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Abstract: Most model-based molecular phylogenetic methods assume that the sequences19

diverged on a tree under homogeneous conditions. If evolution occurred under these20

conditions, then it is unlikely that the sequences would become compositionally21

heterogeneous. Conversely, if the sequences are compositionally heterogeneous, then it is22

unlikely that they have evolved under homogeneous conditions. We present methods to detect23

and analyse heterogeneous evolution in aligned sequence data and to examine—visually and24

numerically—its effect on phylogenetic estimates. The methods are implemented in three25

programs, allowing users to better examine under what conditions their phylogenetic data26

may have evolved.27
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Most model-based molecular phylogenetic methods assume that the sequences of30

nucleotides or amino acids have evolved along the edges of a single bifurcating tree. Often, the31

methods also assume that the evolutionary processes operating at the variable sites of these32

data (i.e., the sites that are free to evolve) can be approximated by independent and33

identically-distributed (iid) Markovian processes. Furthermore, it is often assumed that the34

evolutionary processes were stationary, reversible and homogeneous (SRH) (for details, see35

Bryant et al. 2005; Jayaswal et al. 2005; Ababneh et al. 2006a,b; Jermiin et al. 2017), with the36

term homogeneity implying time-homogeneity (i.e., a constant rate of change between two37

points in time).38

In practice, when DNA has evolved under these conditions, commonly-used39

phylogenetic methods are likely to identify the correct topology (Huelsenbeck and Hillis 1993;40

Hillis et al. 1994a,b). However, the same methods may not be capable of identifying the41

correct topology when DNA has evolved under more complex conditions (Huelsenbeck and42

Hillis 1993; Hillis et al. 1994a,b; Ho and Jermiin 2004; Jermiin et al. 2004). One reason for43

this failure is that the strength of the historical signal (i.e., the signal in DNA that is due to44

the order and time of divergence events) decays over time (Ho and Jermiin 2004) whereas the45

strength of the non-historical signals (Grundy and Naylor 1999) may increase over time (Fig.46

1). This may lead to situations, where the non-historical signals—individually or jointly—may47

become stronger than the historical signal (Ho and Jermiin 2004). Unless phylogenetic48

methods are able to distinguish historical signals from non-historical signals, the latter may be49

misinterpreted as being part of the historical signal. This is because the non-historical signals50

are also phylogenetic signals.51

The non-historical signal is a mixed bag of signals that may arise over time due to52

temporal variations in site- and lineage-specific evolutionary processes. For example, when the53

homologous sites in a pair of sequences evolve under different conditions, evolutionary54

processes cannot be homogeneous, and compositional heterogeneity across the sequences may55

arise. When this happens, there is a compositional signal in the data (Fig. 2). On the other56

hand, when compositional heterogeneity is found across an alignment of homologous57

sequences, there is evidence of evolution under non-stationary conditions.58

Several methods have been developed to detect compositional heterogeneity across59

homologous sequences (reviewed in Jermiin et al. (2004, 2009)), but doubt remains about60

what method is most appropriate (cf. Jermiin et al. (2004) and Duchêne et al. (2017)). To61

resolve this matter and to empower concerned users of phylogenetic methods, we present62

software to detect and visualise compositional heterogeneity across aligned sequence data. The63

software also facilitates assessment of the impact of compositional heterogeneity on inferred64

phylogenetic trees and networks.65

Methodology66
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Background67

Consider a nucleotide sequence that evolves over the edges of a rooted tree (Fig. 3), and68

assume that the 90 sites in this sequence evolve under iid conditions. At time t0, the ancestral69

sequence, Seq0, evolves along an ancestral edge in the tree (Fig. 3a). At time t1, the sequence70

meets a bifurcation in the tree, and it becomes two identical sequences, Seq1 and Seq2 (Fig.71

3b). At time t2, the two sequences have evolved further under independent evolutionary72

processes (Fig. 3c), so they are unlikely to be the same. The sequences at t0, t1 and t2 are73

shown in Figure 3d.74

Methodologically, the challenge now is to extract as much information as possible from75

the alignment of Seq1′ and Seq2′ (e.g., to infer the time elapsed since the bifurcation at t1).76

One way to extract information from such a data set is to consider the ratio of the number of77

sites where the sequences differ to the total number of sites compared. This yields a metric78

called the p distance (the p distance between Seq1′ and Seq2′ is 42/90). Another way to do79

this is to use a divergence matrix (N). For Seq1 and Seq2, we get:80

N(t1) =



A C G T

A 21 0 0 0

C 0 23 0 0

G 0 0 24 0

T 0 0 0 22


,

while for Seq1′ and Seq2′ we get:81

N(t2) =



A C G T

A 14 7 10 2

C 3 13 2 1

G 1 1 11 4

T 7 3 1 10


.

The only difference between N and the alignments in Figure 3d is that information about the82

order of sites in the alignment is lost in the divergence matrix. However, as these sites are83

assumed to have evolved independently, this loss of information is of no consequence for most84

commonly-used phylogenetic methods.85

Given N, we can obtain the p distance or any other evolutionary distance, like the F8186

distance (Felsenstein 1981). Likewise, we can determine whether two sequences have diverged87

under homogeneous conditions. If the distributions of X1 and X2 are equal, then the88

sequences will have evolved under homogeneous conditions. Assuming evolution under89

homogeneous conditions, the divergence matrix should be approximately symmetrical (i.e., if90

N = {nij}, then E(nij) = E(nji) ∀ i, j; E denotes the expected value).91
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The Matched-pairs Test of Symmetry92

The matched-pairs test of symmetry is suitable for testing whether E(nij) = E(nji). It is93

computed using:94

X2
B =

∑
i<j

(nij − nji)2

nij + nji
, (1)

which, assuming homogeneous conditions, is asymptotically distributed as a χ2 variate on95

ν = c× (c− 1)/2 degrees of freedom, where c denotes the number of unique letters in the96

sequences’ alphabet (for DNA, c = 4). Given X2
B and ν, it is easy to obtain the probability of97

getting a test statistic that equals or exceeds X2
B, given ν (i.e., p = P (χ2

ν ≥ X2
B)). In this98

regard, it is worth remembering that X2
B = X2

S +X2
A, where X2

S is the test statistic from the99

matched-pairs test of marginal symmetry (Stuart 1955) while X2
A is the test statistic from the100

matched-pairs test of internal symmetry (Ababneh et al. 2006b). It is also worth pointing out101

that if for any of the comparisons nij + nji = 0, the entry is ignored and ν is reduced by 1.102

The matched-pairs test of symmetry was devised by Bowker (1948) and introduced to103

molecular phylogenetics by Tavaré (1986). Subsequent attempts to promote this test as the104

best approach to test homogeneity of the evolutionary processes (Lanave and Pesole 1993;105

Waddell and Steel 1997; Waddell et al. 1999; Ababneh et al. 2006b) were largely unsuccessful,106

with one opponent stating that the test “is hardly necessary because typical phylogenetic107

datasets are large and can reject the null hypothesis with ease” (Yang 2014). That is an odd108

statement, as it recommends ignoring a reason for systematic error. More recently, Duchêne et109

al. (2017) used a test described by Foster (2004), which tests the fit of the compositional110

component of the (stationary, in this case) model to the data. This test uses a contingency111

table made up of c marginal sums. However, unlike the standard r × c contingency table test112

of homogeneity, the test statistic is not compared to the χ2 distribution but to a simulated113

null distribution obtained on the basis of the tree and the (possibly non-stationary) model of114

evolution being tested. In other words, it is a test of model fit—it needs to be used after the115

tree and model of evolution have been specified. Thus, it is akin to the Goldman-Cox test of116

goodness-of-fit (Goldman 1993), which uses simulations to assess the significance of a statistic.117

While the test used by Foster (2004) tests marginal compositions, it ignores the118

homology statements that alignments represent. The impact of doing so can be dramatic, as119

the following example reveals. The three divergence matrices, left to right, are the products of120

increasingly dissimilar evolutionary processes:121

N1 =


40 10 20 30

10 40 30 20

20 30 40 10

30 20 10 40

 N2 =


40 10 20 30

30 40 10 20

20 30 40 10

10 20 30 40

 N3 =


40 0 0 60

60 40 0 0

0 60 40 0

0 0 60 40

 .
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In the first case (N1), there is no evidence that the evolutionary processes might have been122

different, while in the other cases (N2 and N3), the evidence of that is clearer. However, it is123

also clear that the three matrices have the same marginal distribution, so Foster’s (2004) test124

cannot detect this type of lineage-specific heterogeneity in the evolutionary processes. Foster’s125

(2004) test is similar to Stuart’s (1955) matched-pairs test of marginal symmetry. If the aim is126

to test the fit between tree, model and data, then it would be appropriate to use Foster’s127

(2004) test or the Goldman-Cox test of goodness of fit (Goldman 1993). On the other hand, if128

the aim is to test whether sequences are consistent with the assumption of evolution under129

stationary conditions, then Stuart’s (1955) matched-pairs test of marginal symmetry is130

recommended (Ababneh et al. 2006a). Stuart’s (1955) matched-pairs test of marginal131

symmetry, like Bowker’s (1948) matched-pairs test of symmetry, assumes aligned data but not132

a tree or model, so it is useful for screening phylogenetic data before they are analysed. On133

the other hand, Foster’s (2004) test is applicable after this analysis, can be used with134

non-stationary models, and is not restricted to sequence pairs.135

The PP Plot136

If we wish to apply the matched-pairs test of symmetry to an alignment with more than two137

sequences, then the problem of multiple comparisons arises. For example, if a data set contains138

22 sequences, then there will be 22× 21/2 = 231 p-values to interpret, one for each pair of139

sequences. However, the p-values are not independent, so they must be interpreted jointly.140

This can be done using a PP-plot, which displays observed p-values against expected p-values.141

If evolution occurred under homogeneous conditions, then the 231 p-values will be distributed142

as a uniform random variable on (0,1). Given this expectation, we can evaluate whether the143

data set, as a whole, meets the assumption of evolution under homogeneous conditions.144

To demonstrate the merits of the PP plot, we analysed an alignment of simulated145

nucleotides generated under time-reversible conditions on a 22-tipped tree (Fig. 4a). The PP146

plot in Figure 4b shows the result from data generated under the null hypothesis. As147

expected, the 231 dots are distributed along the diagonal, with ∼ 5% of them (12) below 0.05148

(i.e., the horizontal line in Fig. 4b). None of the observed p-values fell below the 5%149

family-wise error rate (i.e., 0.05/231 = 0.000216). The PP plot shows the distribution to150

expect when the data have evolved under homogeneous conditions. This interpretation is151

consistent with those in Schweder and Spjøtvoll (1982) and Vera-Ruiz et al. (2014).152

The Heat Map153

A PP-plot that deviates noticeably from that shown in Fig. 4b (e.g., the dots are not154

distributed along the diagonal; more than 5% of the observed p-values are below 0.05; the155

smallest observed p-value is below a 5% family-wise error rate), suggests that some of the156

sequences have evolved under heterogeneous conditions. However, the PP plot cannot identify157
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the ‘offending’ sequences, but a color-coded heat map with the observed p-values can. Figure158

4c shows the heat map corresponding to the data in Figure 4b. Each pixel is color-coded159

according to the p-value for the corresponding pair of sequences. Most of the pixels are white160

because the p-values are ≥ 0.05. Some pixels are yellow, but none of them are darker; this is161

consistent with the condition under which the sequences were generated.162

When a heat map differs noticeably from that in Figure 4c, it allows us to identify163

sequences that are unlikely to have evolved under the same conditions. For example, if all but164

one of the sequences evolved under homogeneous conditions, then that would result in a heat165

map where a row and/or column has darker pixels. The color of a pixel depends on the166

probability that the corresponding pair of sequences have evolved under homogeneous167

conditions. A dark row and/or column identifies an offending sequence, which then can be168

removed if it is insignificant to the phylogenetic question. Figure 6 of Jayaswal et al. (2014)169

shows such a heat map (in this case the offending sequences could not be removed).170

When two or more sequences are regarded as offending, we might ask whether the data171

can be grouped into subsets of sequences that are consistent with evolution under172

homogeneous conditions. To do so, one simply needs to permute the rows and columns of the173

heat map, or reorder the sequences in the alignment before analysing the data again. Figures174

6 and 7 of Jermiin et al. (2017) show two heat maps for the same data, obtained before and175

after a permutation of the rows and columns of the heat map. In the first figure, several small176

sets of sequences appear to have evolved under homogeneous conditions. However, the second177

figure reveals that many of these subsets can be merged into larger subsets of sequences that178

appear to have evolved under different homogeneous conditions. In summary, the PP plot and179

heat map provide researchers an opportunity to survey their data far more thoroughly before180

model selection and phylogenetic analysis.181

Compositional Distances182

A compositional signal may arise when sequences diverge under non-homogeneous conditions.183

If such a signal emerges, its amplitude can be measured using distance metrics that quantify184

departure from symmetry of a divergence matrix. Compositional distances are appropriate for185

vectors of non-negative values that carry information in their relative (not absolute) amounts186

(Aitchison 1986; Egozcue and Pawlowsky-Glahn 2011), like those in a divergence matrix.187

Compositional distances may be used to infer trees and networks, revealing relationships188

based solely on compositional differences. These trees and networks may uncover a189

compositional signal’s potential impact on phylogenetic estimates.190

Given N (for nucleotides):191
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N =


n11 n12 n13 n14

n21 n22 n23 n24

n31 n32 n33 n34

n41 n42 n43 n44


we can define two vectors that relate to the off-diagonal elements of the upper and lower192

triangles:193 Y ={yk} = (n12, n13, n14, n23, n24, n34)

Z ={zk} = (n21, n31, n41, n32, n42, n43)

Given Y and Z for a c-state alphabet (e.g., c = 20 for protein), it is possible to compute three194

compositional distances:195

δEFS =

√√√√ l∑
i=1

(yk − zk)2, (2)

δAFS =

√√√√ 1

2× l

l∑
a=1

l∑
b=1

(
log

ya
yb
− log

za
zb

)2

, (3)

and

δCFS =

√
X2
B

ν
. (4)

Here, δEFS , δAFS , and δCFS respectively denote the Euclidean distance, Aitchison’s (1986)196

distance, and a distance metric closely related to Bowker’s (1948) matched-pairs test of197

symmetry, and l is the number of elements in Y and Z. The Euclidean distance measures the198

distance between two points in Euclidean space, taking no account of sign or scale, so they are199

not appropriate for count data. One more appropriate metric is that of Aitchison (1986); for a200

comparison of these distance metrics, see Lovell et al. (2011). One undesirable property of201

δAFS is that it is zero when nij/nji is constant, and will be small if this is even approximately202

so. Because of this, Aitchison’s (1986) distance is not suitable for data used to measure lack of203

symmetry in divergence matrices. Instead, we may use δCFS , which has the advantage of204

being able to accommodate that comparisons between different pairs of sequences may be205

associated with different degrees of freedom (ν). Note that δCFS ≥ 0.0, and that δCFS is not206

an evolutionary distance in the sense that the LogDet (Lockhart et al. 1994; Steel 1994) or207

paralinear (Lake 1994) distances are.208

The Nature of Bias in Phylogenetic Estimates209
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It is difficult to detect bias in phylogenetic estimates from real sequence data, but it is well210

known that bias may manifest itself in at least two ways:211

1. The topology of the tree (or network) is affected, implying that the length of at least212

some of the edges (or weights of some of the splits; ‘weight’ is analogous with length, in213

the sense of Huson and Bryant (2006)) also will be affected, or214

2. The topology is unaffected but the length of the edges in the tree (or the weights of the215

splits in the network) may be affected.216

Both of these biases are cause for concern, even if only the topology is of interest, because the217

topology is a discrete entity, whose accuracy often is dependent on the accuracy of the218

estimates of the other parameters. The challenge is to get all the estimates as accurate as219

possible without increasing the variance or the bias of these estimates (Dziak et al. 2019). In220

other words, both over- and under-parameterisation of the data should be avoided.221

Visualising the Effect of Compositional Heterogeneity on Trees and Networks222

Given a distance matrix DCFS with estimates of δCFS , we may infer a compositional tree, T ,223

and a compositional network, N . This can be done by using programs like FastME (Lefort et224

al. 2015) and SplitsTree4 (Huson and Bryant 2006). Such structures display the relationships225

among sequences based solely on compositional distances, so they should not be interpreted as226

if they were phylogenetic trees or phylogenetic networks. Sequences that are compositionally227

similar may not be close in an evolutionary sense, and sequences that are compositionally228

dissimilar may not be distantly-related in an evolutionary sense. The advantage of using229

data-display networks to reveal conflicting signals in phylogenetic data has already been230

demonstrated by Morrison (2010), so it will not be reiterated here.231

Consider a data set that has been found to violate the phylogenetic assumption of232

evolution under homogeneous conditions. In such a case, one might wish to know whether the233

compositional signal has become so strong that it might bias a phylogenetic estimate, unless it234

is properly accounted for.235

To demonstrate the benefit of using T and N , we analysed an alignment of five 16S236

rRNA sequences from bacteria, first analysed phylogenetically by Embley et al. (1993) and237

then by Galtier and Gouy (1995), Mooers and Holmes (2000), Foster (2004), and Jayaswal et238

al. (2005, 2007). For these data, DEFS , DAFS and DCFS are239

Aquifex 0.0000 0.0120 0.0436 0.0461 0.0119

Thermotoga 0.0120 0.0000 0.0431 0.0447 0.0098

Bacillus 0.0436 0.0431 0.0000 0.0043 0.0391

Deinococcus 0.0461 0.0447 0.0043 0.0000 0.0418

Thermus 0.0119 0.0098 0.0391 0.0418 0.0000

,
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Aquifex 0.0000 1.1104 2.8378 2.2533 0.8754

Thermotoga 1.1104 0.0000 3.0770 2.8549 0.9365

Bacillus 2.8378 3.0770 0.0000 0.1914 2.4787

Deinococcus 2.2533 2.8549 0.1914 0.0000 3.0188

Thermus 0.8754 0.9365 2.4787 3.0188 0.0000

,

and
Aquifex 0.0000 1.2805 3.2136 3.0451 0.9379

Thermotoga 1.2805 0.0000 3.3176 3.2677 1.0064

Bacillus 3.2136 3.3176 0.0000 0.3382 2.9026

Deinococcus 3.0451 3.2677 0.3382 0.0000 3.1461

Thermus 0.9379 1.0064 2.9026 3.1461 0.0000

,

respectively (the values in DEFS and DAFS were obtained using Homo v1.3: Rouse et al.240

2013). The three matrices differ, reflecting the differences between Equations 2, 3 and 4.241

Interestingly, the elements of DEFS , DAFS and DCFS appear to be highly correlated (i.e.,242

carrying quite similar information), but this is not always the case (e.g., if Y ∝ Z).243

Figures 5a and 5b shows a BioNJ tree (Gascuel 1997) and a Neighbor-Net (Bryant and244

Moulton 2004), both inferred from DCFS using SplitsTree4 (Huson and Bryant 2006). The245

compositional tree (T ) has a long internal edge (marked † in Fig. 5a) that separates246

Deinococcus and Bacillus from the other three species. The same appears to be the case for247

the compositional network (N ) in Fig. 5b. Indeed, N is very treelike, because the split248

marked † in Figure 5b is 18.6 times longer than the second-longest alternative (marked ‡). In249

other words, T and N corroborate what is already known about these five sequences:250

Deinococcus and Bacillus are compositionally distinct from the other three species (Galtier251

and Gouy 1995; Jayaswal et al. 2005). However, in many other studies, such knowledge is not252

available or heeded. This is where compositional trees or networks become useful; not only do253

the topologies of T and N identify the compositionally most similar sequences, they also254

reveal where the biggest differences are—and as compositional differences grow, so do the255

length of edges in T and splits in N . Importantly, compositional networks are able to reveal256

conflicting information in multiple sequence alignments that compositional trees cannot reveal257

(because the latter are constrained to be acyclic graphs: Penny et al. 1992). Therefore, during258

the exploratory phase of assessing compositional heterogeneity, using N may be better than259

using T .260

Congruence between Phylogenetic and Compositional Trees261

Interestingly, the split observed between Deinococcus and Bacillus and the other three species262

(Fig. 5) is also found in optimal phylogenetic trees inferred under different time-reversible263
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Markovian models of sequence evolution (Jayaswal et al. 2005, 2007). At least two264

explanations may be given for this congruence of splits:265

1. The historical and compositional signals in the data are aligned, implying that the266

historical signal is augmented by the compositional signal. A consequence of this is that267

the inferred topology may be correct. However, estimates of edge lengths may still be268

biased; this could lead to bias in estimates of divergence dates.269

2. The historical and compositional signals are not aligned, implying that the historical270

signal might be undermined by the compositional signal. This would entail that the271

phylogenetic methods, unless specifically designed to accommodate a compositional272

signal, might misinterpret the compositional signal, as if it were the historical signal, and273

return a phylogenetic estimate with biases in both topology and edge lengths.274

In the first explanation, the compositional signal may be stronger than the historical signal275

but because the two signals are aligned, this has no adverse effect on the inferred topology; on276

the contrary, it may help us to identify the correct topology. In the second explanation, both277

the strength and the complexity of the compositional signal are likely to contribute to bias in278

phylogenetic estimates. Importantly, the identities and lengths of internal edges in the true279

tree are both factors contributing to the success or failure of phylogenetic inference (Jermiin et280

al. 2004), but neither of these factors is known (except for in simulation-based studies).281

The problem with these two explanations is that they apply equally well to many282

studies of compositionally heterogeneous phylogenetic data sets and that we do not know283

which one is right. It is not wise to argue that other phylogenetic estimates corroborate a284

current phylogenetic hypothesis, unless bias due to model misspecification has been ruled out285

for all the data sets being compared. In the present case, the matter was resolved by analysing286

the alignment using a model that was heterogeneous over the tree (Foster 2004) and by using287

the general Markov model of sequence evolution (Jayaswal et al. 2007). However, this is rarely288

done.289

Testing for Similarity between Phylogenetic and Compositional Trees290

Often phylogenetic data contain more than five sequences and it may be less clear (than e.g.,291

Fig. 5) whether a compositional signal contributed adversely to a phylogenetic estimate. In292

such cases, it may be useful to compare the phylogenetic tree (Tr — inferred directly from the293

sequence alignment) and the compositional tree (Tc — inferred from the corresponding matrix294

of compositional distances (DCFS)). In such instances, the distance between Tr and Tc must295

first be obtained. Reviewing the performance of tree-comparison metrics, Kuhner and Yamato296

(2015) found that Nye et al.’s (2006) metric, which is based on topology only, is superior for297

dissimilar trees. Their metric, δAlign, which measures how well two trees align to each other,298

was revealed to be better than four other tree-distance metrics, including the Robinson and299
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Foulds (1981) metric and the Path Difference metric (Williams and Clifford 1971; Penny et al.300

1982).301

When comparing Tr and Tc, a critical question is whether they are more similar, or302

dissimilar, to one another than random trees are to each other. If the evolutionary process of303

sequence data is modelled accurately, there is no reason to presume that Tr and Tc will be304

more similar, or dissimilar, to one another, than two random trees are. Thus, we may305

formulate a testable null hypothesis. H0: Tr and Tc are neither more similar, or dissimilar, to306

each other than random trees are.307

To execute this test, we first calculate δAlign for Tr and Tc. Next, we generate, say,308

2000 random trees and partition them into 1000 pairs. For each pair, we calculate δ?Align,309

where the ‘star’ signals that this is an estimate obtained from random trees. Finally, the310

distribution of δ?Align values is charted and the value of δAlign for Tr and Tc is matched to this311

distribution. If the value of δAlign falls well within the distribution of δ?Align, then the312

topologies of Tr and Tc are random with respect to each other; otherwise, they are more313

similar (e.g., if δAlign < δ?Align for all pairs) or dissimilar (e.g., if δAlign > δ?Align for all pairs) to314

each other than random trees are.315

The method is illustrated in the biological example (below).316

Software317

The methods described above are implemented in three programs.318

Homo.—Homo v2.0 is a complete re-development of previous versions of Homo (Rouse et al.319

2013; http://www.csiro.au/Homo). Unlike the previous version, this one is written in C++320

and designed for command line execution. Homo v2.0 includes corrections of errors found in321

the previous version, so Homo v1.3 should no longer be used. For each sequence pair, Homo322

executes the matched-pairs test of symmetry and returns:323

• The probability (p) of getting the test statistic by chance (assuming evolution under324

homogeneous conditions),325

• Euclidean distance (δEFS) from full compositional symmetry of N,326

• Euclidean distance (δEMS) from marginal compositional symmetry of N,327

• Our distance (δCFS) from full compositional symmetry of N.328

If any of the observed p values is below the 5% family-wise error rate, the program prints a329

warning to the user on the terminal. Homo is executed using the following commands:330

homo <infile> <b|f> <1|...|31>331

or332

homo <infile> <b|f> <1|...|31> > README333
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where infile is a text file with an alignment of characters in the fasta format, b|f refers to334

whether a brief or full report of the results should be provided, and 1|...|31 refers the data335

type and how these data should be analysed. If b is used, Homo prints one line with key336

statistics to the user terminal; if f is used, it prints five files with the values of p and δ. A337

summary of the results is also be printed to the terminal.338

Homo is designed to analyse alignments of nucleotides, di-nucleotides, codons, 10- and339

14-state genotypes, and amino acids. If the infile contains sequences of:340

• Single nucleotides (4-state alphabet), the sequences may be recoded into six 3-state341

alphabets or seven 2-state alphabets,342

• Di-nucleotides (16-state alphabet; i.e., AA,AC, . . . , TG, TT ), the sequences may be343

divided into alignments with 1st or 2nd position sequences,344

• Codons (a 64-state alphabet; i.e., AAA,AAC, . . . , TTG, TTT ), the sequences may be345

divided into three alignments with di-nucleotide sequences and three alignments with346

single-nucleotide sequences,347

• Amino acids (a 20-state alphabet), the letters may be recoded to a 6-state alphabet.348

This type of recoding was recently used to study early evolution of animals (Feuda et al.349

2017). Other types of recoding amino acids have been used (Kosiol et al. 2004; Susko350

and Roger 2007) but are not considered.351

The 10- and 14-state genotype data cater for diploid and triploid genomes. For example, if a352

locus in a diploid genome contains nucleotides A and G, then the genotype sequence will353

contain an R at that locus. There are 10 distinguishable genotypes for each locus in diploid354

genomes and 14 for every locus in triploid genomes. For further detail about the data types355

and how the data may be analysed, simply type:356

homo357

on the command line and follow the instructions.358

The output files from Homo fall into two categories: .csv files and .dis files. The359

Summary.csv file contains all the estimates obtained for each pair of sequences. It can be360

opened and viewed by using, for example, Microsoft Excel. The Pvalues.csv file contains all361

the p values set out in a format that can be read by HomoHeatMapper (see below). The three362

.dis files contain the δCFS , δEFS and δEMS values, and can be analysed further using363

FastME (Lefort et al. 2015) and SplitsTree4 (Bryant and Moulton 2004).364

HomoHeatMapper.—HomoHeatMapper v1.0 is designed to generate a color-coded heat map365

from the Pvalues.csv file. The colors used range from white (corresponding to p ≥ 0.05) to366

black (corresponding to p < 5× 10−11). HomoHeatMapper is written in Perl and can be367

executed using the following command:368
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HomoHeatMapper -i <infile> -<t|f>369

where infile must be the Pvalues.csv file and where t and f stand for triangle and full,370

respectively. The output is an .svg file with a heat map in scalable vector graphics format.371

This file can be opened and processed using Adobe Illustrator.372

RandTree.—RandTree v1.0 is designed to generate random bifurcating trees from a set of373

labels. Starting from a rooted or unrooted tree with two or three tips, respectively, the tree is374

allowed to grow by randomly selecting tips, which will become bifurcating nodes in the tree.375

The probability that a tip is chosen equals 1/n, where n is the number of tips in the growing376

tree. Thus, the probability of selecting a given tip in a 16-leaf tree is 0.0625. Having obtained377

a random unlabelled tree, the labels are distributed randomly across the tips.378

RandTree is a command-line tool written in C++. It is executed using:379

randtree <infile> <r|u> <trees>380

where infile is the text file with an unique taxon label on each line, r|u refers to whether381

the random trees should be rooted or unrooted, and trees refers to the number of random382

trees to generate. Trees generated by RandTree are printed in the Newick format to a text file,383

which can be used by other phylogenetic programs.384

Benchmarking385

Recently, Naser-Khdour et al. (2020) applied the matched-pairs tests of symmetry (Bowker386

1948), marginal symmetry (Stuart 1955), and internal symmetry (Ababneh et al. 2006b) to a387

panel of 35 published phylogenetic data sets with the aim to measure the prevalence and388

impact of model misspecification. Applying an implementation of these tests in IQ-TREE389

(Nguyen et al. 2015), their research revealed widespread evidence of evolution under non-SRH390

conditions, and that this appeared to impact the accuracy of phylogenetic estimates of these391

data inferred assuming evolution under SRH conditions. This observation complements that392

of a previous simulation-based study on the adverse impact of compositional heterogeneity on393

phylogenetic estimates (Jermiin et al. 2004).394

We benchmarked Homo by comparing the result from the matched-pairs test of395

symmetry to those from the matched-pairs tests of symmetry, marginal symmetry, and396

internal symmetry, as implemented in TestSym (Ababneh et al. 2006b) and in IQ-TREE397

(Nguyen et al. 2015). In addition, we compared the result to that Foster’s (2004) test of398

homogeneity, as implemented in p4. We considered the alignment of Seq1′ and Seq2′ (Fig.399

3d), and asked whether it is reasonable to assume that Seq1′ and Seq2′ diverged under400

homogeneous conditions (i.e., X1 = X2). The divergence matrix, N(t2), with its marginal401

frequencies, is reproduced here:402
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14 7 10 2 33

3 13 2 1 19

1 1 11 4 17

7 3 1 10 21

25 24 24 17 90

Table 1 shows the p values from different implementations of the matched-pairs tests of403

symmetry, marginal symmetry, and internal symmetry. As expected, Homo returned a p value404

identical to those returned by TestSym and IQ-TREE.405

Foster’s (2004) test is very similar to Stuart’s (1955) matched-pairs test of marginal406

symmetry, so results obtained from the former test should be compared to those obtained407

from the latter. Assuming that evolution occurred under the GTR model, Foster’s (2004) test408

returned a probability of 0.150 and, if it had occurred under the F81 model, 0.157. In409

summary, Foster’s (2004) test returned lower probabilities than that from Stuart’s (1955)410

matched-pairs test of marginal symmetry (Table 1), most likely because the two tests used411

different approaches to assess the same null hypothesis.412

Next, we compared the times taken by Homo v2.0 and Homo v1.4 to complete an413

analysis of the same data. To do so, we analysed an amino-acid alignment from Butler et al.414

(2009). These data—18 sequences and 412,814 sites—were analysed on a MacBook Air415

(Processor name: Intel Core i5; Processor speed: 1.6 GHz). Homo 2.0 completed the survey in416

0.43 s while Homo 1.4 completed it in 143.26 s; that is a 341-fold speedup. When Homo v2.0417

was used in b mode, the essential output was returned in 0.317 s. In conclusion, Homo v2.0 is418

well-tuned for large phylogenomic data sets.419

Biological Example420

To illustrate the insights that may be gained by using the software presented in this paper, we421

surveyed an alignment of amino acids from Butler et al. (2009). The data matrix is the one422

used in the previous section.423

The Survey424

The PP plot in Figure 6a reveals that this data set is unlikely to have evolved under425

homogeneous conditions, but a single dot at the righthand side of the plot suggests that at426

least one pair of sequences have evolved under similar conditions. The heat map in Figure 6b427

shows that these two sequences come from Saccharomyces cereviciae and S. paradoxus. The428

summary statistics for the 153 (non-independent) comparisons show that the smallest p-value429
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was 0.0, and that 99.3% of the p-values are below the 5% family-wise error rate. In summary,430

we conclude that the alignment has a strong compositional signal and that only two of the 18431

sequences appear to have evolved under the same conditions. Compositional heterogeneity is432

clearly a pronounced feature of these data, so it would be wise to consider this feature433

carefully when analysing the data phylogenetically. We note that the large number of sites434

here can produce very small p-values corresponding to small deviations from homogeneity.435

The Impact436

An obvious question arising from this discovery is whether the compositional signal is437

phylogenetic (i.e., whether it, on its own, is able to produce what essentially looks like a438

phylogenetic tree). To address this question, we analysed the data using the network- and439

tree-based methods described above.440

Figure 7 depicts the compositional network inferred from the DCFS matrix derived441

from the multiple sequence alignment of amino acids published by Butler et al. (2009). The442

network is highly complex and treelike, with several internal splits many times longer than the443

alternative splits. This feature implies that the phylogenetic tree reported by Butler et al.444

(2009) may be affected by a strong and complex compositional signal.445

To determine whether this is the case, we compared the tree published by Butler et al.446

(2009) (Fig. 8a) to the compositional tree inferred from DCFS (Fig. 8b). The important thing447

to observe here is that five of the internal edges in the two trees are identical. There is no448

reason to expect the two trees to be more similar or dissimilar to each other than any pair of449

random trees, so there may be reason to question the accuracy of the phylogenetic tree450

inferred by Butler et al. (2009). To ascertain whether there is reason for such concern, we451

compared the two trees statistically.452

In practice, we computed δalign for the two trees in Figure 8 as well as δ?Align for 999453

pairs of randomly-generated 18-tipped trees. The latter estimates were needed to generate the454

null distribution. Figure 8c shows that the δAlign value for the two trees lies well below the455

distribution of δ?Align values for the randomly-generated trees, implying that the trees are456

significantly more alike than random trees are (two-tailed test, p < 0.002). Therefore, we may457

now conclude that the tree topology published by Butler et al. (2009) is affected by the458

presence of a compositional signal in the alignment of amino acids. In other words, the tree in459

Figure 1 of Butler et al. (2009) may not reflect the evolution of these 18 species.460

Availability461

Homo v2.0 is available from http://www.github.com/lsjermiin/Homo.v2.0/.462

HomoHeatMapper is available from http://www.github.com/lsjermiin/HomoHeatMapper/.463

RandTree v1.0 is available from http://www.github.com/lsjermiin/RandTree.v1.0/.464
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Table 1: Probabilities of obtaining the site-pattern distribution in N(t2) by chance, assum-
ing symmetry, marginal symmetry, and internal symmetry of the evolutionary processes. The
probabilities were obtained using Homo v2.0, TestSym (Ababneh et al. 2006b) and IQ-TREE
(Naser-Khdour et al. 2020).
Matched-pairs test of Homo v2.0 TestSym v1.0 IQ-TREE v1.7

Symmetry 0.0213 0.0213 0.0213
Marginal symmetry − 0.1836 0.1836
Internal symmetry − 0.0183 0.0183

Phylogenetic signals

Historical signal Non-historical signals

Compositional signal Covarion signalRate signal Etc.

Figure 1: The phylogenetic signals (i.e., signals in phylogenetic data that, on their own, can
generate a phylogeny), partitioned into some of its constituent components. Phylogenetic studies
often aim to extract a historical signal from phylogenetic data. However, the accuracy of these
studies depends not only on how decayed the historical signal is (Ho and Jermiin 2004) but
also on whether non-historical signals have arisen over the course of time. The non-historical
signals include the compositional signal (caused by non-homogeneous site patterns in the data),
the rate signal (caused by independently evolving sites evolving at different rates), the covarion
signal (caused by sites not evolving independently). Non-historical signals may bias phylogenetic
estimates unless properly accounted for.
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X8

X1
X6

X2

X3 X4

X5

X7

Condition 1 Xi = Xj for all i ≠ j

Implication
Compositional heterogeneity unlikely to arise

Condition 2 Xi ≠ Xj for any i ≠ j

Implication
Compositional heterogeneity may arise

Figure 2: The phylogenetic challenge, illustrated using a nucleotide sequence evolving over
a rooted 5-tipped tree with eight Markovian processes (i.e., X1, · · · , X8) distributed over the
edges. Each site in the sequence evolving over this tree is governed by these eight edge-specific
Markov processes. If Xi = Xj for all i 6= j, compositional heterogeneity across the descendant
sequences is unlikely to arise. Otherwise, it may arise.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 4, 2019. ; https://doi.org/10.1101/828996doi: bioRxiv preprint 

https://doi.org/10.1101/828996
http://creativecommons.org/licenses/by-nc-nd/4.0/


t1

t2

t0

a b c

t1

t2

t0

Seq1’ CAATATTAACCGGCATAGATTGGCGGAAACGCGAAGCCAACTTTCTCATAACAGAGATAGGCGTCTAATAACTAAGCTACATACATTGAT
Seq2’ CCGACATACCCGGCAACTATGGTGGGCAGCGACGATCCCGGATCATCATAGCCGATGAAGGCGTCTAACAGCAATGCTTAGAGTGTCAAT

Seq1  CTGTCATACCCGGCATTGATGGGGGGAAGCGCCAATCCCAGTTCCTCATAGCAGATGAAGGCGTCTAACAGCTATGCTTCGTGTATCGAT
Seq2  CTGTCATACCCGGCATTGATGGGGGGAAGCGCCAATCCCAGTTCCTCATAGCAGATGAAGGCGTCTAACAGCTATGCTTCGTGTATCGAT

Seq0  CTAACATACGCGGCATAGATGGGGGGAAGCGCCAATCCCATTTCCTCATAGCAGATGAAGGCTTCTAACAGATATGCTTCGTGTATCGAA

X1

X0

X2

d

Seq0

Seq1 Seq2

Seq1’ Seq2’

Figure 3: Rooted phylogenetic tree with the ancestral sequence evolving along the root edge (a)
and, later on, at the start (b) and the end (c) of the bifurcation. The evolutionary processes
operating over the three edges are marked X0, X1 and X2. The corresponding sequences from
the three points in time (i.e., t0, t1 and t2) are shown in panel d.
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Figure 4: Using Seq-Gen (Rambaut and Grassley 1997), nucleotide sequences containing 100,000
sites were generated by simulation on a 22-tipped tree (a) under the GTR (Tavaré 1986) model
of sequence evolution with the following parameters: S = [0.8, 0.4, 0.2, 0.1, 0.05, 0.025], π =
[0.4, 0.3, 0.2, 0.1], pI = 0.15, and a continuous Γ distribution with α = 2.7. The resulting
sequences were then analysed using the matched-pairs test of symmetry. The resulting 231
p-values were finally presented in a PP plot (b) and in a heat map (c).
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Figure 5: A compositional tree (a) and a compositional network (b), inferred from a matrix of
compositional distances (DCFS) obtained from an alignment of bacterial 16S rRNA sequences.
The tree and the network are drawn to scale. The characters † and ‡ point to splits that are
referred to in the text.
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Figure 6: Visual output from our study of the alignment of amino acids from Butler et al. (2009).
(a) PP plot showing that the data set, as a whole, is unlikely to have evolved under homogeneous
conditions. (b) Heat map identifying the least offending sequences (Saccharomyces cereviciae
and S. paradoxus). In Butler et al. (2009), Lachancea waltii was called Kluveromyces waltii and
Naumovozyma castelliii was called S. castellii.
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Figure 7: A compositional network inferred by SplitsTree4 (Huson and Bryant 2006) from
a matrix of compositional distances (DCFS) obtained from an alignment of amino acids by
Butler et al. (2009). In Butler et al. (2009), Lachancea waltii was called Kluveromyces waltii
and Naumovozyma castelliii was called S. castellii.
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Figure 8: Figure with (a) the tree topology inferred by Butler et al. (2009), (b) the tree
topology inferred from DCFS using the least-squares distance method implemented in PHYLIP
(Felsenstein 2005), and (c) a histogram with the align distance between the trees in panels
a and b (arrow) and between 999 randomly-generated pairs of 18-tipped trees (red bars). A
similar result was obtained using the quartet distance (Sand et al. 2014). Identical splits in the
two trees are highlighted using bold red edges. In Butler et al. (2009), Lachancea waltii was
called Kluveromyces waltii and Naumovozyma castelliii was called S. castellii.
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