
   
 

Genome-wide DNA methylation analysis of heavy cannabis exposure in a New Zealand 

longitudinal cohort. 

 

Amy J. Osborne,
1,6

* John F. Pearson,
2,6

 Alexandra J. Noble,
1
 Neil J. Gemmell,

3
 L. John 

Horwood,
4
 Joseph M. Boden,

4
 Miles Benton,

5
 Donia P. Macartney-Coxson,

5
 Martin A. 

Kennedy
2
** 

 

 

1 School of Biological Sciences, University of Canterbury, Christchurch 8041, New 

Zealand 

2 Department of Pathology and Biomedical Science, University of Otago Christchurch, 

Christchurch 8011, New Zealand 

3 Department of Anatomy, Otago School of Medical Sciences, University of Otago, 

Dunedin 9054, New Zealand 

4 Department of Psychological Medicine, University of Otago Christchurch, 

Christchurch 8011, New Zealand 

5  Human Genomics, Institute of Environmental Science and Research, Kenepuru 

Science Centre, Porirua 5240, New Zealand 

6 These authors contributed equally to this work 

 

 

 

Correspondence 

*  Amy Osborne, amy.osborne@canterbury.ac.nz 

**  Martin Kennedy, martin.kennedy@otago.ac.nz  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 7, 2019. ; https://doi.org/10.1101/829598doi: bioRxiv preprint 

https://doi.org/10.1101/829598


   
 

ABSTRACT  

 

Cannabis use is of increasing public health interest globally.  Here we examined the effect of 

cannabis use, with and without tobacco, on genome-wide DNA methylation in a longitudinal 

birth cohort (Christchurch Health and Development Study).  We found the most 

differentially methylated sites in cannabis with tobacco users were in the AHRR and F2RL3 

genes, replicating previous studies on the effects of tobacco.  Cannabis-only users had no 

evidence of differential methylation in these genes, or at any other loci at the epigenome-

wide significance level (P<10
-7

).  However, there were 521 sites differentially methylated at 

P<0.001 which were enriched for genes involved in cardiomyopathy and neuronal signalling.  

Further, the most differentially methylated loci were associated with genes with reported 

roles in brain function (e.g. TMEM190, MUC3L, CDC20 and SP9).  We conclude that the 

effects of cannabis use on the mature human blood methylome differ from, and are less 

pronounced than, the effects of tobacco use, and that larger sample sizes are required to 

investigate this further.  
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Introduction 

 

Cannabis use is an important global public health issue, and a growing topic of controversy 

and debate 
1; 2

.  It is the most widely used illicit psychoactive substance in the world 
3
, and 

the potential medicinal and therapeutic benefits of cannabis and its main active ingredients 

tetrahydrocannabinol (THC) and cannabidiol (CBD) are gaining interest 
4-6

.  There is strong 

evidence to suggest that the heavy and prolonged use of cannabis may be associated with 

increased risk of adverse outcomes in a number of areas, including mental health (psychosis 

7-9
, schizophrenia

10; 11
, depression 

12; 13
), and illicit drug abuse 

14
.   

 

Drug metabolism, drug response and drug addiction have known genetic components 
15

, 

and multiple genome-wide association studies (GWAS) have identified genes and allelic 

variants that are likely contributors to substance use disorders 
16; 17

.  There are aspects of 

cannabis use disorder that are heritable 
18-21

, and several candidate loci for complex 

phenotypes such as lifetime cannabis use have recently been identified 
3; 22

 that explain a 

proportion of the variance in cannabis use heritability.  Complex phenotypes like these  are 

influenced by multiple loci, each of which usually has a small individual effect size 
23

, and 

such loci are frequently located in non-coding regions of the genome 
24; 25

, making their 

biological role difficult to elucidate.   

 

Epigenetic mechanisms are involved in the interaction between the genome and 

environment; they respond to changes in environmental stimuli (such as diet, exercise, 
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drugs), and act to alter chromatin structure and thus regulate gene expression 
26

.  

Epigenetic modifications, such as DNA methylation, contribute to complex traits and 

diseases 
27; 28

.  Methylation of cytosine residues within CpG dinucleotides is an important 

mechanism of variation and regulation in the genome 
29-32

.  Cytosine methylation, 

particularly in the promoter region of genes, is often associated with a decrease in 

transcription 
33

, and DNA methylation in the first intron and gene expression is correlated 

and conserved across tissues and vertebrate species 
34

.  Furthermore, modulation of 

methylation at CpG sites within the human genome can result in an epigenetic pattern that 

is specific to individual environmental exposures, and these may contribute to disease 
26; 35-

37
.  For example, environmental factors such as drugs, alcohol, stress, nutrition, bacterial 

infection, and exercise 
36; 38-41

 have been associated with methylation changes.  A number of 

these methylation changes have been shown to endure and induce lasting biological 

changes 
36

, whereas others are dynamic and transient.  For example, alcohol consumption 

affects genome-wide methylation patterns in a severity-dependent manner 
42

 and some of 

these changes revert upon abstinence from alcohol consumption 
43

.  A similar observation is 

reported for former tobacco smokers with DNA methylation changes eventually reaching 

levels close to those who had never smoked tobacco after cessation 
44

.  Thus, DNA 

methylation can be indicative of a particular environmental exposure, shed light on the 

dynamic interaction between the environment and the genome, and provide new insights in 

to the biological response.   

 

Recreational drug use (an environmental stimuli) has been associated with adverse mental 

health outcomes particularly in youth 
45-49

,   and epigenetics may play a role in mediating 
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the biology involved.  Therefore, we sought to determine whether regular cannabis users 

displayed differential cytosine methylation compared to non-cannabis users.  Cannabis 

users in this study are participants from the Christchurch Health and Development Study 

(CHDS),  a longitudinal study of a birth cohort of 1265 children born in 1977 in Christchurch, 

New Zealand.  Users often consume cannabis in combination with tobacco.  Unusually, the 

CHDS cohort contains a subset of cannabis users who have never consumed tobacco, thus 

enabling an investigation of the specific effects of cannabis consumption, in isolation, on 

DNA methylation in the human genome.  

 

 

Methods 

 

Cohort and study design 

The Christchurch Health and Development Study includes individuals who have been 

studied on 24 occasions from birth to the age of 40 (n=987 at age 30, with blood collected at 

approximately age 28).  In the early 1990s, research began into the initiation and 

consequences of cannabis use amongst CHDS participants; cannabis use was assessed 

prospectively over the period up to the collection of DNA
11-14; 48-54

.  A subset of n=96 

participants for whom a blood sample was available are included in the current study.  Cases 

(regular cannabis users, n = 48) were matched with controls (n = 48) for sex (n=37 male, 

n=11 female each group, for additional information see Supplementary Table 1).  Case 

participants were partitioned into two subsets: one that contained cannabis-only users (who 
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had never consumed tobacco, “cannabis-only”, n = 24), and one that contained cannabis 

users who also consumed tobacco (“cannabis with tobacco”, n = 24) and were selected on 

the basis that they either met DSM-IV 
55

 diagnostic criteria for cannabis dependence, or had 

reported using cannabis on a daily basis for a minimum of three years prior to age 28.   

Cannabis consumption was via smoking, for all participants.  The median duration of regular 

use was 9 years (range 3-14 years).  Control participants had never used cannabis or 

tobacco.  Additionally, comprehensive SNP data was available for all participants 
56

.  All 

aspects of the study were approved by the Southern Health and Disability Ethics Committee, 

under application number CTB/04/11/234/AM10 “Collection of DNA in the Christchurch 

Health and Development Study”, and the CHDS ethics approval covering collection of 

cannabis use: “16/STH/188/AM03 The Christchurch Health and Development Study 40 Year 

Follow-up”. 

 

DNA extraction and methylation arrays 

DNA was extracted from whole blood using the KingFisher Flex System (Thermo Scientific, 

Waltham, MA USA), as per the published protocols.  DNA was quantified via NanoDrop
TM

 

(Thermo Scientific, Waltham, MA USA) and standardised to 100ng/μl.  Equimolar amounts 

were shipped to the Australian Genomics Research Facility (AGRF, Melbourne, VIC, 

Australia) for analysis with the Infinium® MethylationEPIC BeadChip (Illumina, San Diego, CA 

USA).  

 

Bioinformatics and Statistics  
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All analysis was carried out using R (Version 3.5.2 
57

).  Prior to normalisation, quality control 

was performed on the raw data.  Firstly, sex chromosomes and 150 failed probes (detection 

P value > 0.01 in at least 50% of samples) were excluded from analysis.  Furthermore, 

potentially problematic CpGs with adjacent SNVs, or that did not map to a unique location in 

the genome 
58

, were also excluded, leaving 700,296 CpG sites for further analysis.  The raw 

data  were then normalised with the NOOB procedure in the minfi package 
59

 

(Supplementary Figure 1).  Normalisation was checked by visual inspection of intensity 

densities and the first two components from Multi-Dimensional Scaling of the 5000 most 

variable CpG sites (Supplementary Figures 2 and 3).  The proportions of cell types (CD4+, 

CD8+ T cells, Natural Killer, B cells, Monocytes and Granulocytes) in each sample were 

estimated with the Flow.Sorted.Blood package 
60

.  Linear models were fitted to the 

methylated/unmethylated or M ratios using limma 
61

.  Separate models were fitted for 

cannabis-only vs. controls, and cannabis plus tobacco users vs. controls.  Both models 

contained covariates for sex (bivariate), socioeconomic status (three levels), batch 

(bivariate), population stratification (four principal components from 5000 most variable 

SNPs) and cell type (five continuous).  β values were calculated, defined as the ratio of the 

methylated probe intensity (M) / the sum of the overall intensity of both the unmethylated 

probe (U) + methylated probe (M).  P values were adjusted for multiple testing with the 

Benjamini and Hochberg method and assessed for genomic inflation with bacon 
62

.  

Differentially methylated CpG sites were matched to the nearest neighbouring genes in 

Hg19 using GRanges 
63

, and their official gene symbols were tested for enrichment in KEGG 

2019 human pathways with EnrichR 
64

. 
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Results 

 

Data normalisation 

Modelled effects showed no indication of genomic inflation with λ =1.04 for cannabis-only 

users (Supplementary Figure 4a) and λ = 0.855 for cannabis with tobacco users 

(Supplementary Figure 4b), versus controls.  These were confirmed with bacon for cannabis-

only (inflation = 0.98, bias = 0.044) and cannabis with tobacco users (inflation = 0.91, bias = 

0.19).  Inflation values less than 1 suggest that the results may be conservative.   

 

Cannabis with tobacco users had a significantly lower estimated proportion of natural killer 

cells than controls (1.8%, 0.4% - 3.2%, P<0.014) with no other proportions differing 

significantly.  After adjusting for multiple comparisons this was not significant (P=0.08) 

however we note that it is consistent with other findings that NK-cells are suppressed in the 

plasma of tobacco smokers 
65; 66

. 

 

Differential methylation 

The most differentially methylated CpG sites for cannabis users relative to controls differed 

in the absence (Table 1) and presence (Table 2) of tobacco smoking.  Five individual CpG 

sites were significantly differentially methylated (P adjusted <0.008) between users and 

controls when cannabis with tobacco was used (Table 2 and Figure 1).  The top CpG sites in 

the AHRR, ALPG and F2RL3 genes (Table 2) are consistent with previous studies on tobacco 

use without cannabis (e.g. 
44; 67-69

), and cg17739917 is in the same CpG-island as other CpGs 
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previously shown to be hypomethylated in response to tobacco 
70

.  Cannabis-only users 

showed no CpG sites differentially methylated after correction for multiple testing (Table 1 

and Figure 2), however the most differentially methylated site was hypermethylation of 

cg12803068 in the gene MYO1G, which has been reported to be hypermethylated in 

response to tobacco use 
67

.  

 

To describe the data we chose a nominal P value of 0.001, and observed that both cannabis-

only and cannabis with tobacco users showed relatively higher rates of hypermethylation 

than hypomethylation compared to controls and that the distribution of these CpG sites was 

similar with respect to annotated genomic features (Table 3).  Four CpG sites overlapped 

between the cannabis-only and cannabis with tobacco users analyses; two were  

hypermethylated; cg02514528, in the promoter of MARC2, and cg27405731 in CUX1, and 

one, cg26542660 in the promoter of CEP135, was hypomethylated in comparison to 

controls.  The second most differentially methylated site (ranked by P value) in cannabis-

only users was cg02234936 which maps to ARHGEF1; this was hypermethylated in the 

cannabis with tobacco users.  

 

Pathway enrichment analyses 

We then took the genes containing differentially methylated CpG sites at P<0.001 for the 

cannabis-only group that were within genes (that is, not up or downstream in Table 3) and 

compared them with human KEGG pathways using Enrichr.  The hypermethylated CpG sites 

(n = 420) showed enrichment in the arrhythmogenic right ventricular cardiomyopathy 
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pathway at an adjusted P = 0.03 and enrichment in the glutamatergic synapse and long term 

potentiation pathway at an adjusted P=0.05 (Figure 3).  Enrichment analysis of 

hypomethylated loci (n = 101) in cannabis-only users did not identify any KEGG pathways at 

or near adjusted significance (P=0.05, Figure 4). 

 

 

Discussion 

 

Many countries have recently adopted, or are considering, lenient polices regarding the 

personal use of cannabis 
71-73

.  This approach is supported by the evidence that the 

prohibition of cannabis can be harmful 
53

.  Further, the therapeutic benefits of cannabis are 

gaining traction, most recently as an opioid replacement therapy 
74

.  However, previous 

studies, including analyses of the CHDS cohort, have reported an association between 

cannabis use and poor health outcomes, particularly in youth 
75; 76

.  Epigenetic mechanisms, 

including DNA methylation, provide the interface between the environment (e.g. cannabis 

exposure) and genome.  Therefore, we investigated whether changes in an epigenetic mark, 

DNA methylation, were altered in cannabis users, versus controls, a comparison made 

possible by the deep phenotyping of the CHDS cohort with respect to cannabis use, and the 

fact that the widespread practice of mulling or mixing cannabis with tobacco, is not 

common in New Zealand. 
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Consistent with previous reports of tobacco exposure, we observed greatest differential 

methylation in cannabis with tobacco users in the AHRR and F2RL3 genes 
44; 67-69

.  These 

changes, however, were not apparent in the cannabis-only data.  Only two nominally 

significantly differentially methylated (P<0.05) CpG sites were observed in both the 

cannabis-only and cannabis with tobacco analyses.  This suggests that tobacco may have a 

more pronounced effect on DNA methylation and/or dominates any effects of cannabis on 

the human blood methylome, and that caution should be taken when interpreting similar 

cannabis exposure studies which do not, or cannot, exclude tobacco smokers.  Interestingly, 

the two nominally significant CpG sites (P<0.05) that overlap between the cannabis-only and 

the cannabis with tobacco data are located within the MARC2 and CUX1 genes, which both 

have reported roles in brain function; a SNP in MARC2 has been provisionally associated 

with the biological response to antipsychotic therapy in schizophrenia patients 
77

, and the 

CUX1 gene has an established role in neural development 
78

.   

 

Cannabis affects the brain, leading to perceptual alterations, euphoria and relaxation 
18

, and 

prolonged use is associated with mood disorders, including adult psychosis 
7; 8; 49; 79; 80

, 

mania 
13

, and depression 
12

.  We did not detect significantly differentially methylated loci 

associated with exclusive cannabis use at the epigenome-wide level.  However, an 

assessment of those top loci reaching nominal significance (P<0.05) identified CpG sites 

within genes involved in brain function and mood disorders, including MUC3L 
81; 82

, CDC20 

83
, DUS3L 

84
, TMEM190 

85
, FOXB1 

86-88
, KIAA1324L/GRM3 

82; 89-94
, DDX25 

81; 95; 96
, TNRC6B 

97; 98
 

and SP9 
99

.   
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Pathway enrichment revealed that hypermethylation in cannabis-only users was over-

represented in genes associated with cardiomyopathies and neural signalling.  This is 

consistent with the literature which raises clinical concerns around cardiac complications 

potentially associated with cannabis use 
100-103

.  The enrichment of genes  associated with 

neural signalling pathways is also consistent with the literature, including previous analyses 

of the CHDS cohort, which report  associations between cannabis exposure and brain 

related biology such as mood disorders 
7; 12; 48; 49; 51-54; 104; 105

.  Our study was limited by 

sample size, achieving approximately 10% power at P=10
-7

 to detect the largest 

standardized effect size found.  However, while we have not implicated any gene at the 

genome-wide significance level with respect to differential methylation associated with 

cannabis-only exposure, our data is strongly suggestive of a role for DNA methylation in the 

biological response to cannabis, a possibility which definitely warrants further investigations 

in larger cohorts.   

 

In summary, while tobacco use has declined on the back of state-sponsored cessation 

programs 
106

, rates of cannabis use remain high in New Zealand and globally, and might be 

predicted to increase further with the decriminalisation or legalisation of cannabis use for 

therapeutic and/or recreational purposes 
107

.  Therefore, analysis of the potential effects of 

cannabis (an environmental stimuli) on DNA methylation, an epigenetic mechanism, is 

timely.  Our data is strongly suggestive of a role for DNA methylation in the biological 

response to cannabis, significantly contributes to the growing literature studying the 

biological effects of heavy cannabis use, and highlights areas of further analysis in particular 

with respect to the epigenome. 
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Table 1 – Top 15 differentially methylated CpG sites in cannabis-only users vs controls. .  

Beta values with P values, nominal and adjusted by the Benjamini and Hochberg method. 

Locations are relative to hg19 with gene names for overlapping genes or nearest 5’ gene 

with distance to the 5’ end shown. 

 

Table 2 Top 15 differentially methylated CpG sites in cannabis with tobacco users vs 

controls. Beta values with P values, nominal and adjusted by the Benjamini and Hochberg 

method. Locations are relative to hg19 with gene names for overlapping genes or nearest 5’ 

gene with distance to the 5’ end shown. 

 

Table 3.  Summary of CpG sites from cannabis-only and cannabis with tobacco users vs. non-

users.  Counts of significant sites at P= 0.001 and at a Benjamini and Hochberg adjusted P < 

0.05.  ‘Both’ indicates the number of CpG sites of each type that are present and shared 

across both analyses.  

 

Figure 1 – A Manhattan plot of the genome-wide CpG sites found in the cannabis with 

tobacco analysis. The Y axis presents  -log10(p) values with the most significant methylated 

sites labelled with the gene the CpG site resides in. 
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Figure 2 - A Manhattan plot of the genome wide CpG sites found in the cannabis-only 

analysis. The Y axis presents -log10(p) values with the most nominally significant different 

methylated sites labelled with the gene the CpG site resides in. 

 

Figure 3 – Genetic networks enriched within the hypermethylated CpG sites identified  in 

the cannabis-only analysis.    

Pathways from KEGG 2019.  Genes shown by filled cells are hypermethylated in cannabis-

only users and included in named pathway. 

 

Figure 4 – Genetic networks enriched within the hypomethylated CpG sites identified in 

the cannabis-only users.   

Pathways from KEGG 2019.  Genes shown by filled cells are hypomethylated in cannabis-

only users and included in named pathway.  
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Table 1 

 

 

  

CpG Gene Location Distance Cannabis Control Difference P value P value

βU βC βU - βC Nominal Adjusted

cg12803068 MYO1G intron 0.8 0.71 0.1 6.30E-07 0.4

cg02234936 ARHGEF1 intron 0.14 0.13 0.01 1.10E-06 0.4

cg01695406 TMEM190 intron 0.82 0.77 0.05 3.00E-06 0.6

cg24875484 MUCL3 intron 0.1 0.09 0.01 3.90E-06 0.6

cg05009104 MYO1G intron 0.79 0.74 0.05 5.90E-06 0.6

cg00470351 CDC20 exon 0.4 0.38 0.02 6.10E-06 0.6

cg24060040 DUS3L upstream 11,018 0.11 0.08 0.03 6.30E-06 0.6

cg12322720 FOXB1 downstream 150,921 0.58 0.52 0.06 8.90E-06 0.7

cg16746471 KIAA1324L promoter 374 0.1 0.08 0.02 1.10E-05 0.7

cg04180046 MYO1G intron 0.56 0.52 0.04 1.20E-05 0.7

cg06955687 DDX25 downstream 28,769 0.74 0.7 0.04 1.20E-05 0.7

ch.22.707049TNRC6B downstream 159,737 0.06 0.04 0.01 1.30E-05 0.7

cg09344183 SP9 downstream 5,964 0.06 0.05 0.01 1.40E-05 0.7

cg06693983 TMEM190 exon 0.84 0.76 0.08 1.40E-05 0.7

cg26069230 ADAP2 exon 0.16 0.14 0.01 1.50E-05 0.7
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Table 2 

 

 

  

CpG Gene Location Distance Cannabis Control Difference P value P value

βU βC βU - βC Nominal Adjusted

cg05575921 AHRR intron 0.66 0.89 -0.24 1.40E-11 0.00001

cg21566642 ALPG downstream 0.44 0.62 -0.17 9.90E-11 0.00003

cg03636183 F2RL3 exon 0.59 0.68 -0.09 2.60E-09 0.0006

cg01940273 ALPG downstream 0.53 0.63 -0.09 3.60E-08 0.00636

cg17739917 RARA intron 0.37 0.47 -0.1 5.60E-08 0.00783

cg01541424 LINC02393 upstream 491,508 0.17 0.13 0.04 6.30E-07 0.07

cg12828729 TIFAB upstream 35,880 0.56 0.5 0.06 7.10E-07 0.07

cg10148067 MTFR1 upstream 3,928 0.91 0.88 0.02 7.70E-07 0.07

cg14391737 PRSS23 intron 0.36 0.42 -0.06 9.60E-07 0.07

cg07219494 TENM2 upstream 303,359 0.7 0.75 -0.05 1.40E-06 0.1

cg05723029 PIEZO2 intron 0.83 0.79 0.05 1.50E-06 0.1

cg03329539 ALPG downstrea 11,777 0.36 0.41 -0.05 3.20E-06 0.2

cg24994593 LDLRAD3 intron 0.9 0.89 0.02 4.20E-06 0.2

cg25009999 LINC01168 downstrea 14,152 0.93 0.92 0.01 5.60E-06 0.3

cg13957017 TTLL6 intron 0.72 0.69 0.03 7.30E-06 0.3
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Table 3 

 

 

 

 

  

Both

Differentially Methylated loci (FWER = 0.05) 0 6

Differentially Methylated loci (P<0.001)

Total 521 533

Hypermethylated 420 80.6% 403 75.6% 2

Hypomethylated 101 19.4% 130 24.4% 1

Hyper (Cannabis) Hypo (Cannabis + Tobacco) 1

Location

Intron 216 41.5% 264 49.5%

Exon 97 18.6% 65 12.2%

Exon Boundary 0 0

Promoter 89 17.1% 60 11.3%

3' UTR 3 0.6% 1 0.2%

5' UTR 0 0

3' (downstream) 62 11.9% 76 14.3%

5' (upstream) 54 10.4% 67 12.6%

Cannabis only Tobacco + Cannabis
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Figure 1 
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Figure 2  
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Figure 3 

 

 

  

Pathway P value

adjusted 

P value Score C
A
C
N
A
1
C

A
T
P
2
A
2

G
R
IA
2

C
A
C
N
A
2
D
4

G
R
IN
2
C

P
L
C
B
1

S
L
C
8
A
1

A
K
T
1

C
R
E
B
5

IT
G
A
7

IT
G
B
3

M
A
P
K
1
0

R
A
P
G
E
F
3

S
L
C
1
7
A
7

C
T
N
N
A
2

G
A
B
R
B
2

G
L
S
2

G
R
IK
5

G
R
M
7

K
IF
5
A

M
A
F
A

P
D
E
4
C

Arrhythmogenic right ventricular cardiomyopathy 0.0001 0.03 58.9 1 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0

Glutamatergic synapse 0.0003 0.05 37.1 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0

Long-term potentiation 0.0005 0.05 44.8 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

cAMP signaling pathway 0.0015 0.11 20.3 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1

Adrenergic signaling in cardiomyocytes 0.0016 0.10 23.4 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0

Hypertrophic cardiomyopathy (HCM) 0.0018 0.09 29.5 1 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

Dilated cardiomyopathy (DCM) 0.0026 0.11 26.0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

Nicotine addiction 0.0030 0.12 38.4 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

Dopaminergic synapse 0.0038 0.13 19.7 1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0

Type II diabetes mellitus 0.0051 0.16 30.5 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
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Figure 4. 

 

 

 

Pathway P value

adjusted 

P value Score M
T
O
R

P
T
P
N
1
1

A
T
P
6
V
0
A
1

LA
M
B
1

N
O
T
C
H
4

P
IA
S
1

JAK-STAT signaling pathway 0.02 1 20.9 1 1 0 0 0 1

Epithelial cell signaling in Helicobacter pylori infection 0.02 1 31.4 0 1 1 0 0 0

Adipocytokine signaling pathway 0.02 1 30.8 1 1 0 0 0 0

Human papillomavirus infection 0.03 1 12.3 1 0 1 1 1 0

not certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint (w
hich w

as
this version posted N

ovem
ber 7, 2019. 

; 
https://doi.org/10.1101/829598

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/829598

