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Abstract

Deep neural networks have recently enabled spectacular progress in predicting protein structures, as demonstrated by
DeepMind's winning entry with Alphafold at the latest Critical Assessment of Structure Prediction competition (CASP13).
The best protein prediction pipeline leverages intermolecular distance predictions to assemble a �nal protein model, but this
distance prediction network has not been published. Here, we make a trained implementation of this network available to
the broader scienti�c community. We also benchmark its predictive power in the related task of contact prediction against
the CASP13 contact prediction winner TripletRes. Access to ProSPr will enable other labs to build on best in class protein
distance predictions and to engineer superior protein reconstruction methods.

Introduction

Recently, a variety of powerful protein structure prediction methods, based on machine learning algorithms, have been
reported.[1] Although direct prediction of structure from sequence has been attempted,[2] reproducible success is currently
based on two-stage protocols.[3] The �rst stage is the training of a deep convolutional neural network (CNN) that predicts
some macromolecular structure restraints like residue to residue distances, residue contacts, dihedral angles or secondary
structure assignments.[4] In a second stage, these restraints are used to construct a folded three-dimensional structure of the
target protein. In the recent Critical Assessment of Structure Prediction (CASP13) a two stage folding protocol developed
by DeepMind outperformed all established academic groups and predicted 25 of 43 protein structures with highest quality.[5]
Unfortunately, DeepMind has not expressed a plan to publish the source code of their Alphafold protocol.

Results & Discussion

Here, we report the re-implementation of the �rst part of the Alphafold pipeline, an intramolecular distance prediction
CNN, made freely available as source code (https://github.com/dellacortelab/prospr) and a Docker6 container (see Meth-
ods). The CNN is in agreement with architectural details revealed by DeepMind at the December 2018 CASP13 conference
(http://predictioncenter.org/casp13/doc/presentations/) and recently presented at a symposium at Washington Univer-
sity (https://www.youtube.com/watch?v=uQ1uVbrIv-Q); however, certain design decisions and hyperparameters were not
shared in su�cient detail and required re-engineering. A graphical abstract of the CNN is given in Figure 1.
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Figure 1: ProSPr distance prediction: Input sequence is converted into 675 layer input vector on top left. ProSPr CNN
predicts as auxiliaries secondary structure elements for each residue from 9 DSSP classes (SS) and Phi/Psi Torsion angles
between 0 and 360 degrees (top center). Further, it predicts distance distributions between each residue pair, shown as
distance histogram for reside 50 of CASP Target T1016-D1 and selected residues (top right). The maxima of the distance
distribution form a distance prediction map (heatmap, bottom right); left bottom, the real distances as measured in structure
�le of T1016-D1.

The CNN, named ProSPr (Protein Structure Prediction), predicts the Cβ-Cβ distance distributions between all amino
acid residues (Cα for Glycine) in a given protein sequence. We trained three versions of ProSPr on sequences in the CATH
S35 dataset[7] (Supplementary Note and Figure S1) with the same network architecture but di�erent input vectors. ProSPr
follows Alphafold exactly and uses as input features the sequence information, the results of multiple sequence alignments
(MSA) computed with PSI-BLAST[8] and HHblits,[9] as well as a Potts model[10, 11, 12] calculated from the MSA. ProSPr2
omits the Potts model, and ProSPr3 only uses the sequence information as input.

The performance of these three models was tested on the CASP13 dataset for free and template-based models. The
predicted distance distributions were converted into contact probabilities (distance between residues < 8 Å) and precision
scores for three di�erent classes of contacts were calculated according to the CASP assessment protocol.[13] ProSPr precision
scores were directly compared to the performance of CASP13 winning CNN TripletRes[14] and are shown in Figure 2
(Supplementary Table S1). Without being explicitly trained for this purpose, ProSPr predicts contacts for 109 tested
CASP13 domains with precision comparable to TripletRes over all classes, as shown in Table 1. Table 1 shows precision
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scores for ProSPr contacts with a maximum distance distribution < 8 Å, and for the full set of contacts independent of
distribution maxima. For high con�dence predictions, with maximum <8 Å, ProSPr is on average 2% better than TripletRes
on the L/5 scores. The L/2 and L scores are not directly comparable, because the absolute number of contacts ranked
for ProSPr is substantially lower if the maximum < 8 Å criterion is applied than the total number of possible contacts
ranked with TripletRes. For precision comparison the ranked probabilities of all contacts, independent of maximum, are
therefore also reported. Under these conditions, we see that ProSPr is comparable to TripletRes, though on average slightly
inferior. ProSPr2 results are comparable to ProSPr short and medium length contact predictions but are inferior to ProSPr
long contact predictions. ProSPr3 is inferior to ProSPr in all categories. The performance of ProSPr2/3 was compared to
TripletRes and is shown in Supplementary Figure S2. One issue with current precision reporting is that a smaller number of
high con�dence predictions leads to an in�ation of L and L/2 scores, making model comparisons based on precision metric
alone di�cult to interpret. However, L/5 scores measure accurately the ability of a network to assign high con�dence contacts
and ProSPr outperforms TripleRes by an average of 2 %, which is in agreement with reports given by the Alphafold authors.
(https://www.youtube.com/watch?v=uQ1uVbrIv-Q) Because ProSPr is trained to predict distances, the comparison against
TripletRes only serves as a proof of concept. It would be a simple task to change the ProSPr network's �nal layers and to
train it explicitly for contact predictions, which was not the scope of this work.

Short(|i -j| > 5 & |i-j|< 12) Medium(|i -j| > 11 & |i-j|< 24) Long(|i- j| >23)

L L/2 L/5 L L/2 L/5 L L/2 L/5
TripletRes Average 0.3001 0.4981 0.7276 0.3835 0.5787 0.7641 0.5308 0.6595 0.7627
ProSPr Average 0.6889 0.6938 0.7674 0.6680 0.6796 0.7657 0.6294 0.6972 0.7709

ProSPr Full Average 0.2980 0.4979 0.7428 0.3551 0.5511 0.7497 0.4969 0.6274 0.7436
ProSPr2 Full Average 0.2858 0.4639 0.6766 0.3378 0.4988 0.6746 0.3485 0.4459 0.5582
ProSPr3 Full Average 0.2064 0.2819 0.4018 0.2019 0.2587 0.3358 0.1287 0.1664 0.2176

Table 1: Average precision scores for TripletRes and di�erent ProSPr models are compared. ProSPr Average only ranks
contacts where the maximum of the distance probability distribution falls between 0-8 Å, all other ProSPr rows sort contacts
by total probability to be between 0-8 Å.

Next to the python-based source code a Docker[6] container of ProSPr is made available to enable rapid usage of the dis-
tance prediction protocol. The container includes input vectors for select CASP13 targets, three pre-trained ProSPr models,
and the distance prediction function to reproduce the results reported here. In addition, the distribution includes all depen-
dencies necessary to produce a distance prediction for arbitrary sequences. Furthermore, the training set based on the CATH
database, including the MSA and Potts models, is made available (https://byu.box.com/v/ProteinStructurePrediction) to
repeat the training outlined in the methods section (approximately 2 TB of data). The GitHub repository contains a training
function that can be used to either improve a pretrained model, or to train a modi�ed ProSPr model for further optimization
or ablation testing (full training on CATH dataset takes ~4 weeks on single T100 GPU). The original Alphafold protocol
ensembled distance predictions over 4 separately trained models and subtracted a reference network during CASP13. A
pretrained reference network is also provided that predicts distances only from sequence length and whether each residue is
glycine (Supplementary Note). With time, we will make additional converged models of ProSPr and more comprehensive
Docker containers available, to enable model ensembling.

The �eld of protein structure prediction has to tackle the challenge of protein reconstruction from geometric distance
restraint distributions. During CASP13 it became apparent that converting good distance predictions into chemically sound
structures is still an unsolved problem.[4] ProSPr lowers the entrance barrier for academic labs and enables the community
to quickly build on top of the internal coordinate predictions to develop improved protein reconstruction protocols. Further,
we anticipate applications of ProSPr to investigate validity of evolutionary constraints as apparent from MSA, as ProSPr
makes it possible to rapidly compare the e�ects of many single mutations on protein distances. These insights might also
enable improved algorithms for in-silico drug discovery for mutated targets. In addition, we observed that ProSPr can
interpolate distances between missing residues (Supplementary Figure S3), rendering it as a possible tool to support protein
reconstruction from low resolution x-ray or cryo-EM data.[15]

In conclusion, we have demonstrated that ProSPr, a CNN based on the scarce details available for Alphafold, predicts
residue-residue contacts with accuracy comparable to CASP13 winner TripletRes. ProSPr has the potential to propel
protein structure prediction forward by democratizing the deep neural network and to empower directed evolution and
protein reconstruction e�orts.
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Figure 2: ProSPr distance predictions for 109 CASP13 domains were converted to contacts. Left panel shows an example
contact label set for TR1016-D1 on top and the predicted contacts on the bottom. Right panel compares the precision for
ProSPr contacts to those of TripletRes. Contacts are colored in blue, green, yellow for short, mid, and long. Markers circle,
x, star correspond to L, L/2, L/5.

Methods

Overview of ProSPr Architecture

Distance predictions within ProSPr can be made by calling distance prediction function, which consists of three steps as
shown in Figure 3. Initially, a (L+32)x(L+32) pro�le is constructed for a sequence of length L using PSIBLAST, HHblits,
a Potts model, and adding a frame of 32 bins as padding (Supplementary Note). Second, for a set 64x64 crops, de�ned by a
stride parameter, of the pro�le an input vector with dimensions 675x64x64 is assembled. The input vector encodes the raw
parameters, score, H parameters and Frobenius norm derived from the Potts model (total of 530 layers). Further, it contains
two layers that hold the lists of residues for the crop, 42 layers for one-hot encoding of the sequence, 40 layers for a position
speci�c substitution matrix (PSSM), 60 layers for the HHblits pro�le, and one layer for the sequence length. Third, the input
layer is propagated through the CNN. After an initial batch norm, 1 dimensional convolution �lters are applied to reshape the
vector to a 128x64x64 matrix. This matrix is iterated 220 times through a residual network (RESNET) block that performs
batch norming, applies the exponential linear unit (ELU) activation function, projects down to 64x64x64 dimensions, applies
again batch norming and ELU, and then cycles through 4 di�erent dilation �lters. The dilation �lters have sizes 1,2,4, and
8 and are applied with a padding of the same size to retain dimensionality. After a �nal batch norm, the matrix is projected
up to 128x64x64 and an identity addition is performed. After 220 iterations the �nal matrix is subject to two 1 dimensional
convolutions that reshape it into the �nal distance and auxiliary predictions. The auxiliaries predict 8 classes of secondary
structure as de�ned within the DSSP classi�cations, and the phi and psi dihedrals for each residue; the angles are binned with
10 degrees resolution between 0 and 360. Due to possible gaps in the sequence, an additional classi�cation bin is introduced
for each auxiliary prediction that represents unassignable information. The auxiliary predictions were only used for training
but could yield additional insights in ProSPr applications.
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Figure 3: Overview of ProSPr core architectural components. On left the Get_Distances function, with inputs and outputs
highlighted in green. In the center the ProSPr deep convolutional neural network with 220 RESNET blocks shown as an
inlet. On the right a breakdown of input features, which were all used for ProSPr, the layers marked with a grey or black
star were excluded in ProSPr2-3, respectively.

Training of ProSPr

ProSPr was trained on 64x64 crops extracted from the CATH S35 dataset[7] with 26393, 1000, and 500 domains randomly
selected as training, validation, and test sets, respectively (Supplementary Note). Initial weights were assigned randomly
with Pytorch, the loss was calculated using cross entropy and an Adam optimizer with learning rate of 0.001 was used to
update the weights. Total loss was calculated as the weighted sum of ten times the distance loss, the losses of two secondary
structure assignme`nts, and the losses of 4 torsion angles assignments. Training loss and validation loss converged after
500,000 iterations with training batch sizes of 8 (Supplementary Figure S1), which corresponds approximately to the number
of total crops necessary to visit each subdomain in the training set once. The training of ProSPr2 and ProSPr3 used the
same setup, only the input vectors contained di�erent amount of information. For ProSPr2 all layers that contained Potts
information were set to zero. For ProSPr3 the PSSM and HHBlits layers were also set to zero. For these networks, the
training loss did not converge within 500,000 iterations (Supplementary Figure S1).

Convert distances into contacts

As a test, the distances for 109 CASP13 domains, which were not included in the training or validation sets, were predicted
and converted into contacts. Instead of using all possible 64x64 crops, a stride of 25 was used between the crops to speed up
evaluation of large domains. Average contact scores improved by 1% when a stride of 1 was used for the 44 shortest domains.
The 64x64x64 distance output encodes the probability of a residue i and j to have distances either not assignable (e.g. gap
in sequence), in the range of 2.3 � 22 Å with .3 Å resolution between classes, or greater than 22 Å. If the maximum of the
probability distribution fell between 2.3 � 8 Å (bins 1-19), we considered two residues in contact for the high con�dence
predictions. In all cases, contacts were ranked according to the sum probability of distances between 2.3 and 8 Å and the
top L, L/2, L/5 (L is length of sequence) contacts were selected to calculate accuracy scores. The contacts were classi�ed
based on the sequence separation of residues i and j into: short-range (6≤|i � j|≤11), medium-range (12≤|i � j|≤23) and
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long-range (|i � j|≥24) contacts.

Evaluation of Contact Accuracy

According to CASP protocol, precision was calculated as follows:

Precision =
TruePositives

TruePositives+ FalsePositives

The average in each category was calculated over 109 test domains from CASP13. For the comparison with TripletRes,
the di�erence in average precision per category was again averaged.

Installation instruction for Docker

To install ProSPr as a docker container and to see all currently available options enter in the command line (after installing
docker):

docker run prospr/prospr

Yes, it is that easy!
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Supplementary Note

Dataset Construction and Cleaning

Protein domains and structures used in training ProSPr were obtained from the CATH s35 sequence homology dataset. A list
of all domains in the s35 cluster with their sequences in FASTA format was downloaded from ftp://orengoftp.biochem.

ucl.ac.uk/cath/releases/latest-release/cath-classification-data/cath-domain-list-S35.txt on 16 February
2019; domain names were then extracted from the text and their corresponding structural �les downloaded individually
using the following link: http://www.cathdb.info/version/v4_1_0/api/rest/id/DOMAIN_ID.pdb. Some of the domains
were not successfully downloaded, and brief manual inspection showed that structural �les did not seem to exist for at least
several of the domains speci�ed in the s35 sequence list. Domains for which a structural �le could not be obtained for any
reason were excluded from the dataset.

Amino acid sequences for each domain were derived from the corresponding structure �le. Although each domain was
originally extracted from a FASTA �le including the sequences, discrepancies existed between those explicit sequences and the
string of residues contained in each structure �le (e.g. some structures contained only portion(s) of the sequences speci�ed
separately). Additionally, monitoring of residue numbers present in the structure �les enabled us to denote gaps in the
sequences with a unique character, whereas no such notation existed in the original FASTA sequences.

For reasons further contextualized under Crops and Input Padding, we trimmed the beginning(s) and/or end(s) of protein
sequences if gaps larger than or equal to 32 residues separated small terminal segments of fewer than 17 residues from the
remainder of the protein. This eliminated instances in which possibly hundreds of residues whose identities and/or positions
were undetermined in the protein structure (gaps) were included in the structure-derived sequence because several adjacent
terminal residues are recorded (see CATH domain 1hu3A00 as example). In such cases, the characters corresponding to these
end residues and the adjacent gap section(s) were removed from sequence, and the process was repeated for the remaining
sequence until no additional changes were made. At the conclusion of these sequence modi�cations, corresponding structure
�les were trimmed to match the shorter sequences.

PSSMs were constructed using PSIBLAST (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/) and the
nonredundant (nr) database, while alignments were generated using HHBlits from HHSuite (https://github.com/soedinglab/hh-
suite) in conjunction with the uniclust30_2018_08 database (http://wwwuser.gwdg.de/∼compbiol/uniclust/2018_08/.UNICLUST
). Both ran with E-values of 0.001 and completed 3 iterations. A limit of 100000 was imposed on the number of sequences
HHBlits could write out to the alignment �le. HHBlits alignment results were then processed further and used in computing
the Potts models (original obtained from https://github.com/magnusekeberg/plmDCA, however modi�cations were made
to the code and those modi�cations are in our github repository for this project under src/potts.patch). Further information
about these programs, as well as details concerning how the values of interest were extracted from these three sets of output
�les and used in the input vectors can be found in the code documentation.

Training labels for the distance prediction task as well as the auxiliary secondary structure and torsion angle predictions
were created by making structural calculations (in the case of the auxiliary predictions, aided by the DSSP algorithm,
code available at https://github.com/cmbi/xssp) and binning the observations, thus enabling ProSPr to treat each as a
classi�cation task. Pairwise distances between all available beta carbon atoms (except for alpha carbons in the case of
glycine) were classi�ed into 64 classes, where 62 represented equivalently-sized bins over the 2-22Å range (~0.32Å width
each), one represented all distances greater than 22Å, and another signi�ed a gap or missing part of the protein structure.
Secondary structure classi�cations as made by DSSP were retained as separate classes, with the addition of one extra bin
to again represent missing data (eg. no residue(s) in that part of the structure) for a total of 9 classes. Phi and psi torsion
angle values were classi�ed into 36 10º bins ranging from -180º to 180º and one for gaps, resulting in a total of 37 possible
classes.

After all inputs and labels were generated for available domains, an intersection was performed to extract the list of
domains for which each of these independent tasks had executed successfully; this list was subsequently divided into the
training, validation, and test sets as described in Methods.
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Figure 4: Supplementary Figure S1 Validation curves for ProSPr networks. For a batch size of 8 500,000 training iterations
were conducted for full input vectors (ProSPr), input vectors without Potts Models (ProSPr2), and input vectors without
any features derived from multiple sequence alignment (ProSPr3).
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Figure 5: Supplementary Figure S2 Comparison of ProSPr2 and ProSPr3 contact precision against TripletRes for 109
CASP13 domains. Contacts are colored in blue, green, yellow for short, mid, and long, respectively. Markers circle, x, star
correspond to L, L/2, L/5.
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1xs5A01

1i24A02

2awnD02

Figure 6: Supplementary Figure S3 ProSPr interpolates distance information for missing residues. For 3 sequences with
missing residues from the CATH validation set we observed that ProSPr predicts distances for missing residues (yellow
crosses in label). This might be a useful feature to enhance structure reconstruction e�orts and is subject to further analysis.
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Crops and Padding

Using the dataloader function included and documented in the project source code, training is performed on 64x64 amino
acid crops of training domains, speci�ed using i and j (coordinate) options and the protein domain id. The i and j coordinates
correspond to the amino acid positions on which the crop is centered, and can range from 0 to one less than the sequence
length of that domain. This results in padding of up to 32 being added in either dimension so that the crop maintains its
64x64 size. Training on crops allows the network to use more training data than if the entire domains were used, and the
consistent size helps in distributed training.

However, in testing and application of such a network, distance predictions for the entire protein domain are often of much
greater relevance than those made for a single 64x64 residue crop. Therefore, outside of training (including for validation set
testing, the analysis done with the CASP13 targets, etc.) full-domain predictions are made by processing multiple adjacent
crops of the same domain and averaging those values where the crops overlap. The �stride� parameter speci�es how far apart
the i,j, coordinates for each crop are (eg. stride of 1 means that every possible i,j combination for the length of the protein
will be processed), however the evaluation time increases as the square of the protein length. On the contacts data set we
observed only small improvements of 1% by reducing the stride from 25 to 1.

Target Short L Short L/2 Short L/5 Mid L Mid L/2 Mid L/5 Long L Long L/2 Long L/5
0 T0949-D1 0.5652 0.5652 0.5652 0.7727 0.7727 1.0000 0.8841 0.9565 1.0000
1 T0950-D1 0.2500 0.2500 0.2500 0.5862 0.5862 0.5862 0.3879 0.3879 0.5441
2 T0951-D1 0.7358 0.7358 0.7358 0.6667 0.6667 0.7358 0.7962 0.9167 0.9623
3 T0953s1-D1 0.6667 0.6667 0.7692 0.7143 0.7143 0.7143 0.0000 0.0000 0.0000
4 T0953s2-D1 0.6000 0.6000 0.6250 0.4615 0.4615 0.6250 1.0000 1.0000 1.0000
5 T0953s2-D2 0.4000 0.4000 0.4000 0.0000 0.0000 0.0000 0.7500 0.8333 1.0000
6 T0953s2-D3 0.8000 0.8000 0.8000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7 T0954-D1 0.7614 0.8204 0.9394 0.6914 0.7904 0.9545 0.2680 0.3174 0.4394
8 T0955-D1 0.6111 0.6111 0.7500 0.7500 0.7500 0.8750 0.0000 0.0000 0.0000
9 T0957s1-D1 0.8000 0.8000 0.8571 0.8421 0.8421 0.9048 1.0000 1.0000 1.0000
10 T0957s1-D2 0.5000 0.5000 0.5000 0.8000 0.8000 0.8000 0.9231 0.9231 1.0000
11 T0957s2-D1 0.7619 0.7619 0.7619 0.7222 0.7222 0.7000 0.6842 0.6842 0.6842
12 T0958-D1 0.3077 0.3077 0.3077 0.3636 0.3636 0.3333 0.4783 0.4783 0.4667
13 T0959-D1 0.5000 0.5000 0.5429 0.5890 0.5890 0.6000 0.6963 0.7727 0.9429
14 T0960-D1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
15 T0960-D2 0.7333 0.7333 0.6875 0.7500 0.7500 0.9375 0.1667 0.1667 0.1667
16 T0960-D3 0.8293 0.8293 0.8824 0.8488 0.9091 1.0000 0.6364 0.6364 0.7647
17 T0960-D4 0.5000 0.5000 0.5833 0.2857 0.2857 0.2857 0.0000 0.0000 0.0000
18 T0960-D5 0.6667 0.6667 0.7500 0.6538 0.6538 0.8000 0.8750 1.0000 1.0000
19 T0961-D1 0.8348 0.8348 0.8600 0.7962 0.7962 0.9100 0.7789 0.9163 0.9600
20 T0962-D1 0.8039 0.8039 0.8857 0.7333 0.7333 0.8000 0.6484 0.6932 0.7714
21 T0963-D1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
22 T0963-D2 0.7200 0.7200 0.6875 0.7407 0.7407 0.9375 1.0000 1.0000 1.0000
23 T0963-D3 0.7857 0.7857 0.9444 0.8022 0.8478 1.0000 0.6786 0.6786 0.7222
24 T0963-D4 0.5833 0.5833 0.5833 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
25 T0963-D5 0.8095 0.8095 1.0000 0.6939 0.6957 0.8333 0.9247 1.0000 1.0000
26 T0964-D1 0.7742 0.8298 0.9444 0.7959 0.8085 0.9444 0.8478 0.8936 1.0000
27 T0965-D1 0.6667 0.6667 0.6774 0.6600 0.6600 0.8548 0.7981 0.8974 0.9355
28 T0966-D1 0.6410 0.6410 0.6410 0.6620 0.6620 0.6620 0.2933 0.5429 0.8367
29 T0967-D1 0.7200 0.7200 0.8667 0.8511 0.9231 1.0000 0.7949 0.8974 0.8000
30 T0968s1-D1 0.7234 0.7234 0.9130 0.8750 0.8983 1.0000 0.4348 0.5254 0.8261
31 T0968s2-D1 0.8256 0.9298 1.0000 0.7037 0.7544 0.9565 0.2500 0.2500 0.3043
32 T0969-D1 0.6364 0.6364 0.6857 0.6914 0.6914 0.7286 0.6969 0.8693 1.0000
33 T0970-D1 0.8125 0.8125 0.8125 0.8235 0.8235 0.8947 0.7742 0.7742 0.8947
34 T0971-D1 0.8036 0.8036 0.9600 0.8679 0.9688 1.0000 0.7364 0.9531 1.0000
35 T0973-D1 0.7500 0.7500 0.7500 0.8182 0.8182 0.8800 0.6176 0.6774 0.9200
36 T0974s1-D1 0.7692 0.7692 1.0000 0.8333 0.8333 0.8333 0.7037 0.7037 0.9231
37 T0974s2-D1 0.7879 0.7879 1.0000 0.7619 0.7619 0.8667 0.7593 0.7949 0.9333
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38 T0975-D1 0.7375 0.7375 0.7931 0.5824 0.5824 0.7759 0.4658 0.6507 0.7414
39 T0976-D1 0.7600 0.7600 0.8261 0.8444 0.8444 1.0000 0.8824 0.9661 1.0000
40 T0976-D2 0.7308 0.7308 0.7917 0.8750 0.8750 1.0000 0.8537 0.9344 1.0000
41 T0977-D1 0.8417 0.8417 0.9167 0.8148 0.8933 0.9500 0.3898 0.3898 0.5333
42 T0977-D2 0.7143 0.7143 0.7143 0.8511 0.8511 0.8500 0.7143 0.7143 0.7143
43 T0978-D1 0.6667 0.6667 0.6667 0.6629 0.6629 0.7073 0.4272 0.6796 0.9146
44 T0979-D1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
45 T0980s1-D1 0.7500 0.7500 0.8500 0.5714 0.5714 0.5714 0.6000 0.6000 0.6000
46 T0980s2-D1 0.6000 0.6000 0.6000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
47 T0981-D1 0.8571 0.8571 0.9412 0.8182 0.8095 0.8824 0.5000 0.5000 0.5000
48 T0981-D2 0.6250 0.6250 0.6000 0.7143 0.7143 0.7143 1.0000 1.0000 1.0000
49 T0981-D3 0.5500 0.5500 0.5500 0.7647 0.7647 0.7647 0.8168 0.9406 1.0000
50 T0981-D4 0.8750 0.8750 0.8750 0.8824 0.8824 0.8824 1.0000 1.0000 1.0000
51 T0981-D5 0.6522 0.6522 0.9200 0.7419 0.7419 0.7600 0.8034 0.9048 1.0000
52 T0982-D1 0.8169 0.8507 1.0000 0.7879 0.8955 0.9615 0.7188 0.9104 1.0000
53 T0982-D2 0.7302 0.7302 0.8846 0.6627 0.7538 0.9615 0.6552 0.7846 0.8077
54 T0983-D1 0.8261 0.8261 0.8298 0.8099 0.8034 1.0000 0.7787 0.8974 0.9787
55 T0984-D2 0.4545 0.4545 0.4545 0.3333 0.3333 0.3333 0.3774 0.3774 0.4828
56 T0986s1-D1 0.7455 0.8222 1.0000 0.6923 0.6923 0.6667 0.6800 0.6800 0.8333
57 T0986s2-D1 0.6531 0.6531 0.7333 0.8108 0.8108 0.8667 0.3226 0.3226 0.3333
58 T0987-D1 0.8438 0.8438 0.8438 0.6279 0.6279 0.6389 0.7273 0.7273 0.8889
59 T0987-D2 0.6053 0.6053 0.6053 0.6000 0.6000 0.6000 0.5972 0.5972 0.7073
60 T0989-D1 0.5581 0.5581 0.5000 0.6032 0.6032 0.7308 1.0000 1.0000 1.0000
61 T0989-D2 0.9412 0.9412 0.9412 0.8000 0.8000 0.8000 0.0000 0.0000 0.0000
62 T0990-D1 0.6923 0.6923 0.6923 0.8000 0.8000 0.8000 0.5882 0.5882 0.7333
63 T0990-D2 0.6512 0.6512 0.6512 0.6531 0.6531 0.6889 0.6071 0.6071 0.6071
64 T0990-D3 0.4571 0.4571 0.4571 0.5313 0.5313 0.5313 0.6279 0.6279 0.6429
65 T0992-D1 0.7681 0.8302 1.0000 0.7887 0.8113 0.8571 0.7765 0.8679 1.0000
66 T0993s1-D1 0.8500 0.8500 0.9808 0.7500 0.7500 0.9231 0.8435 0.9160 1.0000
67 T0993s2-D1 0.6538 0.6538 0.7895 0.5000 0.5000 0.5789 0.8351 0.9583 1.0000
68 T0995-D1 0.7640 0.7640 0.9138 0.6378 0.6378 0.8448 0.7816 0.9452 0.9828
69 T0996-D1 0.8065 0.8065 1.0000 0.7708 0.7708 1.0000 0.8019 0.9245 1.0000
70 T0996-D2 0.7368 0.7368 0.9600 0.7556 0.7556 0.9600 0.7603 0.8889 1.0000
71 T0996-D3 0.7667 0.7667 0.8421 0.8800 0.8980 1.0000 0.7576 0.8776 0.9474
72 T0996-D4 0.7955 0.7955 0.9615 0.6721 0.6721 1.0000 0.8425 0.9394 1.0000
73 T0996-D5 0.6667 0.6667 0.9583 0.7255 0.7255 0.9583 0.6636 0.7667 0.9167
74 T0996-D6 0.8649 0.8649 0.9000 0.8269 0.8431 1.0000 0.8058 1.0000 1.0000
75 T0996-D7 0.7381 0.7381 0.9259 0.7692 0.7692 0.9630 0.7630 0.8986 1.0000
76 T0997-D1 0.7000 0.7000 0.8611 0.8242 0.8242 0.9167 0.7297 0.8804 0.9444
77 T0998-D1 0.5385 0.5385 0.5385 0.2000 0.2000 0.2000 0.0000 0.0000 0.0000
78 T0999-D1 0.7158 0.7158 0.7662 0.6441 0.6441 0.7532 0.7896 0.9063 0.9870
79 T0999-D2 0.8045 0.8045 0.9444 0.7407 0.7407 0.9111 0.8009 0.8982 0.9333
80 T0999-D3 0.7250 0.7250 0.7714 0.4000 0.4000 0.4000 0.7989 0.9438 0.9714
81 T0999-D4 0.7551 0.7551 0.7708 0.6364 0.6364 0.8542 0.7942 0.9008 0.9792
82 T0999-D5 0.6623 0.6623 0.8070 0.7500 0.7692 0.9825 0.8362 0.9301 1.0000
83 T1000-D0 0.5846 0.5846 0.6765 0.7294 0.7294 0.9216 0.6277 0.8359 0.9412
84 T1000-D1 0.7895 0.7895 1.0000 0.8077 0.8780 1.0000 0.8873 0.9756 1.0000
85 T1000-D2 0.4468 0.4468 0.4884 0.6757 0.6757 0.8140 0.6326 0.8233 0.9302
86 T1001-D1 0.6667 0.6667 0.6667 0.7083 0.7083 0.7083 0.2500 0.2500 0.2500
87 T1002-D0 0.8872 0.8872 1.0000 0.8788 0.8788 0.9811 0.7138 0.8582 0.9623
88 T1002-D1 0.9167 1.0000 1.0000 0.9048 1.0000 1.0000 0.8298 0.9655 1.0000
89 T1002-D2 0.9459 1.0000 1.0000 0.8837 0.9310 1.0000 0.8667 0.9310 1.0000
90 T1002-D3 0.8772 0.8772 0.9643 0.8519 0.8519 1.0000 0.8671 0.9155 1.0000
91 T1003-D1 0.7611 0.7611 0.8851 0.6377 0.6377 0.7816 0.7821 0.9450 0.9885
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92 T1004-D1 0.8800 0.8800 0.9412 0.8451 0.9286 1.0000 0.6429 0.6429 0.9412
93 T1004-D2 0.8000 0.8000 0.9333 0.6667 0.6667 0.6667 0.5000 0.5000 0.5000
94 T1004-D3 0.7353 0.7353 0.8222 0.7500 0.7500 0.8667 0.3448 0.3448 0.3448
95 T1005-D1 0.5800 0.5800 0.5800 0.5303 0.5303 0.5231 0.6646 0.8333 0.9538
96 T1006-D1 0.6923 0.6923 0.9333 0.9149 0.9474 1.0000 0.8947 1.0000 1.0000
97 T1010-D1 0.5161 0.5161 0.5161 0.6829 0.6829 0.6829 0.5179 0.5179 0.6098
98 T1011-D1 0.5652 0.5652 0.5652 0.5417 0.5417 0.5417 0.7035 0.7667 0.9333
99 T1011-D2 0.8333 0.8333 0.9677 0.6863 0.6863 0.7419 0.5686 0.7975 0.9677
100 T1013-D1 0.7742 0.7742 0.7742 0.6486 0.6486 0.6486 0.6188 0.7413 0.8947
101 T1014-D1 0.6667 0.6667 0.9355 0.7778 0.7778 0.9677 0.8797 0.9747 1.0000
102 T1014-D2 0.8000 0.8000 0.8000 0.5870 0.7241 0.7826 0.6018 0.6724 0.9130
103 T1015s1-D1 0.8000 0.8000 0.9412 0.5862 0.5862 0.8235 0.8125 0.8140 0.9412
104 T1015s2-D1 0.7805 0.7805 0.8800 0.7885 0.7885 1.0000 0.7403 0.7656 0.9200
105 T1016-D1 0.7143 0.7143 0.8000 0.7444 0.7444 0.9250 0.8657 0.9600 1.0000
106 T1017s1-D1 0.6000 0.6000 0.8095 0.6579 0.6579 0.8095 0.6232 0.6852 0.9524
107 T1017s2-D1 0.6585 0.6585 0.7600 0.8772 0.8772 0.9200 0.5172 0.5172 0.6000
108 T1018-D1 0.7342 0.7342 0.7576 0.7317 0.7317 0.8636 0.8559 0.9759 1.0000

Supplementary Table S1 ProSPr contact scores for 109 CASP13 targets.
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