using quality filtered reads 205	

(with ‘-r’ and ‘-m 2’ flags) and dissimilarity between drinking water systems using true scaffolds 206	

with the sketch size of 100000. Prodigal v2.6.348 was used to identify open reading frames (ORFs) 207	

in the true scaffolds and translate ORFs to protein-coding amino acid sequences. Following 208	

prediction and translation, HMMER v3.1b249 was used to annotate ORFs against the Pfam 209	

database v31.050 with a maximum e-value of 1𝑒 − 5 and curated bit score thresholds (the gathering 210	

thresholds). Subsequently, MASH distances were calculated between drinking water 211	
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metagenomes using predicted ORFs, as well as Pfam annotated proteins with the sketch size of 212	

100000 and ‘-a’ flag. 213	

Taxonomic classification and phylogenetic analyses. 214	

The program 'cmsearch' was implemented in Infernal v1.1.251 to search scaffolds against SSU 215	

rRNA covariance models (CMs) for bacteria, archaea and eukaryota; these are default models used 216	

by SSU-ALIGN v0.152 using HMM-only approach and only significant hits were considered. The 217	

results were filtered according to length (≥ 100 bp alignment) and e-value (< 1𝑒 − 5). SSU rRNA 218	

sequences detected in contaminant scaffolds were removed and if more than one SSU gene 219	

sequence was found on a single scaffold, only the longest SSU gene sequence was retained. 220	

Relative abundance of each SSU gene sequence was calculated for each sampling location as 221	

follows: 222	

RPKM##9
' =

Scaffold coverage'

 &
'() SSU containing Scaffold coverage per Mb'×Scaffold length per kb'

 223	

Relative abundance##9
' =

RPKM##9
'

 &
'() RPKM of scaffold containing SSU gene'

 224	

SSU rRNA gene sequences were classified using Mothur v1.33.3 (Schloss et al. 2009) with SILVA 225	

database53 (Release 132) with a minimum confidence threshold of 80%. 226	

Annotation and Comparison of functional orthologies and modules between samples 227	

The protein-coding sequences were searched against KOfam, a HMM profile database for KEGG 228	

orthology54 with predefined score thresholds using KofamScan55. Only KEGG orthologies (KO) 229	

identified on scaffolds with (> 1x) coverage for each sample and those detected more than once 230	

across samples within a single drinking water system were retained for further analyses. Average 231	

read count for each KO was calculated using scaffold coverage, average length of reads mapped, 232	

and total number of reads mapped to each scaffold in a sample using above equations. To assess 233	

functions at KEGG module level, BRITE hierarchy file was retrieved from KEGG website, and 234	

KO’s were categorized into KEGG modules. The abundance of KEGG module in each sample was 235	

calculated using the median abundance of the detected KEGG orthologies within each module. 236	

The completeness of each KEGG module was calculated using ‘KO2MODULEclusters2.py’. 237	
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Metagenome binning and refining. 238	

Anvi’o (versions: v2.2.2, v2.4.0, v4 and v5.1)56 was used for metagenome binning and refining. 239	

Briefly, CONCOCT57 integrated in Anvi’o was used to cluster scaffolds (longer than 2500 bp) into 240	

metagenome bins using tetra-nucleotide composition and coverage information across all samples 241	

within each metagenomic co-assembly. The 'merge' method of CheckM v1.0.758 was used to 242	

identify the bins that that may emerge from the same microbial population, but may have been 243	

separated during automated binning process. Following merging of compatible bins, RefineM 244	

v0.0.2159 was used to automatically refine bins according to genomic properties (i.e., the mean GC 245	

content, tetra-nucleotide signature and coverage) and taxonomic classification. The completeness 246	

and redundancy of each refined bin was estimated using CheckM based on collections of lineage 247	

specific single-copy genes resulting in a total of 154 bins with greater than >50% completeness. 248	

Among these bins, 130 bins had a redundancy of <10% redundancy, while 24 bins are with >10% 249	

redundancy. Further manual curation of these bins was performed using Anvi’o, resulting in 156 250	

curated metagenome assembled genomes (MAGs). The 156 MAGs were de-replicated using dRep 251	

v2.2.260 and MAGS with >10% redundancy were discarded which resulted in 115 dereplicated 252	

MAGs with completeness >50% and reduncancy <10%. All raw sequencing data and dereplicated 253	

MAGs are available on NCBI at BioProject number PRJNA533545. 254	

MAG-level analyses 255	

Taxonomy assignment of MAGs was performed using GTDB-Tk v0.1.344 with the flag 256	

‘classify_wf’. Genome sizes of MAGs were estimated by multiplying the number of nucleotides 257	

in the MAG with the inverse of the CheckM estimated completeness. The MAGs were annotated 258	

using the HMM profile database for KEGG orthology with predefined score thresholds using 259	

KofamScan55. The KO’s for each MAG were then categorized into modules based on BRITE 260	

hierarchy file retrieved from KEGG54, and the completeness of KEGG modules in each genome 261	

was calculated using script 'KO2MODULEclusters2.py'. Anvi’o was used to extract a collection 262	

of 48 single-copy ribosomal proteins61 from each MAG using ’anvi-get-sequences-for-hmm-hits’ 263	

with a maximum number of missing ribosomal proteins of 40. Subsequently, a phylogenetic tree 264	

was reconstructed using concatenated alignment of ribosomal proteins sequences using FastTree 265	

v2.1.762. Interactive Tree Of Life (iTOL) v4 (Letunic and Bork 2007) was used to visualize the 266	

phylogenetic tree. 267	
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Program ‘Union’ in EMBOSS v6.6.0.063 was used to concatenate all scaffolds in each MAG into 268	

a single sequence. Reads from all samples were cross-mapped to all MAGs using BWA-MEM 269	

v0.7.12 with default settings and proportion of each nucleotides in MAG covered by at least 1x 270	

coverage was determined using BEDtools64. A MAG was considered detected in a sample if ≥25% 271	

of its bases were covered by at least one read from the corresponding sample. This approach was 272	

used to determine whether MAGs were detected in all the samples. Further, the MAGs were binned 273	

into four categories based on their detection/non-detection within samples. Specifically, MAGs 274	

were divided into "D-only" if there were detected in ≥20% of the samples from the disinfected 275	

systems and not detected in any samples from the non-disinfected systems, "ND-only" if there 276	

were detected in ≥20% of the samples from the non-disinfected systems and not detected in any 277	

samples from the disinfected systems, "both" if there were detected in ≥20% of disinfected and 278	

non-disinfected systems, while the remaining MAGs were classified in the "other" category. 279	

Subsequently, reads from all samples were cross-mapped back to all the MAGs using BBMap 280	

v38.2465 with a minimum identity of 90%, and ‘ambiguous=best’ and ‘pairedonly=t’ flags. After 281	

filtering for detection (see above), reads per kilobase of per million reads (RPKM) for each MAG 282	

and each sample were calculated using equation: 283	

RPKM =
Number of reads mapped to MAG

Total number of reads in sample per Million×MAG length in kbp
 284	

Statistics 285	

Differences between disinfected and non-disinfected systems for (1) Mash distances distributions, 286	

(2) relative abundances were determined using Permutational ANOVA and Pearson’s correlations 287	

between pairwise mash distances were estimated in R. BioEnv in "sinkr" 288	

(https://github.com/menugget/sinkr)	  and "vegan"66 packages were used to identify 289	

environmental parameters (i.e., water chemistry) and their combinations that explain the 290	

differences in the structure (i.e., Mash distances between samples estimated using reads) and 291	

functional potential (i.e., Bray Curtis distance estimated between samples using KO abundance 292	

(i.e., RPKM). BioEnv permutes through 2^n-1 possible combination of selected environmental 293	

parameters, 511 combinations in this case, and selects the combinations of scaled environmental 294	

variables which capture maximum correlation between dissimilarities of community datasets water 295	

chemistry and microbial community structure or functional potential. While, BioEnv analyses 296	
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identified combination of variables that are highly correlated with differences in microbial 297	

community structure of functional potential, it does not identify the proportion of variance in 298	

microbial community structure of functional potential explained by individual variables or their 299	

combination. To this end, we used distance-based redundancy analysis (dbRDA) to perform 300	

constrained ordinations on community structure and functional potential to bypass the limitation 301	

of usual RDA and CCA, which can only use Euclidean distance measure. Function dbrda() from 302	

'vegan'  package was used with pairwise Mash distances calculated between samples estimated 303	

using reads based Mash distance and Bray-Curtis distances based on KO RPKM to investigate 304	

relationships between the environmental variables and community data on both nucleotide 305	

composition and KO level. The function varpart() in the vegan package was used to determine the 306	

fraction of variation captured parameters identified as significantly associated with read-based 307	

Mash and KO relative abundance-based Bray-Curtis distance matrices. DeSeq2 package v1.18.167 308	

was used to identify differentially abundant KEGG modules between disinfected and non-309	

disinfected systems by only considering KEGG modules with a maximum of one block missing 310	

and equal to or greater than 50% complete. The median scaffold-length normalized read count of 311	

KO’s within each module were used in DESeq2 analyses with a maximum adjusted P-value of 312	

0.005.	313	

RESULTS AND DISCUSSION 314	

Water quality parameters across disinfected and non-disinfected DWDS.  315	
Sampling was conducted in seven DWDSs with disinfectant residual between April-August of 316	

2013 and at five DWDSs without disinfectant residual between October-December 2015. The 317	

water chemistry varied between the DWDSs considering they were supplied by different DWTPs, 318	

our sampling campaign also captures seasonal differences between locations (Figure 1) (Table S1). 319	

Specifically, water temperatures were higher (~5°C) for the disinfected samples compared to the 320	

non-disinfected samples. While the pH, DO, nitrogen species (i.e., ammonium and nitrate) and 321	

TOC measurements were not significantly different between disinfected and non-disinfected 322	

samples, the measured phosphate and total chlorine concentrations were significantly different 323	

(p<0.05). Specifically, the average total chlorine concentrations in disinfected systems 0.37 mg 324	

Cl2/l (range: 0.1-0.73 mg Cl2/l) while no disinfectants residuals were measurable in the non-325	

disinfected systems. The average phosphate concentrations were 2.3 mg PO4
3-/l while no 326	
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phosphate was measurable in non-disinfected samples. Phosphate was higher in the disinfected 327	

systems as it is likely to be used for corrosion control68. While we were unable to obtain 328	

information on source water type (i.e., ground vs surface water) used for production of drinking 329	

water supplied to the sampled DWDS, conductivity measurements suggested DWDS in both 330	

systems were supplied by a DWTPs drawing from surface and ground water sources (Figure 1).  	331	

	332	

Summary of metagenomic data set.  333	
Metagenomic analyses was used to assess the association between presence/absence of disinfectant 334	

residual with the structure and functional potential of the drinking water microbiome. A total of 335	

41 drinking water samples were collected from DWDSs with (i.e., chlorine) from the United 336	

Kingdom (n=23), while those collected from the Netherlands (n=18) did not have a disinfectant 337	

residual. Quality trimming of raw metagenomic data resulted in the retention of 638 million paired-338	

end reads. Co-assembly for each drinking water system was carried out by combining reads from 339	

individual sampling location within each drinking water system (Table 1). De novo co-assembly 340	

generated 0.04-1.81 million true scaffolds for each sampling location after discarding scaffolds 341	

shorter than 500bp and contaminant scaffolds (Table 1) with an N50 value ranged from 775 bp to 342	

A B

Figure 1: Summary of water chemistry parameters measured for samples collected from disinfected (purple) and 
non-disinfected systems (yellow). (B) Principle component analyses using Euclidean distances for measured water 
chemistry parameters indicates distinct clustering of samples from disinfected and non-disinfected systems. 
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3300 bp. The proportion of quality trimmed reads mapping back to true scaffolds ranged from 67% 343	

to 99% (Table 1) across all samples. 344	

Table 1: Sequencing and de novo co-assembly statistics for metagenomes from 12 drinking 345	
water systems. 346	
Drinking 
water 
system 

Paired end 
Reads 
(millions) 

Scaffolds  
(>500 bp) 

True 
scaffolds 

True scaffold 
assembly size 
(Mbp) 

% 
Mapped 
reads 

GC 
content 
(%) 

N50 
(bp) 

ORFs 
per Mbp 

Coding 
density 

D1 195.73 555493 546375 615.10 99.02 54.66 1131 1403.68 0.48 

D2 46.87 38567 36733 53.03 96.24 55.34 2112 1419.84 0.64 

D3 17.40 192457 190882 249.69 91.15 57.82 1531 1498.24 0.63 

D4 36.01 123852 122486 204.78 93.03 57.57 3300 1316.54 0.60 

D5 36.74 227196 225149 269.12 88.73 59.09 1313 1527.12 0.60 

D6 17.39 42209 41459 57.23 95.89 59.16 1641 1504.23 0.65 

D8 19.4 77973 76996 108.07 95.38 61.07 1751 1475.71 0.68 

ND1 45.52 521371 517773 472.02 83.82 53.75 855 1803.21 0.61 

ND2 25.98 363819 361304 316.18 75.03 53.44 802 1807.05 0.56 

ND3 48.63 667992 663968 562.73 81.63 52.93 775 1838.06 0.60 

ND4 17.78 164328 163361 143.22 66.73 56.48 808 1822.84 0.63 

ND5 130.92 1812573 1804048 1834.75 93.74 56.38 1005 1672.04 0.60 

D=disinfected,	ND=non-disinfected,	N50=minimum	contig	length	that	account	for	50%	of	the	347	
bases,	ORF=open	reading	frame.	348	

Non-disinfected systems are more diverse than disinfected systems.  349	

Non-disinfected systems were significantly (p < 0.0001) more diverse compared to systems that 350	

maintained a disinfectant residual (Figure 2A) based on Nonpareil estimated diversity index42. This 351	

observation is consistent with previous comparisons of bulk water69 and biofilm39 samples from 352	

disinfected and non-disinfected systems. Lower diversity in disinfected systems is likely due to 353	

stronger selective pressure of the disinfectant residual as compared to that nutrient limitation in 354	

non-disinfected systems. As a result of the higher diversity in non-disinfected systems, the 355	

metagenomic sequencing for these samples provided significantly lower coverage of the sampled 356	

microbial community (Figure 2B) as compared to systems with a disinfectant residual (p < 357	

0.0001). 358	
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Microbial community membership and structure is different between disinfected and non-359	

disinfected systems. 360	

We used 2,872 small-subunit (SSU) rRNA genes (2742 genes > 100 bp) identified on the 361	

assembled scaffolds to determine community membership and structure across sampling locations 362	

(Supplementary file 1, Supplementary table 2). While bacteria were dominant members of the 363	

drinking water microbiome in both types of systems (2C, 2D), the relative abundance of archaea 364	

and eukaryota were dependent on the presence/absence of disinfectant residual (Figure 2C, 2E). 365	

Specifically, the relative abundance of eukaryota was higher in disinfected systems as compared 366	

to non-disinfected system (2C), while archaea were ubiquitous across non-disinfected samples 367	

(Figure 2C, E) they were only detected in a single disinfected sample (D2). Non-disinfected 368	

systems were taxonomically more diverse, with respect to bacteria and archaea, as compared to 369	

disinfected systems. Specifically, a total of 14 bacterial and 6 archaeal phyla were detected in one 370	

or more non-disinfected systems that were not detected in any of the disinfected systems. Several 371	

of these unique phyla, while not dominant in non-disinfected systems, were detected at relative 372	

abundances between 1-5% (e.g., Nitrospirae, Nanoarchaeota). 373	

The bacterial community was dominated by Proteobacteria, in particular Alphaproteobacteria and 374	

Gammaproteobacteria, in both disinfected and non-disinfected systems with Deltaproteobacteria 375	

being much more prevalent and abundant in non-disinfected systems (Figure 2D). Actinobacteria 376	

were more abundant than Proteobacteria in two drinking water systems and constituted 44% and 377	

33% of the community in systems D4 and ND1, respectively. Overall, the relative abundance of 378	

Proteobacteria was higher in disinfected systems, ranging from 28% to 90%, as compared to non-379	

disinfected systems, ranging from 30% to 57%. Patescibacteria was the second most abundant 380	

phylum across non-disinfected systems, constituting 15% to 29% of the SSU rRNA genes, while 381	

they were only detected in one disinfected sample (D2) with a relative abundance of 1%. Within 382	

Patescibacteria, Parcubacteria were the most commonly detected phyla followed by 383	

Microgenomatia and Gracilibacteria.  384	

The observed differences between disinfected and non-disinfected DWDS for bacteria and archaea 385	

are largely consistent with a previous meta-analyses of amplicon sequencing data from the 16S 386	

rRNA gene69. In contrast to bacteria and archaea, results from eukaryotes, which have not been 387	

systematically investigated in the drinking water microbiome, were surprising in terms of their 388	
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higher relative abundance eukaryotic in disinfected as compared to non-disinfected systems. For 389	

instance, SSU rRNA genes associated Nematoda were detected in nearly every disinfected system, 390	

but were not detected in non-disinfected systems. Specifically, SSU rRNA genes from two free-391	

living nematode genera, i.e. Araeolaimida and Monhysterida, were detected in five of the eight 392	

disinfected systems. Similarly, SSU rRNA genes from the phylum Rotifera were only detected in 393	

disinfected systems and were largely associated with the monogonont rotifers within the genera 394	

Ploimida. While the relative abundance of scaffolds determined to be of eukaryotic origin was 395	

higher in disinfected compared to non-disinfected systems, this does not mean that eukaryotes 396	

were proportionally larger part of the drinking water microbiome in disinfected compared to the 397	

non-disinfected systems. Genome sizes of picoeukaryotic microbes can be orders of magnitude 398	

larger than that of bacteria and archaea and vary significantly between picoeukaryotes themselves. 399	

Further, the higher overall diversity and lower sequencing coverage (Figure 1) could also have 400	

resulted in under sampling of the eukaryotic community in non-disinfected systems. 401	
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	402	

Drinking water systems cluster at the nucleotide level based on presence/absence of 403	

disinfectant residuals. Samples (for read based analyses) and drinking water systems (for scaffold 404	

based analyses) clustered with each other based on the presence/absence of disinfectant residuals 405	

(Figure 3A and 3B) based on Mash distance estimates. We further evaluated the significance and 406	

explanatory power of measured water chemistry parameters in explaining the observed clustering 407	

between disinfected and non-disinfected systems. To do this, we initially performed BioEnv 408	
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Figure 2: Comparison of (A) diversity and (B) coverage between disinfected and non-disinfected drinking water systems 
estimated using Nonpareil. (C) Comparison of relative abundance of bacterial, archaeal, and eukaryotic communities in 
drinking water systems with and without disinfectant residuals. (D) Log10 transformed relative abundance of different phyla 
(classes for phylum Proteobacteria) across sampling location for the bacteria, archaea, and eukaryota.	
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analyses to identify water chemistry parameters and their combinations that were highly correlated 409	

with observed Mash distances between samples (Supplementary Table 3).  This identified chlorine 410	

as being strongly correlated with the Mash distances between samples (R=0.54, p<0.001) while 411	

the maximum correlation between water chemistry and Mash distances was observed for a 412	

combination of chlorine, phosphate, and TOC (R=0.62, p<0.001). We subsequently utilized 413	

dbRDA to independently determine the environmental/water chemistry variables most 414	

significantly associated with Mash distances between samples. While chlorine was identified as a 415	

significant variable (p<0.01), dbRDA identified conductivity (p<0.001) and DO (p<0.01) as 416	

significant variables. Finally, variance partitioning analyses was used to determine the proportion 417	

of variance in the Mash distance matrices explained by individual and combination of variables 418	

identified as significant by dbRDA (Table S5). This resulted in chlorine, conductivity, and DO 419	

individually explaining ~17%, 12%, and 1% of the variance in the Mash distance matrix, with 420	

~60% of the variance unexplained by these three variables.   421	

We further compared the distribution of Mash distances between drinking water metagenomes 422	

within disinfected, within non-disinfected, and between disinfected and non-disinfected systems. 423	

Mash distances between drinking water metagenomes from disinfected systems were significantly 424	

different (p < 0.0001) and exhibited a lower mean for disinfected as compared to non-disinfected 425	

systems. Further, the pairwise Mash-distances between disinfected and non-disinfected systems 426	

were significantly different and higher from those estimated within each category (i.e., disinfected 427	

or non-disinfected). This was consistent for both read- and scaffold-based analyses (Figure 3D, 428	

3E).  Finally, the average pairwise Mash distances estimated using reads (i.e., between samples) 429	

and scaffolds (i.e., between DWDSs) were highly correlated (Pearson’s R = 0.95, P < 0.05) (Figure 430	

3C), indicating the de novo assembly process did not result in loss of information on factors driving 431	

the differences between disinfected and non-disinfected systems.  432	

These analyses provide a few key insights. First, Mash distance-based (both read and scaffold 433	

based) clustering of samples occurs depending on presence and absence of disinfectant residual 434	

suggests that the microbial communities are more similar within each group (i.e., disinfected and 435	

non-disinfected) and dissimilar between the two groups (i.e., disinfected vs non-disinfected). 436	

Second, while disinfected and non-disinfected samples cluster distinctly from each other, 437	

disinfected systems exhibit lower nucleotide-level heterogeneity as compared to their non-438	
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disinfected systems indicating that the factors governing microbial community in disinfected 439	

systems likely impose stronger selective pressures on the microbial community as compared to 440	

those in non-disinfected systems. Third, non-disinfected systems exhibit greater diversity not only 441	

within a system (Figure 2) but also across systems as compared to disinfected systems. Despite the 442	

strong correlation between pairwise Mash distances of reads and scaffolds (Figure 3F), the median 443	

Mash distances for pairwise comparison of samples within each type of system (i.e., disinfected 444	

and non-disinfected) is higher for the scaffold-based analyses as compared to the read-based 445	

analyses. This is likely from the omission of low abundance microorganisms during de novo 446	

assembly and thus suggests that composition of medium-to-high abundance organisms are likely 447	

to be more variable between non-disinfected systems as compared to disinfected systems. 448	

Finally, while the water chemistry and environmental parameters between disinfected and non-449	

disinfected systems were distinct (Figure 1B), the parameters that most strongly correlated with 450	

Mash distances between samples were limited to a combination of chlorine, phosphate, and TOC 451	

for BioEnv analyses and chlorine, conductivity, and DO based on dbRDA. Both independent 452	

exploratory analyses consistently identified chlorine presence/absence and concentration as one of 453	

the key drivers of difference in microbial communities across the samples. Further, variance 454	

partition analyses indicated that ~17% of the variance in the Mash distance matrix was driven 455	

exclusively by chlorine; this make chlorine the most important parameter measured as part of this 456	

study in terms of differentiating between drinking water metagenomes. The significance of 457	

phosphate determined by BioEnv analyses is likely because chlorine and phosphate concentrations 458	

are inherently associated due to common use of the latter for corrosion control in DWDSs that 459	

maintain a chlorine residual68. Further, while it is unlikely that DO (identified as significant by 460	

dbRDA) directly affects microbial community composition (all DO concentrations were near or 461	

greater than saturation), it is possible that this may reflect the use of advanced oxidation process 462	

(e.g., ozonation) during drinking water treatment. Similarly, conductivity (identified as significant 463	

by dbRDA) is unlikely to directly influence the microbial community, but rather this may reflect 464	

the source water type and treatment processes being used for drinking water production. 465	

Specifically, source water derived from ground water sources or from reservoirs under the 466	

influence of ground water typically have much higher conductivities than those that rely on surface 467	

water supply. Similarly, chemicals used for softening and coagulation/flocculation processes may 468	

influence water conductivity. Thus, we speculate that the influence of conductivity may serve as 469	
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surrogate for a combination of source water and treatment process. These analyses clearly identify 470	

chlorine as one of the major measured parameters driving the Mash distances between samples, 471	

followed by conductivity (potential surrogate for source water and treatment process). Further, the 472	

fact the major proportion of the variance remains unexplained suggests that additional aspects such 473	

as treatment process configuration, DWDS characteristics, and other water chemistry parameters 474	

which were not characterized/measured as part of this study also likely play a strong role in 475	

differentiating between microbial communities in disinfected and non-disinfected drinking water 476	

systems. 477	
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 478	

 479	

 480	

 481	

 482	

A B C

D E F

Figure 3: Comparison of nucleotide composition using paired reads each from each sample and true scaffolds in 
each drinking water system according to Mash distance. (A, B) Heatmaps based on pairwise Mash distances of 
reads and scaffolds. Heatmaps are colored according to Mash distance; yellow denotes a distance of 0. Labels on x- 
and y-axis are colored according to disinfection strategies. (C). NMDS clustering of read based Mash distances 
between samples with vectors representing water chemistry/environmental parameters implemented using dbRDA. 
(D, E) Violin plots indicating the distribution of pairwise Mash distances of reads and scaffolds. Plots are colored 
according to the system type for which pairwise comparisons were conducted. Purple denotes comparisons between 
disinfected samples, yellow denotes comparisons between non-disinfected samples, and green denotes comparisons 
between disinfected and non-disinfected samples. (F) Correlation between average Mash distances of reads across 
samples and Mash distances of scaffolds across sampling locations. 
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Protein coding sequences cluster based on presence/absence of disinfectant residuals. A total 483	

of 8 million protein coding sequences were predicted and translated from true scaffolds, of which 484	

approximately 17 to 27% were annotated against KEGG database (Table S6). Consistent with the 485	

nucleotide-level analyses, samples clustered based on the presence and absence of disinfectant 486	

residual (Figure 4A, 4B, 4C) rather than by DWDS. Further, BioEnv analyses identified the 487	

combination of chlorine, phosphate, and ammonia as being strongly and significantly correlated 488	

(R =0.392, P<0.001) with Bray-Curtis distances between samples estimated using abundance (i.e., 489	

RPKM) of KOs (Table S7). Similar to nucleotide based analyses, chlorine presence/absence and 490	

concentration was the measured parameter more strongly and significantly associated with 491	

differences in functional potential between samples at the single parameter level (R=0.382, 492	

p<0.001). In contrast to nucleotide based analyses, conductivity and chlorine were the only two 493	

variables identified as significantly associated with Bray-Curtis distances between samples 494	

estimated using relative abundance of KO's in samples using dbRDA (Table S8). Variance 495	

partitioning indicated that both conductivity and chlorine individually explained approximately 496	

6.5% of the variance in Bray-Curtis distance matrix estimated using KO abundance. A comparison 497	

of the pairwise Mash distances within each group (i.e., disinfected, non-disinfected) and between 498	

them indicated that the diversity in functional potential was significantly different for both 499	

predicted protein coding-sequences and KEGG annotated proteins (p <0.0001). The median value 500	

of Mash distances between the non-disinfected samples was greater than that for disinfected 501	

samples (Figure 4D, 4E) and the differences in Mash distances between two groups was larger 502	

than the distances within each group. And finally, despite the fact that only 17-27% of predicted 503	

proteins were annotated against the KEGG database, the Mash distances between metagenomes 504	

estimated using all predicted protein coding sequences and those that were annotated against the 505	

KEGG database were highly correlated (Pearson’s R ≈ 1.00, P < 0.05) (Figure 4F), suggesting 506	

that focusing on annotated proteins does not result in significant loss of information while 507	

performing direct comparisons between samples from disinfected and non-disinfected systems.  508	

These analyses based on protein coding sequencing provide several key insights. First, clustering 509	

of samples into disinfected and non-disinfected groups is consistent for both community 510	

composition (i.e., read-based nucleotide composition analyses) and functional potential, 511	

irrespective of the use of all predicted ORF's and KEGG annotated protein sequences. Non-512	

disinfected systems are significantly more heterogeneous across systems as compared to their 513	
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disinfected counterparts. This suggests that selection pressures exerted within disinfected systems 514	

are not only evident at community structure/membership (Figure 3), but also evident at the 515	

community functional potential level. Further, consistent with microbial community composition, 516	

chlorine was also identified as one of the key measured parameters driving differences between 517	

samples based on functional potential using both BioEnv and dbRDA analyses. In contrast to TOC 518	

which was included in the BioEnv parameter combination for microbial community composition 519	

level analyses, ammonia was identified as part of the combination at the functional potential level. 520	

While the exact reason behind this difference cannot be ascertained in this study, this may likely 521	

be associated with the fact that non-disinfected systems are severely nitrogen limited as compared 522	

to disinfected systems, while both systems were likely not carbon limited. Similar to the nucleotide 523	

level analyses, both conductivity and chlorine were identified as significantly (p<0.01) associated 524	

with differences between samples, with variance partitioning analyses allocating equal amount of 525	

variation to both parameters (Table S9). As speculated above, if conductivity is considered a signal 526	

for source water and treatment process type, then the impact of these two parameters on the 527	

functional potential of microbial community is relatively similar to that of presence/absence of the 528	

disinfectant residual. Finally, the residuals from the variance partitioning analyses were noticeably 529	

larger (84%) for functional potential analyses as compared to the microbial community 530	

composition (60%), suggesting that the impact of unmeasured/uncharacterized factors/parameters 531	

on microbial community functional potential was significantly larger than their impact on 532	

community composition. While it cannot be ruled out, it is unlikely that the higher fraction of 533	

unexplained variation was due to only a proportion of ORFs being annotated; this is because Mash 534	

distances estimated using only KEGG annotated ORFs were highly correlated with those estimated 535	

using all predicted ORFs using suggesting little to minimal loss of discriminatory power while 536	

using only annotated proteins. 537	

 538	

 539	

	540	
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 541	

Differentially abundant metabolic modules are consistent with microbial growth control 542	

strategies. A total of 7,281 KOs were identified in all samples with 5,922 remaining post-filtering 543	

based on scaffold coverage (>1x) and frequency of KO detection in each drinking water system 544	

(detected more than once) (Table S10). The 5,922 KO’s were further categorized into 540 KEGG 545	

modules and upon further filtering to remove KEGG modules with no more than one missing block 546	

and greater than equal to 50% completion, a total of 208 KEGG modules were retained (Table 547	

A B C

D E F

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1

0.2

0.3

0.4

0.5

0.2 0.3 0.4 0.5
MASH distance of unannotated proteins

M
AS

H
 d

is
ta

nc
e 

of
 K

of
am

 a
nn

ot
at

ed
 p

ro
te

in
s

Figure 4: Comparison of functional potential among all and KEGG protein-coding amino acid sequences across 
sampling locations. This analysis estimates dissimilarity in amino acid composition of samples, similar to the nucleotide 
composition analyses presented earlier. (A, B) Heatmaps based on pairwise Mash distances of all protein coding 
sequences and Bray-Curtis distances using KO. Heatmaps are colored according to Mash/Bray-Curtis distance; yellow 
denotes a distance of 0. Labels on x- and y-axis are colored according to disinfection strategies; dark golden denotes 
samples with chlorine, while blue denotes samples without disinfectant residuals. C). NMDS clustering of using Bray-
Curtis distances using KO abundances between samples with vectors representing water chemistry/environmental 
parameters implemented using dbRDA. Violin plots indicating the distribution of pairwise (D) Mash distances of all and 
(E) Bray-Curtis distances KEGG annotated proteins. Crossbars indicate the median value of Mash distances. (F) 
Correlation between pairwise Mash distances estimated using all and Bray-Curtis distances for KEGG annotated 
protein coding sequences. 
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S11). Of these, a total of 57 KEGG modules exhibited significantly differential abundance between 548	

disinfected and non-disinfected samples (p-value < 0.005) (Table S12, S13). Modules associated 549	

with ribosomal synthesis, ribonucleotide biosynthesis, and RNA polymerase were ignored from 550	

further consideration. Similarly, modules most likely associated with plant metabolism (e.g., 551	

Crassulacean acid metabolism) were also ignored. This resulted in 29 and 22 KEGG modules that 552	

were more abundant in non-disinfected system and disinfected systems, respectively. These 553	

included modules associated with energy metabolism (disinfected, i.e. D=2, non-disinfected, i.e., 554	

ND=5), carbohydrate and lipid metabolism (D=11, ND=10), nucleotide and amino acid 555	

metabolism (D=5, ND=13), and secondary metabolism (D=4, ND=1).	556	

Metabolic modules associated with polyamine biosynthesis, aromatics degradation, terpenoid 557	

biosynthesis, and fatty acid metabolism were significantly enriched in disinfected systems. 558	

Specifically, metabolic pathways associated with benzene (M00548) and benzoate (M00551) 559	

degradation to catechol and methyl catechol were highly enriched in disinfected systems. Further, 560	

eukaryota-associated metabolic modules such as terpenoid backbone biosynthesis (M00367) and 561	

modules associated with peroxisomal beta-oxidation of very long chain fatty acids (M00861) are 562	

likely to be enriched in the disinfected systems due to the higher relative abundance of eukaryota 563	

in samples collected from disinfected as compared to non-disinfected systems respectively. 564	

Further, modules related to 𝛾-aminobutyrate (GABA) metabolism (M00136, M00027) were 565	

enriched in disinfected systems. The GABA shunt pathway converts glutamate to GABA using 566	

glutamate decarboxylase (GAD), followed by reversible conversion from 𝛼-ketoglutarate to 567	

succinate semialdehyde (SSA) through the activity of GABA transaminase (GABA-AT), and 568	

finally succinate is formed by succinate semialdehyde dehydrogenase (SSDH) activity. In contrast, 569	

the key metabolic modules enriched in non-disinfected systems were associated with carbon 570	

fixation and methane metabolism (M00377, M00620, and M00422) and nitrogen fixation 571	

(M00175) (Table S13). The differentially abundant carbon fixation modules included the Wood-572	

Ljungdahl pathway, Acetyl-CoA pathway, and the incomplete reductive citrate cycle. These 573	

pathways can fix carbon dioxide to produce acetyl-CoA which can then be converted to other 574	

necessary biosynthetic intermediates of the carbon metabolism70, 71. 575	

The enrichment of carbon and nitrogen fixation modules in non-disinfected systems is consistent 576	

with nutrient limitation as the strategy for microbial growth control in non-disinfected drinking 577	
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water systems. While the measured total organic carbon concentrations in non-disinfected systems 578	

did not indicate carbon limited conditions, DWTP’s supplying water to non-disinfected DWDSs 579	

typically achieve far superior levels of removal of assimilable organic carbon (AOC)28. Similarly, 580	

the nitrogen availability in the form of ammonia was consistently zero for non-disinfected systems 581	

compared to disinfected systems which has residual ammonia concentrations ranged from 0.01-582	

0.15 mg/l of ammonia-nitrogen. In contrast, the enrichment of KEGG modules associated with 583	

GABA metabolism in disinfected systems suggests the potential importance of stress protection 584	

and utilization of microbial decay products. Previous studies have shown that GABA metabolism 585	

is associated with bacterial survival under various types of environmental stresses, including 586	

oxidative stress, acidic stress, and osmotic stress 72-75. Meanwhile, GABA can also play a 587	

significant role in nitrogen metabolism of bacteria. For instance, putrescine formed due to the 588	

breakdown of amino acids potentially from decaying biomass, can be converted to GABA 589	

(M00136) and finally metabolized via GABA shunt pathway74. The enrichment of GABA 590	

metabolism in disinfected systems may thus be associated with greater protection against 591	

disinfectant stress and by allowing access to decay products from inactivated cells. 592	

Average genome size differences between disinfected and non-disinfected system vary 593	

between read-based and MAG-based analyses. We further investigated differences in genome 594	

sizes between disinfected and non-disinfected systems. Genome sizes can be indicative of the 595	

metabolic capacity of microorganisms76 and thus provide insights in the whether the 596	

presence/absence of disinfectants selects for organisms with larger or smaller metabolic 597	

repertoire77 in comparison to organisms detected in non-disinfected systems. Average genomes 598	

size estimates from disinfected systems were significantly larger than those from non-disinfected 599	

systems based on MicrobeCensus estimates using entire metagenomic data (Figure 5A); this was 600	

consistent even when reads mapping to phyla known to have smaller genomes (e.g., 601	

Patescibacteria) were selectively removed from the data set (Figure 5B). This suggests that 602	

microorganisms in disinfected systems may be metabolically more diverse than their counterparts 603	

from non-disinfected systems. Nonetheless, these results were not consistent when compared with 604	

estimated genome sizes of MAGs recovered as part of this study. Specifically, we recovered a total 605	

of 115 dereplicated MAGs with completeness >50% and redundancy <10% (Table S14). These 606	

115 MAGS were binned into four categories based on the detection or non-detection in disinfected 607	

samples. Specifically, MAGs were binned in the four groups (i.e., both, D-only, ND-only, and 608	
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other) based on genome coverage and detection frequency criteria outlined in the materials and 609	

methods section (see MAG-level analyses) (Table S15). This resulted in 9, 16, 41, and 49 MAGs 610	

were categorized as both, D-only, ND-only, and other (Figure 5C, 5D) (Table S14). In contrast to 611	

read-based estimates of average genome size, MAG-based genome size estimates were not 612	

significantly different between the three key categories (Both=4.4±0.77Mbp, D-613	

only=3.22±0.81Mbp, ND-only=3.48±1.22Mbp) (Figure 5E). Yet, the ND-only category 614	

consisted of several smaller genomes (n=17) compared to the D category. The lack of genome size 615	

differences between disinfected and non-disinfected samples based on MAG-based analyses 616	

compared to metagenome-level read-based analyses may be due to the proportion of read-based 617	

data represented by the MAGs. Specifically, while 60-90% of the reads from disinfected systems 618	

mapped to the 115 MAGs with the mapping rate from non-disinfected systems averaging around 619	

50% (Figure 5F). Thus, it is likely that the metagenomic assembly and binning process may have 620	

resulted in suboptimal recovery of smaller genomes from non-disinfected sample which eliminates 621	

the signal in genome size differences observed at the metagenome level. 622	
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Metabolic capacities differ between metagenome assembled genomes from disinfected and 623	

non-disinfected systems.  Clustering of MAGs (Figure 6A) based on presence/absence of KEGG 624	

metabolic modules was largely driven by phylogenetic placement of MAGs, rather than their 625	

classifications into groups based on the detection frequencies in disinfected and non-disinfected 626	

systems (Figure 6B). Further, there was insufficient representation of MAGs from D-only/ND-627	

only categories across all phylogenetic clusters (e.g., at the species or genus level) to allow for 628	

direct comparisons of metabolic potential of closely related MAGs exclusively frequent in 629	

disinfected and non-disinfected systems. Nonetheless, there were seven and five high quality 630	

(completeness > 90%, redundancy <10%) alphaproteobacterial MAGs that were exclusively 631	

frequent in disinfected (average detection frequency in disinfected =55%) and non-disinfected 632	

systems (average detection frequency in non-disinfected=29%) (Figure 6A). Thus, we focused 633	

 

A

D

B

E F

C

Figure 5: Violin plots indicating the genome size estimated by MicrobeCensus (a) before and (b) after Patescibacteria 
removal suggest average genome sizes in disinfected systems are larger than those in non-disinfected systems. (C) 
The 115 MAGs assembled with >50% completeness and <10% redundancy were categorized into (D) four groups 
based on their detection frequency in disinfected and non-disinfected systems. (E) While the estimated genome sizes 
of MAGs in D_only, ND_only, and Both categories were not significantly different, the ND_only category consisted of 
large number of smaller genomes. (F) Barplot indicating the proportion of reads mapped to 115 genomes across 
samples. Purple and yellow denotes samples from systems with and without a disinfectant residual, respectively. 
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metabolic module comparisons between these 12 MAGs only. We evaluated differences in 634	

metabolic capacity of these MAGs by (1) considering all KEGG modules ≥75% complete within 635	

MAGs to be present in them and (2) all modules present in more than half of the high-quality 636	

MAGs within each category to be present within each category (Figure 6C, Table S16). We 637	

subsequently confirmed the presence/absence of genes within key metabolic modules using KO-638	

level annotation for these 12 MAGs (Table S17).  639	

The metabolic module associated with the glyoxylate cycle (M00012) was present in 86% of the 640	

MAGs in the D-only category while being only partially complete in most of the ND-only MAGs. 641	

Specifically, isocitrate lyase (aceA: K01637) and malate synthase (aceB: K01638), two key genes 642	

involved in the glyoxylate cycle, were present in 40% and 100% of the MAGs from D-only, 643	

respectively and both genes were absent in all ND-only MAGs included in this analysis. The 644	

glyoxylate shunt is associated with use of non-carbohydrate carbon sources (i.e., via 645	

gluconeogensis), such as break down products from lipids, fatty acids etc78. The likely benefit of 646	

the glyoxylate shunt and associated use of lipids and fatty acids as carbon source is further 647	

supported by the fact that KEGG module associated with propanoyl-coA metabolism (M00741) 648	

was complete in 6/7 as compared to 2/5 MAGs from the D-only and ND-only categories. This 649	

metabolic module is associated with the conversion of propanoyl-coA, a toxic byproduct of fatty 650	

and amino acid degradation, to succinyl-coA. High biomass turnover rates, due to disinfectant 651	

induced microbial inactivation, may result in resource pools enriched in microbial decay products 652	

thus allowing a significant advantage for microorganisms capable of necrotrophic growth79 aided 653	

by the glyoxylate cycle. Thus, it is feasible that the ability to utilize microbial decay products may 654	

provide a distinct advantage to microorganisms inhabiting disinfected DWDSs. 655	

The glyoxylate shunt may provide additional benefits for microorganisms subject to disinfectant 656	

stress via enhanced fitness to oxidative stress78 and enhanced persistence when challenged with 657	

other chemical stressors (e.g., antibiotics)80. In contrast to module level analyses at the 658	

metagenome level where carbon fixation capacity was significantly more abundant in non-659	

disinfected as compared to disinfected systems, the alphaproteobacterial MAGs from D-only 660	

systems harbored the capacity for carbon fixation via the Calvin-Benson-Bassham cycle (M00165, 661	

M00166, M00167) while this capacity was mostly absent from MAGs in the ND-only category. 662	

Nonetheless, these MAG-based analyses are limited in phylogenetic scope and does not weigh the 663	
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importance of MAGs to their respective systems based on their relative abundance. Hence, we 664	

suggest that metagenome-level analyses should take precedence over findings at the MAG level 665	

when they conflict. While the glyoxylate shunt was not identified as a significantly enriched in the 666	

disinfected systems at the metagenome level analyses, the GABA shunt (metagenome level 667	

analyses) and glyoxylate shunt (MAG level analyses) may both be involved in use of non-668	

carbohydrate carbon sources suggesting that re-use of microbial decay products may indeed be a 669	

key bacterial trait that allows for persistence in disinfected drinking water systems. Further lending 670	

support to this is that that propanoyl-coA metabolism was identified as significantly enriched in 671	

disinfected systems compared to non-disinfected systems using both metagenome-level and MAG-672	

level analyses. Interestingly, only one metabolic module was identified as being more than twice 673	

as prevalent in alphaproteobacterial MAGs from ND-only systems compared to those from D-only 674	

systems (i.e., M00156: cbb3-type Cytochrome C oxidase). The greater metabolic capacity of 675	

alphaproteobacterial D-only MAGs compared to ND-only MAGs was also confirmed at the KO-676	

level by evaluating the presence/absence of KO's in the D-only and ND-only category MAGs. 677	

Specifically, while only 8 KOs were twice or more as prevalent in ND-only MAGs compared to 678	

D-only MAGs, the total KOs that were twice or more as prevalent in D-only MAGs was 109. This 679	

supports the conclusion that metabolic repertoire of alphaproteobacterial D-only MAGs is 680	

significantly larger than that of ND-only MAGs. Notable among the genes that were twice as 681	

frequent in D-only MAGs compared ND-only MAGs included those involve in SOS-response 682	

mediated mutagenesis involving trans-lesion synthesis (i.e., imuA: K14160, imuB: K14161, and 683	

dnaE2: K14162)81, glyoxylate reductase (gyaR: K00015) which may be likely involved in 684	

regulating glyoxylate concentrations, and vitamin B12 transporter (btuB: K16092). SOS response 685	

is typically activated in response to significant cellular accumulation of damaged DNA 82 and imuA 686	

and imuB co-expression with dnaE2 has been shown to be responsive to UV damage 81. Thus, the 687	

higher prevalence of SOS response related genes in D_only MAGs may be associated with the 688	

DNA damage caused by disinfectants. Further, the ability to synthesize vitamin B12, an essential 689	

co-factor, is limited to certain bacteria and archaea and thus the ability to uptake vitamin B12 from 690	

the environment is essential for growth83. The higher abundance of vitamin B12 transporters is 691	

consistent with metagenome level observations that the microbial community in disinfected 692	

systems rely more on scavenging from the environment as compared to non-disinfected systems.   693	
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 694	
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Figure 6: (A) Phylogenomic tree of 66 MAGs classified as D-only (purple circles), ND-only (yellow stars), and both 
(teal squares) constructed using 48 ribosomal proteins along and their relative abundance (RPKM) in the samples 
collected from disinfected and non-disinfected systems. RPKM's for MAGs are only reported for samples where 25% 
of the nucleotides in a MAG were covered by at least one read. (B) Clustering of all MAGs based on their clustering 
metabolic potential (i.e., completeness of KEGG modules) was primarily drive by phylogeny. (C) The metabolic 
modules identified as differentially abundant in disinfected systems  using metagenome level analyses (Table S12) are 
shown using teal arrows and squares and those more prevalent in high quality alphaproteobacterial MAGs from D-only 
(purple arrows - Figure 6A) compared to those from ND-only category (yellow arrows - Figure 6A) are shown using 
blue arrows and boxes, while red arrows and boxes indicates modules identified as more prevalent in D-only systems 
using both metagenome and MAG level analyses. 
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CONCLUSIONS.  696	

To our knowledge, this is the first study to provide metagenomic insights into differences in 697	

structure and functional potential of drinking water microbiomes across full-scale drinking water 698	

systems that rely on disinfection (i.e., disinfected) or nutrient limitation (i.e., non-disinfected) to 699	

manage microbial growth. Understanding the microbial implications of these two microbial 700	

growth control strategies is essential to not only develop a better understanding of ecological and 701	

metabolic traits guiding community level processes in these system, but is also critical for 702	

providing a community-level context to the microbiological safety in either type of drinking water 703	

system. In this study, we show that disinfection exhibits consistent, systematic, and significant 704	

association with drinking water microbiome at the membership, structure, and functional potential 705	

at the metagenome and MAG levels, irrespective of the drinking water system under consideration 706	

(e.g., source water type, treatment process, etc.). In doing so, we also identify key metabolic traits 707	

associated with carbon and nitrogen metabolism that are over represented in bacteria in disinfected 708	

systems compared to non-disinfected systems. This suggests that the influence and efficacy of 709	

disinfection on the drinking water microbiome may not simply be associated with differential 710	

disinfection resistance84, but may also expand to other metabolic traits that include the use of 711	

carbon and nitrogen sources made available via microbial inactivation and its regulation. It is 712	

important to note that while the impact of disinfection on microbial community structure and 713	

functional potential is clear, the metabolic traits identified in this study provide a hypothesis to 714	

support future experimental work that will be required to validate the findings of this study.  715	
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