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Abstract Many models of evolution are implicitly causal processes. Features
such as causal feedback between evolutionary variables and evolutionary pro-
cesses acting at multiple levels, though, mean that conventional causal models
miss important phenomena. We develop here a general theoretical framework
for analyzing evolutionary processes drawing on recent approaches to causal
modeling developed in the machine-learning literature, which have extended
Pearl’s ‘do’-calculus to incorporate cyclic causal interactions and multilevel
causation. We also develop information-theoretic notions necessary to analyze
causal information dynamics in our framework, introducing a causal general-
ization of the Partial Information Decomposition framework. We show how
our causal framework helps to clarify conceptual issues in the contexts of
complex trait analysis and cancer genetics, including assigning variation in an
observed trait to genetic, epigenetic and environmental sources in the presence
of epigenetic and environmental feedback processes, and variation in fitness to
mutation processes in cancer using a multilevel causal model respectively, as
well as relating causally-induced to observed variation in these variables via
information theoretic bounds. In the process, we introduce a general class of
multilevel causal evolutionary processes which connect evolutionary processes
at multiple levels via coarse-graining relationships. Further, we show how a
range of ‘fitness models’ can be formulated in our framework, as well as a
causal analog of Price’s equation (generalizing the probabilistic ‘Rice equa-
tion’), clarifying the relationships between realized/probabilistic fitness and
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direct/indirect selection. Finally, we consider the potential relevance of our
framework to foundational issues in biology and evolution, including superve-
nience, multilevel selection and individuality. Particularly, we argue that our
class of multilevel causal evolutionary processes, in conjunction with a mini-
mum description length principle, provides a conceptual framework in which
identification of multiple levels of selection may be reduced to a model selection
problem.

Keywords Causality · Information Theory · Multilevel selection · Price’s
equation · Supervenience

1 Introduction

Causality is typically invoked in accounts of evolutionary processes. For in-
stance, for a variant to be subject to direct selection, it is necessary that it has a
causal impact on fitness. The role of causality is made explicit in axiomatic ac-
counts of evolution [32]. Further, the formal framework of Pearl’s ‘do’-calculus
[30] has been used explicitly in analyzing Mendelian Randomization [24], the
relationship between kin and multilevel selection [28], and information de-
rived from genetic and epigenetic sources in gene expression [13]. A number of
features of evolutionary processes, however, limit the potential for direct for-
malization in the ‘do’-calculus framework, which requires causal relationships
to be specified by a directed acyclic graph (DAG), and cannot represent causal
processes at multiple levels. In contrast, cyclical causal interactions are ubiq-
uitous in natural processes, for instance in regulatory and signaling networks
which lead to high levels of epistasis in the genotype-phenotype map [38].
Further examples of cyclical causal interactions arise through environmental
feedback, both in the generation of traits, leading to an extended genotype-
environment-phenotype map [16], and across generations in the form of niche
construction [21]. Hierarchy is also ubiquitous in evolution, and many phe-
nomena, such as multicellularity and eusociality, seem to require a multilevel
selection framework for analysis, implicitly invoking causal processes at multi-
ple levels [27]. Such a framework would also seem necessary in analyzing major
transitions in evolution [6].

A number of frameworks have been proposed in the machine-learning liter-
ature for extending Pearl’s ‘do’-calculus to allow for cyclic causal interactions.
These include stochastic models with discrete variables [17], and deterministic
[25] and stochastic [33] models with continuous variables. Further, approaches
have been introduced for analyzing causal processes at multiple levels using the
‘do’-calculus [7,33]. In [33], both of these phenomena are related through the
notion of a transformation, which is a mapping between causal models which
preserves causal structure. Coarse-graining is a particular kind of transforma-
tion, special cases of which involve mapping a causal model over micro-level
variables into one over macro-level variables, and mapping a directed causal
model which is extended across time into a cyclical model which summarizes
its possible equilibrium states (subject to interventions).
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Causal Evolutionary Processes 3

In addition, the ‘do’-calculus has been combined with information theory
in order to define notions of information specifically relevant to causal models,
such as information flow [2], effective information [15], causal specificity [13]
and causal strength [19]. Although not explicitly cast in causal terms, there
has also been much interest in defining non-negative multivariate decompo-
sitions of the mutual information between a dependent variable and a set of
independent variables, which may be collectively described as types of Par-
tial Information Decomposition (PID) [3,13,40]. Such definitions, however, can
only be applied in causal models with a DAG structure, leaving open the ques-
tion of how causal information should be defined and decomposed in a system
with cyclic interactions.

Motivated by the above, we propose a general causal framework for formu-
lating models of evolutionary processes which allows for cyclic interactions be-
tween evolutionary variables and multiple causal levels, drawing on the trans-
formation framework of [33] as described above. Further, we propose a causal
generalization of the Partial Information Decomposition (Causal Information
Decomposition, or CID) appropriate for such cyclic causal models, and show
that our definition has a number of desirable properties and can be related
to previous measures of causal information. We analyze a number of specific
evolutionary models within our framework, including first, a model with epi-
genetics and environmental feedback, and second, a model of multilevel selec-
tion which we apply to the particular cases of group selection and selection
between mutational processes in cancer. We analyze the CID in the context of
both models, and demonstrate the conditions under which bounds can be de-
rived between components of the CID and components of the PID associated
with the observed distribution. Finally, we discuss the causal interpretation of
Price’s equation and related results in our causal framework. In general, our
analysis is intended both to help clarify conceptual issues regarding the role
of causation in the models analyzed, as well as to aid in the interpretation of
data when the assumptions of these (or similar) models are adopted, via the
bounds introduced.

We begin in Sec. 2 by providing an overview of the issues related to cyclic
and multilevel causality in evolution which motivate our approach, and infor-
mally introduce the Discrete Causal Network (DCN) and Causal Information
Decomposition (CID) frameworks which form the basis of subsequent analy-
ses (full definitions are given in Appendix A). Sec. 3 then outlines our general
framework for Causal Evolutionary Processes (CEP). Sec. 4 and Sec. 5 ana-
lyze specific models of epigenetics with environmental feedback and multilevel
selection within this framework respectively, and Sec. 6 provides a causal inter-
pretation of Price’s equation and related results. Sec. 7 then concludes with a
discussion, including the potential relevance of our framework to foundational
issues in the philosophy of biology and evolution.
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Fig. 1 Summary of models. (A) shows the relationships between the main models defined
in the paper, where the arrows point from larger to smaller model classes, the latter being
a special case (subset) of the former (see Appendix A for DCN and DDCN definitions). (B)
shows a schematic of a Causal Evolutionary Process, showing a population of size N = 3 at
two time steps (nodes representing all variables associated with an individual at time t). φ,
e, w and π represent phenotype, environment, fitness and parental map respectively, where
the latter is also represented explicitly by the dotted arrows, which connect each individual
at t = 1 to its parent at t = 0. (C) and (D) illustrate the CTCM* and MCEPmut-proc models
described in Secs. 4 and 5 of the paper respectively. The first is a model of a complex trait,
with genetics (X), epigenetics (Y ) and feedback between behavior (Z) and environment (e),
while the second is a model of multilevel selection in cancer with genetics (X) and mutational
processes (m). Solid arrows here represent the directed graphical structure of the underlying
discrete causal network (the Pa relation, which is distinct from the π evolutionary variable
in (B)). Nodes and edges are labeled with variable and kernel names respectively as defined
in these models.

2 Cyclic and Multilevel Causality in Biology

We begin by outlining and motivating some of the basic concepts that will be
used to develop our framework. We do so here in an informal way: technical
definitions and proofs are given in Appendix A.

Cyclic Causality. The do-calculus provides a compelling formalization of
the mathematical structure of causation [30]. However, a requirement of this
framework is that causal relationships between variables must form a Directed
Acyclic Graph (DAG). A DAG is any graph (a collection of nodes and edges)
which contains no directed loops (cycles). For instance, if gene A regulates
gene B, and gene B regulates genes C and D (for example, the genes are
transcription factors, and regulatory relationships are established via promoter
binding), variables corresponding to the expression levels of these genes can be
arranged in a graph with no cycles. Performing manipulations on gene B (do-
operations) will thus affect the expression of genes C and D but not A. Pearl’s
calculus provides exact rules for deducing the distribution of all variables after
an intervention, which will always return a valid distribution; formally, the
graph is altered by cutting all incoming edges to the manipulated node, and
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Causal Evolutionary Processes 5

the joint distribution is recalculated using a delta distribution to represent the
intervention.

However, such well-ordered networks are the exception rather than the rule
in gene regulatory networks (GRNs). For instance, we could add to the above
network a feedback interaction by assuming that gene D regulates A. Here,
although A causes B’s expression locally, B also causes A’s expression via D.
In fact, in this case no harm is done assuming the system has a solution as a
whole, since any intervention will either split the cycle (genes A, B and D),
or have no effect on it (gene C), and hence all distributions are well defined.
Alternatively though, we could consider starting with the original graph, and
in addition let C regulate D and D regulate C. Now, by intervening on B we
are not guaranteed to find a solution for every intervention, even if the original
system has a solution. Recent work has investigated the extension of Pearl’s
calculus to graphs with cycles (where the graph manipulations are identical
to the acyclic case), characterizing the situations in which solutions exist, and
allowing systems to be defined which have a restricted set of interventions
allowed [17,25,33]. A particular example which has a clear solution is a deter-
ministic network governed by linear differential equations: ẋi = fi(x1, ..., xN ),
where the xi’s may be gene expression values for instance. Here, ‘solutions’
are taken to be the equilibrium points of the system, and these exist for any
intervention provided the original system of equations f1, ...fN is contractive,
meaning that it maps a given region of state-space to one with a smaller vol-
ume with time [33]. Stochasticity can be added as long as the functions are
contractive almost surely.

In these examples, we have considered feedback processes in gene regula-
tory networks. However, similar feedback processes can occur at many levels.
For instance, consider a psychological trait, such as depression. This trait may
be ultimately caused by numerous aspects of brain structure and gene expres-
sion patterns; however, since we have pharmacological interventions which can
control the severity of depression, these can introduce a feedback process from
the environment to the molecular layer. In general, the expression of any trait
may be subject to environmental feedback in this way.

We now note some features about the above. First, we have phrased both
the GRN and the environmental feedback example in terms of a process in
time. One way to deal with such cyclic structures is to ‘unroll’ them over
time, that is, consider a discretized set of time points, and repeat all variables
at each time, while connecting a given variable, say a gene, to its regulatory
parents at the previous time-step. This will automatically generate an acyclic
causal graph. The cyclic causal system corresponding to this temporal pro-
cess can be considered to be that formed by the equilibrium distributions
(assuming they exist) after certain ‘macro’ interventions are applied, which
fix a particular variable to a given value across all times. The cyclic system
can thus be considered a coarse-graining of the temporal acyclic system. Not
all cyclical causal systems can be formed this way (see [33]), but our empha-
sis will be on such systems, given their prevalence in biology (although the
framework is agnostic to the system’s origins). For convenience, in setting up
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our framework, we use a ‘Discrete Causal Network’ model (DCN, Appendix
A; see also Fig. 1A for the relationships between all models in the paper),
which allows cycles and variables which take discrete values, and is param-
eterized by a set of probability kernels, one for each variable, specifying the
conditional distribution of the variable on the values of its graphical parents.
We further introduce dynamic-DCN and equilibrium-DCN models (Appendix
A, Def. 2.6), corresponding respectively to an underlying temporal process and
coarse-grained equilibrium cyclic causal model as discussed above.

Multilevel Causality. A further limitation common to straightforward ap-
plications of Peal’s do-calculus is its seeming reliance on a single level of causal
analysis. For instance, in analyzing the causes of an action, it seems appropri-
ate to identify causes at multiple levels, such as nerves firing, muscles contract-
ing, psychological beliefs, desires and past learning. Indeed, in analyzing group
selection using causal graphs, a recent approach has distinguished between
causal and supervenient relationships between variables, while maintaining a
DAG graphical structure overall [28]. Recent approaches have formalized the
idea that a causal system can be described at multiple levels, by introducing
coarse-graining mappings between causal structures at different scales [33].
Such approaches capture the relation of supervenience, since multiple fine-
grained interventions in one model may be mapped to the same intervention
in another provided the causal structure is preserved by the mapping.

The possibility of multiple levels of causation is arguably of central im-
portance in evolution. In particular, we argue that multilevel selection should
be seen as a special case of multilevel causality, and introduce a ‘Multilevel
Causal Evolutionay Process’ model (MCEP) as a general framework for an-
alyzing such processes. In particular, fitness is treated as a causal variable
at each level of the MCEP, allowing coarse-grained fitness to supervene on
lower-level fitness values (and other evolutionary variables). A particular case
we consider is cancer evolution. As has been recently demonstrated [1,8,35],
tumors not only acquire particular sets of mutations (with positive, negative
and neutral effects on growth) over their development, but also acquire pro-
totypical mutational processes. These processes are caused by factors such as
disruption of the DNA repair machinery or other cellular mechanisms such as
DNA methylation, or environmental effects such as carcinogens, which cause
particular mutations to become more prevalent depending on local sequence
characteristics or chromosomal position. The fact that such processes intro-
duce bias into the way variation is acquired in the tumor means that they
can contribute towards the tumor’s evolution. At a fine-grained level, it is the
individual mutations themselves which are responsible for fitness variations
among cells, and the mutational processes are simply a source of variation.
We show however, that by considering a multilevel model, fitness across larger
time-scales can be driven by a combination of individual mutations and mu-
tational processes, potentially even primarily by the latter as suggested by
recent results [8,23,35].
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Causal Transformations. The models we develop in response to the above
(cyclic and multilevel causation) both rely on the technical apparatus of a
transformation between causal systems, as introduced in [33]. In general, this
can be thought of as a structure preserving map between causal systems, anal-
ogous to a homomorphic map between groups or other algebraic structures. A
causal transformation requires that variables and interventions in one causal
system are mapped to those in another, while preserving all causal relation-
ships in the first system as seen ‘from the viewpoint’ of the second. Like a
group homomorphism, a transformation of causal systems is not necessarily
one-to-one or onto, and so the mapping may embed the first causal system
in the second, or map many variables in the first onto a single variable in
the second. The transformations we consider typically correspond to the lat-
ter possibility, and thus can be seen as forms of coarse-graining. However, it
is important to stress that transformations are not limited to coarse-graining
relationships, and are a general mechanism for relating causal systems. We
explicitly define the notion of transformation we need for the special case of
discrete causal networks in Appendix A, Def. 2.2.

Information in Causal Systems. An advantage of framing evolutionary
models in explicitly causal terms is that it becomes possible to make dis-
tinctions between different ways in which evolutionary variables may interact,
which are difficult to make otherwise. For instance, it is common to trace
variation in a particular trait (such as height) to genetic and environmental
sources. With genetics, the (broadly justified) assumption is made that vari-
ation in the trait is in response to genetic variation, and thus intervention is
not required to assess the causal impact (having controlled for confounders
such as population structure). However, the situation is less clear when vari-
ation at other levels such as epigentics (transcriptomics, DNA methylation),
or environmental factors are considered in relation to high-level trait varia-
tion (height, depression). Here, we would like to be able to trace variation to
sources which may be involved in cyclic interactions. In general, interventions
may be required to assess the causal impact of one variable on another, but it
may also be possible to combine observations and assumptions to infer aspects
of the causal structure.

For this reason, we also consider how to define a general notion of causal
impact in cyclic causal systems, by generalizing the Partial Information De-
composition framework (PID, [40]), which cannot handle cyclic interactions, to
a Causal Information Decomposition framework (Appendix A, Def. 2.4). We
show that bounds may be derived in this framework that potentially allow di-
rect causal relations between variables to be inferred from observational data
by observing non-zero unique information, and differences in observed and
causal information between variables to be predicted given assumptions about
feedback and interference. We provide technical background for these bounds
in Appendix A (Theorems 2.10 and 4.3), draw connections with alternative
definitions of causal impact and related bounds (Prop. 2.5), and summarize the
implications as they apply to models of epigenetics and multilevel selection in
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the relevant sections (Th. 4.3 and Prop. 5.5). These results are intended both
to motivate the application of models using PID and CID frameworks in ana-
lyzing data, and also contextualize the issues underlying existing approaches,
even when not coached explicitly in information-theoretic terms.

One application may be in decomposing the genetic, epigenetic and envi-
ronmental causal factors underlying observed traits, for instance, psychologi-
cal traits such as depression in the example mentioned above. In this context,
methods such as TWAS [41] and related non-linear models [39] aim to isolate
the genetic component which is causative for a given trait (for the latter, as
mediated by gene expression). However, a more complete picture of underly-
ing causation for a given trait would consider the complete causal effect of
(say) gene expression on a trait, and not only the component which mediates
genetic risk (since therapeutic interventions are not limited to targeting me-
diated genetic effects). Environmental variables may also play a role, whose
effects may be mediated by epigenetic factors, be independently mediated, or
be reflective of rather than causal for a trait (for instance, medication effects).
The PID provides a guiding framework for partitioning trait-relevant informa-
tion between genetics, epigenetics and environment (say). However, it cannot
distinguish between causal feedback and feedforward influences of variables on
the trait, which is our motivation for introducing the CID; our Theorem 4.3
characterizes the discrepancy between these two frameworks, and thus places
a limit on how far the PID can fail to estimate the CID, which (as we show) is
characterized by the relative strength of feedforward and feedback processes.
While precise estimates of the quantities involved may be difficult, it may
be possible to provide plausible empirical approximations; for instance, the
feedforward causal epigentic component is bounded by mediated genetic ef-
fects, and the feedback component from medication effects can be estimated
using animal models, as in recent studies of psychotic medications [4,11]. In
Sec. 5 we also discuss an application in cancer genomics, where we argue that
mutation-process specific effects on subclonal fitness may be identified using
non-zero mutual information between such processes and growth rate (which
can be estimated from sequencing data, as in [34]) via Th. 2.10 and Prop. 5.5.

Deterministic, Stochastic and Causal Models. Finally, we wish to em-
phasize the intrinsic differences between the mathematical structures underly-
ing deterministic, stochastic (or probabilistic) and causal models. These kinds
of models can be seen as strictly nested inside one another: deterministic mod-
els are simply stochactic models whose probabilities are all taken to be either
0 or 1, while stochastic models are causal models which are not subject to
any interventions (i.e. subject to the null intervention). In this sense, causal
models contain strictly more information than stochastic models, since they
represent a family of distributions parameterized by all possible interventions,
rather than a single distribution. Alternatively, we can say that causal mod-
els contain counterfactual as well as probabilistic information. As stressed in
axiomatic accounts of evolution [32], we view causal structure as intrinsic to
the definition of an evolutionary process, and thus causal models as the ap-
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propriate mathematical structure for a complete description of such a process.
In Sec. 6, we briefly consider this viewpoint in relation Price’s Equation and a
related information-theoretic result based on the Kullback-Leiber divergence
(used in information theory as a quasi-distance measure between probability
distributions, here the trait distribution at two time-points), discussing their
analogues in stochastic and causal models and stressing how the causal view-
point offers a more complete picture (albeit, one implicit in other modeling
frameworks).

3 Causal Evolutionary Processes

We begin by introducing a general model of a causal evolutionary process. In
its general form, the model is a formalized ‘phenotype-based theory’ of evo-
lution (see [32]), which is agnostic about underlying mechanisms. As argued
in [32] (and as we will be elaborated in subsequent sections), such a perspec-
tive naturally embeds traditional population genetics models as a special case,
since genotypes may be treated as special kinds of discrete phenotypes, while
offering a more general viewpoint. For notational convenience, we introduce
all definitions and examples below in the context of an asexual population
of constant population size, although the model naturally generalizes to mat-
ing populations and varying population sizes. Fig. 1B illustrates the model
definition below.

Definition 3.1. (Causal Evolutionary Process (CEP)): A CEP is a Discrete
Causal Network (DCN) over the variables φnt, ent, wnt, π (all variables dis-
cretized, and πnt ∈ {1...N}), representing the phenotype, environment, fitness
and parent of the n’th individual in the population at time t respectively, where
‘fitness’ and ‘parent’ are to be understood in a structural sense to be defined,
and n ∈ {1...N}, t ∈ {0...T}. We write φt, et, wt, πt for the collective settings
of these variables at t, and for convenience use identical notation for names
and values taken by random variables. Further, φnt and ent may be viewed as
a collection of sub-phenotypes and sub-environmental variables, in which case
we write φnst and enst for the value of sub-phenotype (resp. environment) s of
individual n at time t. We set Pa(φ0) = Pa(e0) = Pa(π0) = {} (noting that
Pa stands for the ‘graphical parents’ of a variable in the causal graph, while
πnt is the evolutionary variable representing the parent of individual n at time
t, whose values are indices of individuals at t − 1). For all other variables,
we set Pa(wt) = {φt, et}, Pa(φt) = {φt−1, et, πt}, Pa(et) = {et−1, φt, πt},
Pa(πt) = {wt−1} . A model is specified by defining the following kernel forms,
where we use

∏
to denote a ‘kernel product’ (this corresponds to multiplica-

tion for directed acyclic causal graphs, but is defined more generally for cyclic
graphs as described in Appendix E), (=) for an optional kernel factorization,
and set the underlying variables of the DCN to correspond to the lowest-level
factorization consistent with the model kernels:
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Fitness kernel:

K(wt|Pa(wt)) = f(wt|φt, et)
(=)

∏
n

fn(wnt|φt, et), (1)

Heritability kernel:

K(φt|Pa(φt)) = h(φt|φt−1, et, πt)

(=)
∏
ns

hns(φnst|φ(πt(n),t−1), ent, φns̄t), (2)

Structure kernel:

K(πt|Pa(πt)) = i(πt|wt−1)

(=)
∏
n

in(πnt|w(n,t−1)). (3)

For the environmental variables, we have the following alternative kernel forms:

K(et|Pa(et))

= Ke(et|et−1, φt, πt)

(=)


∏
n Pe(ent) (a)∏
nsKe(enst|φnt, ens̄t) (b)∏
ns ~ns(enst|e(πt(n),t−1), φnt, ens̄t). (c)

(4)

In Eq. 4, we refer to factorizations (a) and (b) as independent and interactive
environmental kernels respectively, and (c) as an environmental heritability
kernel (represented by the symbol ~). Additionally, kernels must be given over
the remaining variables for which Pa(.) = {} to completely specify a CEP
model.

The interaction of the fitness and structure kernels (f and i resp.) give rise
to different possible fitness models. We summarize some of these possibilities
below:

Definition 3.2. (Fitness models): We define the following CEP fitness models:
Classical fitness representation:

f(wt|φt, et) = P ({w1, ..., wN}|φt, et)
i(πt|wt−1) ∝

∏
n

[(
∑
m

[πt(m) = n]) = wn], (5)
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Causal Evolutionary Processes 11

Multinomial model (ωnt = wnt/(
∑
n wnt) denotes normalized fitness):

f(wt|φt, et) =
∏
n

P (wnt|φt, et)

i(πt|wt−1) = Mult({(
∑
m

[πt(m) = n])|n = 1...N}|{ω(n=1...N,t−1)}), (6)

Moran model:

f(wt|φt, et) =
∏
n

P (wnt|φt, et)

i(πt|wt−1) ∝

{
w(n∗,t−1) if πt ∈ Sn∗
0 otherwise.

(7)

where Sn∗ is the set of all vectors in NN containing exactly two entries with
the value n∗, and all other values appear at most once.

In the classical fitness representation, the variable wnt directly represents
the number of descendants of individual n at time t in the following genera-
tion, and the structure kernel i simply ensures the parent map π is consistent
with these values. In the multinomial model, the values wnt determine the
relative fitnesses of individuals at time t and the actual numbers of descen-
dants are determined by multinomial sampling, implemented by i (as in the
Wright-Fisher model with selection [9]). In contrast, in the Moran model, the
wnt’s determine the probability that an individual is chosen to reproduce, and
i implements the constraint that only one individual reproduces and dies per
generation, with the latter being chosen uniformly. Although both Multinomial
and Moran models could be represented in the classical fitness representation,
this would be at the expense of using a non-factorized form of the f kernel;
hence we argue that the representations in Eqs. 6 and 7 are more natural pa-
rameterizations of these models (so that, in general, ‘fitness’ is not exclusively
interpreted as the number of offspring at time t+ 1, but rather a set of suffi-
cient statistics for generating the parental map at time t+1). Further, we note
that, as in the case of the Moran model, the time steps t need not correspond
to discrete generations.

Finally, we define a transformation between CEPs:

Definition 3.3. (Transformation between CEPs): A transformation between
CEPs is defined as a transformation between their underlying DCNs in the
sense of Def. 2.2 (Appendix A).

In relation to Def. 3.3, we note that a transformation between CEPs need
only preserve the causal structure; hence, it may (for instance) map environ-
mental onto phenotypic variables, or a large population onto a small popula-
tion by merging individuals. All that is necessary is that the resulting causal
structure may be interpreted as an evolutionary process in some way. We shall
give examples in the following sections of transformations with characteristics
such as above.
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12 J. Warrell and M. Gerstein

4 Model 1: Genetics, Epigenetics and Environmental Feedback

The CEP model as introduced in Sec. 3 does not include a model of genetics.
However, as noted, the genotype may be regarded as a special type of dis-
crete phenotype, and the process of genetic transmission with mutation can
be naturally modeled in the heritability kernel. Here, we describe a type of
CEP which includes both genetics and epigenetics, along with potential effects
from and impacts on the environment (environmental feedback), for instance
via behavior or drugs used in treating diseases. The model thus formalizes
a gene-environment-phenotype map (G-E-P map) of the kind described in-
formally in [16] (for simplicity, we refer to any ‘intermediate phenotype’ as
epigenetic, including indicators of cell/tissue state such as the the transcrip-
tome). Our purpose is to provide a general model appropriate for analyzing the
causal factors underlying complex traits, such as psychiatric disorders. As we
show, using this model, the causal information decomposition (CID) described
in Sec. 2 and Appendix A provides a principled framework for breaking down
the variation in a complex trait due to genetic, epigenetic and environmental
factors; the model is more general than other models with similar goals, for
instance TWAS (see [41]), since it aims to model both genetic and other causes
of a trait, allowing feedback with the environment at the epigenetic level, and
uses an information theoretic framework to decompose the variation and hence
is appropriate in the context of arbitrary (non-linear) dependencies.

We first define a general CEP model with the above characteristics:

Definition 4.1. (Complex Trait Causal Model (CTCM)): We define a CTCM
as a CEP with the following special structure. In terms of phenotypes, we re-
quire three sub-phenotypes which we denote X,Y and Z, hence φnt = {xnt, ynt,
znt}, which represent genotype, epigenome (including transcriptome), and ob-
served trait(s) respectively. Environmental variables are referred to collectively
as e. Further, we use the factorized form of the heritability kernel in Eq. 2,
and require the following special forms for the sub-kernels (using the kernel
product notation from Appendix E):

hn(φnt|φ(n,t−1), ent, πt) = hx(xnt|x(πt(n),t−1)) · g1(ynt|xnt, ent) ·
g2(znt|ynt, ent), (8)

where g1 and g2 are referred to collectively as the genotype-phenotype map,
and independently as the genetic-epigenetic and epigenetic-observed kernels
respectively, while hx is referred to as the genetic transmission kernel. Fur-
ther, the CTCM uses an environmental kernel having either an independent
factorization, or an interactive form (Eq. 4 (a) and (b) resp.); the latter takes
the form:

Ke(ent|φnt) = g3(ent|znt), (9)

and g1, g2 and g3 are referred to collectively (when all present) as the genotype-
environment-phenotype map. [We note that ‘map’ here and following Eq. 8
refers in general to a stochastic map.]

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2020. ; https://doi.org/10.1101/830422doi: bioRxiv preprint 

https://doi.org/10.1101/830422
http://creativecommons.org/licenses/by/4.0/


Causal Evolutionary Processes 13

We next define a special class of CTCMs which embed a DDCM over the φnt
and ent variables at each time-point; hence, we model the genetic, epigenetic,
observed trait and environmental interactions by an embedded dynamic causal
process. We can then coarse-grain this process to a cyclical CTCM over these
variables at equilibrium (see Fig. 1C for a related schematic). For conciseness,
the full definition of the CTCM* is given in Appendix B, Def. 4.2.

Definition 4.2. (CTCM with embeded DDCM (CTCM*)): See Appendix B.

The CTCM* model gives us a convenient way of decomposing the varia-
tion/information in a trait into components which depend on unique, redun-
dant and synergistic combinations of genetic, epigenetic and environmental
factors. Using the CID definition and notation from Appendix A, we pro-
pose that, for a population at time t > 0, this is achieved by selecting an
arbitrary individual n, and calculating the backward causal information de-
composition CID(S → Znt), where S ⊂ {Xnt, Ynt, ent}, in the eq-CTCM*
associated with the original CTCM* (assuming it exists, and that the struc-
ture kernel i is invariant to permutations of the population indices). Since we
specify in Def. 4.2 that the embedded DDCM kernels have the self-separability
property, Theorem 2.9 implies that this is a strict decomposition of the vari-
ation in Znt, i.e. CID(S → Znt) ≤ H(Znt). Further, if g3 is an independent
rather than an interactive environmental kernel, Theorem 2.10 implies that we
can lower-bound the forward-CIDs CID(Xnt → Znt), CID(ent → Znt), and
CID(Ynt → {Znt, Xnt, ent}), using the observed unique information between
each variable and Z (i.e. the observed unique information is predictive of the
consequences with respect to an observed trait of performing manipulations
on each variable). We note that the PID of the observed distribution in this
case is identical to the backward-CID as above.

In the case that g3 is an interactive kernel, we have environmental feedback
from the observed trait to the epigenetic levels, making it harder to relate the
observed phenotype distribution to the proposed causal decomposition. How-
ever, we can outline a number of possible relationships. For this purpose, we
introduce an alternative representation of a CTCM*. We consider that all
transition kernels share a common parameter α from the self-separable repre-
sentation, Eq. 28 (with K1 set to the identity). Since Eq. 28 has the form of a
mixture distribution, an equivalent representation of a CTCM* is formed by
introducing latent variables, CY (τ), CZ(τ), Ce(τ), which are Bernoulli vari-
ables (or collections of Bernoulli variables if Y, Z or e are factorized) with
mean 1−α. If CV (τ) = 0, variable V ∈ {Y,Z, e} does not update at time-step
τ , otherwise V updates according to the K2 component of the self-separable
representation in Eq. 28. If α is set large enough with respect to the num-
ber of variables, we can ensure that with probability 1 − ε, with ε arbitrarily
small,

∑
V CV (τ) ≤ 1, i.e. at most one variable updates at a given time-step.

Conceptually, we can view an increase in α as effectively a reduction in the
duration of the time-step τ . We also introduce C∗(τ) ∈ {X,Y, Z, e, ∅}, writing
C∗(τ) = V when V is the most recent variable for which CV (τ ′ < τ) = 1
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14 J. Warrell and M. Gerstein

assuming V is unique, and C∗(τ) = ∅ when V is not unique. We can then
make the following observation (see Appendix B for the proof):

Theorem 4.3. (Backward-CID bounds): For a CTCM* represented as above
with latent factors C, and associated eq-CTCM*, where S ⊂ {X,Y, e}, V ∈
{X,Y, Z, e}, (.)V denotes the mean over values of V , and II is the interaction
information (II(S;Z;C∗) = I(S;Z|C∗)−I(S;Z)), in the limit α→ 1 we have
that:

[II(S;Z;C∗) ≤ 0] ∧ [CID(S → Z) ≤ (CID(S : Z|QV ))V ] =⇒
PID(S : Z) ≥ CID(S → Z), (10)

and similarly:

[II(S;Z;C∗) ≥ 0] ∧ [CID(S → Z) ≥ (CID(S : Z|QV ))V ] =⇒
PID(S : Z) ≤ CID(S → Z). (11)

where all II, CID and PID quantities are evaluated in the eq-CTCM* model
(at a given n and t, where C∗ is treated as an additional phenotype). Further,
QV = Peq(¬V )KV

2 (V |¬V ) (unrelated to the notation QXA used in Def. 2.4)
with KV

2 the second component of V ’s kernel, as in Eq. 28, and we assume
Y,Z and e are not factorized. For the case that Y,Z or e are factorized, S
and V are subsets and elements of the sets of relevant factorized variables
respectively, and Eqs. 10 and 11 hold identically.

Proof See Appendix B.

Theorem 4.3 shows that we can identify certain situations in which the ob-
served PID components at equilibrium consistently under or over-estimate the
equivalent components of the CID. The LHS of Eqs. 10 and 11 each contain
two conditions, the first depending on the sign of an Interaction Information
(II) term, and the second comparing two CID terms. Broadly, the latter con-
dition implies that if the feed-forward interaction between S and Z is strong
compared to any feedback interactions, the PID will tend to underestimate
the CID (Eq. 11), and vice-versa if the feedback is stronger (Eq. 10). However,
the first condition makes this dependent on the type of feedback interactions
present: if these tend to interfere with the feedforward interactions so that the
net effect is to reduce the mutual information between S and Z (I(S;Z)), the
II term will be positive as in Eq. 11, while non-interfering interactions will
tend to increase I(S;Z), potentially leading to a negative II term as in Eq.
10 (note that we use the same sign convention for the interaction information
as in [40]). Potentially, the situation in Eq. 11 may apply when Z is a disease
trait, and S is the transcriptome in a relevant tissue, where the feedforward
interaction is strong (the trait is strongly determined by S), and the feedback
(in terms of treatment) reduces the severity of the disease by directly inter-
fering with the underlying mechanisms. In contrast, the situation in Eq. 10
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Causal Evolutionary Processes 15

will apply if the feedforward effects are weak, and there is not a strong in-
terference with feedback interactions at the level of S (for instance, a disease
treatment which targets symptoms in a different tissue, inducing variation in
S orthogonal to the causal factors for the disease).

5 Model 2: Multilevel Selection

Multilevel selection has been identified as an important component in a num-
ber of evolutionary contexts, such as eusociality in insects [26], bacterial plas-
mid evolution [29], and group selection [37]. It has also been proposed that
multilevel selection is a driving force behind major evolutionary transitions,
such as the transition to multicellularity [6,27]. Here, we propose a basic def-
inition of a multilevel causal evolutionary process (MCEP) in the framework
introduced above, which naturally connects the notion of evolution occurring
at multiple levels to coarse-graining transformations in the sense of Defs. 2.2
and 3.3. We then show how two types of multilevel evolutionary process are
special cases of our model (group selection, and selection acting on mutational
processes in cancer). Our general definition takes the following form:

Definition 5.1. (Multilevel Causal Evolutionary Process (MCEP)): An M-
level MCEP is a collection of causal evolutionary processes, E1, E2, ..., EM ,
such that each pair of adjacent processes forms a 2-level MCEP in the following
sense. CEPs E and F form a 2-level CEP iff there exists a transformation from
E to F (denoted (τ, ω)) in the sense of Def. 3.3, along with a partial map µ
of time-points in F to time-points in E (which may depend on (φ, e, w, π)
across all variables in E), and the following conditions apply. (1) We have
that |F |N(t) ≤ |E|N(µ(t)) ∀t, and |F |T ≤ |E|T , where we write |A|N(t) for the
‘actual population size’ of process A at time t, and |A|T for the ‘actual number
of time-points’ in process A. Each of these may be different from the values
of N and T in A, since we will allow a null phenotype value to be declared in
each CEP (whose parents are arbitrary, and whose offspring are all null): any
individuals having φnt = null will not count towards |A|N(t), and time-points
for which all individuals are null do not count towards |A|T , these being the
only time-points excluded from the domain of µ; further, time-points beyond
maxt{t|∃t′ µ(t′) = t} do not count towards |E|T . (2) We require at least one
of the inequalities in (1) to be strict. (3) We require that for any time-point
t in E for which µ(t′) = t, the projection of the map τ onto φt′ in F is not
independent of φnt in E for any (non-null) individual n (i.e. it does not take
the same value for all settings of φnt given a joint setting of all other variables
in E), so that no individual’s phenotype is entirely ‘projected out’ at these
time-points by τ .

We now show how the group-selection model of [37] can be represented as
an MCEP:
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16 J. Warrell and M. Gerstein

Example 5.2. (Group Selection model (MCEPgroup)): We fix an N and T for
process E. For all individuals in E, φnt ∈ {C,D, null}, where C and D repre-
sent cooperators and defectors respectively. ent ∈ {1...M} represents the group
membership of an individual (where M is the maximum number of groups), and
fitness wnt is determined by the expected pay-off for an individual when inter-
acting with other members of the same group according to a fixed game matrix
(see [37]). A maximum group-size is fixed at NG, such that N = NGM . The
heritability and environmental kernels (h and ~) enforce strict inheritance of
phenotype and group membership (with the exception noted below), while struc-
ture kernel i implements Moran dynamics (Eq. 7), so long as doing so will not
allow a group to exceed NG; otherwise, with probability (1 − q) a random in-
dividual from the same group dies, and with probability q the group divides
(implemented by the environmental kernel as a random partition) while all
members of another uniformly chosen group die. Since the population number
may fluctuate below N , null values are used to ‘pad’ the population as required.

For process F , we set the population size to be M and the number of time-
steps to be T . We map t = 1 in F to the first time-point in E, and subsequent
time-points in F to the times at which the 1st, 2nd, 3rd... group divisions oc-
curred in E. The ‘individuals’ in F correspond to the groups in E; hence, we let
φnt = (νn, Cn), where νn is the number of individuals in group n at time µ(t)
in E, and Cn is the proportion of cooperators in group n (we set φnt = null if
νn = 0). In F , ent = {}. We can naturally specify the parental map πnt on F
by mapping a group at t to the group at t− 1 when the groups they correspond
to at µ(t) and µ(t−1) in E are either the same or split from one another. The
fitness model can be specified by letting wnt be the probability that group n will
split first (in the context of all other groups). The structure kernel i then simply
needs to implement Moran dynamics, unless the number of groups is less than
NG, in which case a null group is chosen for replacement in place of uniform
sampling. The heritability kernel in F then needs to implement a conditional
distribution over φt corresponding to the joint distribution over the sizes and
cooperator prevalences in group at t, given that a particular group from the
previous generation divided first (we note that since, in general, dependencies
will be induced between the group phenotypes by the intervening dynamics in
E, the unfactorized version of the heritability kernel in Eq. 2 must be used).
Time-points in F following the last time-point for which µ(t) is assigned are
padded with null phenotype values (clearly, |F |T < T , since at most T − 1
group divisions can occur in E).

By construction, the pair of CEPs E and F above form a 2-level MCEP .
For the required transformation, we simply take τ to map a configuration in
E to the configuration in F which consistently represents the sizes and pro-
portions of cooperators in each group a at the times µ(0), µ(1)... by (νa0, Ca0),
(νa1, Ca1), .... For the mapping ω we must be careful to restrict the interven-
tions allowed on E to those which fix all phenotypes and environments at a
given time t. With this restriction, these can be mapped many-to-one onto
interventions in F which match the induced group characteristics. The first
two conditions in Def. 5.1 are satisfied by construction, while the third follows
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Causal Evolutionary Processes 17

since a change in phenotype of a individual in E at a time point µ(t) necessar-
ily induces a change in the proportion of cooperators in one group, and hence
changes φt in F .

We note that the MCEPgroup example above illustrates how the division and
complexity of interactions between individuals and environment may depend
on the level at which an evolutionary process is viewed (as well as the particu-
lar representation): In process E, group indices are considered environmental
variables, which induce complex inter-dependencies in the fitnesses and her-
itabilities (phenotypic and environmental) between individuals; however, in
process F , the groups are themselves considered individuals with their own
properties, and much of the complexity at the underlying level is folded into
the heritability of group phenotypes, along with a simpler fitness model.

Before outlining our final example, we introduce a general kind of MCEP
over multiple temporal levels:

Definition 5.3. (Regular MCEP with multiple time-scales (MCEPtemp)): An
MCEPtemp is an MCEP over processes E and F with total time-steps TE
and TF , where TE = TFTS (with TS > 1 a ‘temporal scaling factor’), and
µ(t) = t · TS. The transformation τ involves the projection of all phenotype
and environmental variables in E onto their values at {µ(0), µ(1), ...}, while
the variable πnt in F is set to the ancestor of n at time-step µ(t − 1) in E.
The fitness variable wnt in F is set to the absolute number of offspring of n at
t+ 1, and a classical fitness model is used as in Eq. 5. In general, the fitness,
heritability and environmental kernels in F will need to take unfactorized forms
to capture the complex dependencies induced by the low-level dynamics in E.
Further, we restrict interventions in E to interventions on the phenotypes and
environments of variables at {µ(0), µ(1), ...}, and map these to corresponding
interventions in F .

We note that any CEP may be converted to an MCEPtemp by simply fixing
a temporal scaling TS , setting the original CEP as E, and following the con-
struction above to form F . In this context, the values wnt represent a limited
form of ‘inclusive fitness’ over the period µ(t) to µ(t + 1) in E, with respect
to genealogical relatedness relative to a base population at µ(t) (see [28] for a
discussion of genealogical relatedness and genetic similarity based definitions
of inclusive fitness, the former corresponding to Hamilton’s formulation). As
our final example, we use the above to illuminate the interaction of mutational
processes and selection in cancer. As cancers evolve, subclones acquire not only
distinct sets of mutations, but also distinct mutational processes governing the
random process by which mutations are generated (see [1]). For instance, by
disrupting the DNA repair machinery, certain mutations may increase the mu-
tation rate, or make it more likely that specific mutations (e.g. in particular
trimer or pentamer contexts) are acquired in the future. Recent evidence has
emerged that cancer driver mutations are differentially associated with the
presence of particular mutational processes, and that the prevalence of partic-
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18 J. Warrell and M. Gerstein

ular mutational processes change in prototypical ways across the development
of particular cancers [8,35]. To analyse the interaction of mutational processes
with subclonal fitness, we introduce the following MCEP model (see Fig. 1D
for related schematic):

Example 5.4. (MCEP with mutational processes (MCEPmut-proc)): We build
an MCEPmut-proc model by introducing a CEP model of mutational processes
as E, and forming F directly by applying the MCEPtemp definition in Def.
5.3. For E, we set the phenotype variables as φnt = {xnt,mnt}, where x and
m represents the genotype and mutational processes acting in cell n at time
t respectively. We use the factorized form of heritability kernel in Eq. 2, set-
ting hn = hx(xnt|x(πt(n),t−1),m(πt(n),t−1))·hm(mnt|xnt,m(πt(n),t−1)). We note
that this incorporates a genetic transmission kernel hx which is influenced by
the mutational processes operating in the parent cell, and a mutational pro-
cess kernel hm which allows for potential epigenetic inheritance of mutational
processes across generations (as well as determination from the genotype).
Further, we use a factorized fitness kernel of the form fn(wnt|xnt); hence we
assume that the genotype acts as a ‘common cause’ to the mutation processes
and fitness of a given cell, but that the latter two variables are not directly
causally linked. The structure kernel can be of arbitrary form, and all environ-
ments are empty.

The MCEPmut-proc example above illustrates the following points. First, we
note that for any individual in the lower-level process E, the mutational pro-
cesses mnt are causally indendent of fitness wnt; that is, intervening on mnt

will not affect wnt (by definition). However, this is no longer the case in the
higher-level process F ; here, because of the intervening lower-level dynamics,
there is a feedback between the mutational processes and fitness in E across
multiple time-steps, meaning that wnt for an individual in F is affected by
interventions on both xnt and mnt. In fact, in F we have the following:

Proposition 5.5. (Unique Information bounds for MCEPmut-proc): For an in-
dividual n at time t in the high-level component process (F ) of an MCEPmut-proc

as above, we have that UI(wnt : xnt\mnt) ≤ CID(xnt → wnt), and UI(wnt :
mnt\xnt) ≤ CID(mnt → wnt) + C, with C defined as in Th. 2.10. (Appendix
A)

The proof of Prop. 5.5 follows directly from Th. 2.10, along with the
MCEPmut-proc definition, which implies that xnt causally influences, but is
not influenced by mnt (in both E and F ), and both influence and are not
influenced by wnt (in F ). We note that Prop. 5.5 implies that the unique
information components of the observed distribution PID over xnt,mnt, wnt
across multiple generations are informative about the potential contributions
of xnt andmnt on subclone fitness. Particularly, UI(wnt : mnt\xnt) > 0 implies
that there is a generic impact on fitness from the mutational processes across
a particular time-scale, providing a lower-bound up to the additive constant
C. Further, we note that while the MCEPmut-proc model above postulates no
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Causal Evolutionary Processes 19

intra-generational feedback of the mutational processes on the genotype (only
inter-generational feedback), the analysis above can be elaborated to include
such feedback within generations, and can be expected to hold so long as the
intra-generational feedback is weaker than that across generations.

6 Causal Interpretation of Price’s Equation and Related Results

We finish by outlining a number of relationships which can be shown to hold
in our CEP framework, including Price’s equation an a number of analogous
results. First, we can show:

Theorem 6.1. (Price’s Equation with probabilistic and causal analogues (as-
suming perfect transmission)): In a CEP, with empty environmental contexts
and perfect transmission (hence, the heritability kernel factorizes and takes the
form hn(φnt|φ(πt(n),t−1)) = δ(φnt|φ(πt(n),t−1)), where δ(.|a) is a delta distribu-
tion centered on a), and a classical fitness model as in Def. 3.2, we have:
(a) Price’s Equation:

∆φ̄ =
1

w̄
Cov(φ,w), (12)

(b) Probabilistic Price Equation (Rice’s Equation [6,32]):

∆φ̂ = Cov(φ, Ω̂), (13)

(c) Causal Price Equation:

∆do(φ=φ0)φ̂ = Covdo(φ=φ0)(φ0, Ω̂), (14)

where we write ā for the average of a across individuals in a single, observed
population, and â for the expected average of a across the ensemble of popu-
lations modeled by the CEP (following [32]), Ωn = (wn/w̄|w̄ 6= 0) is relative
fitness (see [32]); Cov(.|.) is the covariance; and the subscripts do(φ = φ0)
indicate that a given quantity is evaluated under the distribution after inter-
vening on φ (setting φ for all individuals at a given time-step).

Proof For proofs of (a) and (b) see [27] and [32], which can be applied directly
since no interventions are specified. For (c), we note that, having applied the
operation do(φ = φ0), we produce a derived CEP whose underlying distribu-
tion is Pdo(φ=φ0). Eq. 14 then follows directly by applying (b) to this derived
CEP. ut

We note that the distinctions between the original, probabilistic and causal
versions of Price’s equation in Theorem 6.1 allow us to make fine distinctions
corresponding to direct and indirect selection on traits. For instance, although
φ+∆φ̄ and φ+∆φ̂ will vary with φ for any trait which covaries with fitness
or expected fitness, for φ0 + ∆do(φ=φ0)φ̂ this will only be the case for traits
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which have a causal impact on fitness (provided the intervention φ0 does not
fix all individuals to a single phenotype).

Finally, we note an information-theoretic analogue of the Price equation
based on the KL-divergence, which we believe has not been previously ob-
served:

Theorem 6.2. (Analogue of Price’s Equation based on KL-divergences): In
a CEP with restrictions and notation as in Th. 6.1, we have:

K̂L(Pφ||P ′φ) = K̂L(Pφ||Ω†) +H(Pφ), (15)

where Pφ and P ′φ are the observed (sample-level) distributions across trait φ at
arbitrary time-points t and t + 1 resp., KL(A||B) =

∑
iAi log(Ai/Bi) is the

KL-divergence between (possibly unnormalized) distributions A and B, H(.)
is the Shannon entropy, and Ω† is a vector of relative fitness values for each
value of the phenotype.

Proof From the replicator equation, we have:

P ′i = Pi

(wi
w̄

)
= PiΩ

†
i , (16)

where the subscript i ranges across values of the phenotype. The result follows
by substituting Eq. 16 into the LHS of Eq. 15 and rearranging:

K̂L(Pφ||P ′φ) = E[
∑
i

Pi log(Pi/P
′
i )]

= −H(Pφ)− E[
∑
i

Pi log(P ′i )]

= −H(Pφ)− E[
∑
i

Pi log(PiΩ
†
i )]

= K̂L(Pφ||Ω†) +H(Pφ). (17)

ut

Using a similar argument to Th. 6.1 part (c), we can also state a causal ana-
logue to Eq. 15:

Corollary 6.3. (Causal analogue of Theorem 6.2): Using the notation of 6.2,
and writing do(φ0) for do(φ = φ0):

K̂Ldo(φ0)(Pφ0 ||P ′φ0
) = K̂Ldo(φ0)(Pφ0 ||Ω†) +H(Pφ0). (18)

Eqs. 15 and 18 are similar in form to the Price equation, since they determine
the distance a trait will move (measured using displacement of its mean or
KL divergence over the population-level distribution, for the Price equation
and KL-analogue respectively) based on the similarity between the distribu-
tions of the trait and relative fitness (measured using the covariance or KL
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divergence respectively). For complex traits and evolutionary dynamics, the
KL-analogues may be more informative, since they model the change in the
whole trait distribution, as opposed to only its mean. For instance, at an evolu-
tionary fixed point, we require not only that ∆φ̄ = 0 but also K̂L(Pφ||P ′φ) = 0
(assuming a large population). We also note the following properties of Eq. 15:
Unlike the Price equation, Eq. 15 includes a dependency on the trait’s entropy;
further, the KL-‘distance’ moved by a trait’s distribution increases as the (un-
normalized) KL distance between trait and fitness distributions increases, or
the entropy increases; the KL divergence thus need not go to 0 to reach a fixed
point, but may be balanced by the entropy term, which may occur since the
unnormalized KL divergence is not strictly positive, although it is bounded
below by −H(Pφ) since the LHS of Eq. 15 is non-negative (for instance, the
uniform distribution on a trait whose values all have equal fitness is a fixed
point for which K̃L(Pφ||Ω†) = −H(Pφ)). Finally, we briefly note that the rela-
tionship in Th. 6.2 differs from the associations between Price’s equation and
information theory that have been drawn in [10]: There, the mean change in
a trait associated with Price’s equation is re-expressed in terms of the Fisher
Information between the trait and the environment (or an equivalent form in-
volving the Shannon information), and it is shown that Fisher’s Fundamental
Theorem (FFT) arises by maximizing the information captured by the pop-
ulation; in contrast, Th. 6.2 does not rederive Price’s equation or FFT, but
rather relates two KL divergences involving analogous quantities to those in
the former, leading to a distinct view of trait evolution at the distribution level
as discussed.

7 Discussion

The framework of Causal Evolutionary Processes introduced in this paper
provides a principled way to formulate evolutionary models, allowing both
for cyclical interactions between evolutionary variables, and the analysis of
evolutionary processes at multiple levels. We have developed a technical ap-
paratus appropriate for this analysis in the form of Discrete Causal Networks
and the Causal Information Decomposition, and have shown how a diverse
range of evolutionary phenomena can be captured in our framework, includ-
ing complex traits produced by feedback processes acting between epigenetic,
behavioral and environmental levels, and multilevel selection models, including
the selection of mutational processes in cancer. We have explored the proper-
ties of these models and our general framework, showing that under certain
circumstances the causal impact of a given variable on another (for instance, a
variant’s impact on a trait) can be bounded by observed information-theoretic
quantities, and that a number of generalizations of Price’s equation hold in
our framework.

Our framework may be extended in various ways. For convenience, we have
restricted our attention to discrete models in the above analysis (having both
discrete time and discrete evolutionary variables). Our current framework may
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be formulated in the more general context of Cyclical Structural Causal Mod-
els [5] (see Appendix C), allowing for a measure-theoretic analysis including
continuous variables and time. Further, we have restricted attention to the
case of evolutionary processes with asexual reproduction; generalization to
processes involving sexual reproduction is straightforwardly handled by alter-
ing the structure of the parental map π so that individuals are mapped to
subsets of individuals in the previous generation as opposed to single indi-
viduals, while processes such as recombination and assortative mating can be
modeled by using particular forms of heritability and structure kernels.

Further, we have not considered the problem of learning the causal struc-
ture and kernel forms from data. Methods relying on Mendelian randomization
(e.g. [24]) can estimate the causal effects of variants on a trait assuming a lin-
ear relationship, but in general we may be interested in the causal effects of
variables above the genetic level (e.g. epigenetics) and environmental factors
on a trait, as well as non-linear models. In general, this is a hard problem, but
general methods have been proposed, for instance the multi-level approach of
[7], or the information-theoretic approach of [19], which may be imported into
our framework. Further, we intend the unique information and backward-CID
bounds in Th. 2.10 and 4.3 to be relevant for approximating the causal impacts
of variables when certain assumptions are made, and in general these may be
seen in the context of a host of bounds which relate various kinds of causal
effect to observables (without interventions) under a range of assumptions (see
[12]).

Finally, we intend our framework to be useful in clarifying foundational
conceptual issues regarding causation and evolution. For instance, identifying
a realized evolutionary process in nature requires providing criteria for iden-
tifying ‘individuals’ on which the process acts, and separating these from an
‘environment’; attempts have been made to cast such criteria in information-
theoretic terms (see for instance [22]), and our framework provides a natural
language for expressing such ‘connecting principles’. We may for instance de-
clare that, to a first approximation, a single level evolutionary process requires
environmental variables which are independent of an individual’s identity given
its generation, acting as a ‘thermal-bath’ to the system; features such as spatial
population structure, behavior-environmental feedback and niche construction
(leading to more complex forms of heritability kernel) would then be taken as
second-order principles which, if strong enough, may disrupt the ‘individual-
ity’ of the entities in the original system (and hence the system’s ‘existence’
qua system). Such considerations may also help sharpen questions regarding
multilevel selection, whose role has been called into question in explanations of
evolutionary processes (see [27,28] for a summary of the issues). Potentially, a
model such as the multilevel CEP we outline, along with principles concerning
which types of kernels are more or less ‘preferred’ at each level (for instance,
in terms of description length, where lower-level kernels may inherit structure
from kernels at higher-levels), could allow us to perform model selection among
MCEPs with different numbers of levels. The problem of identifying multilevel
selection can thus be cast in the more general framework of identifying causal-
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ity at multiple levels, where we may have multple levels of variables which
supervene on one another (for instance, see [7,15,28]); the existence of selec-
tion at multiple levels is the particular case of this problem when the causal
relationships are constrained to have a special structure (such as an MCEP).
In summary, we believe that consideration of explicit causal models of the
kind we have outlined will be useful when approaching both computational
and conceptual issues in models of evolution.
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Appendix A Discrete Cyclic Causal Systems and Causal
Information

We present here a technical summary of the basic concepts we need for our
framework. In the process, we introduce the Causal Information Decomposition
(CID), and summarize a number of its properties. First, we define a model of
discrete cyclic causal systems, a Discrete Causal Network (DCN), which we
will use as our basic model throughout the paper (see Fig. 1A for a summary
of the relationships between the main models of the paper). We focus on
discrete models to avoid the need to use differential entropy when defining
information theoretic quantities, and leave generalization of our framework to
the continuous case for future work.

Definition 2.1. (Discrete Causal Network (DCN)): Let X = {Xi} be a set
of discrete random variables indexed by i ∈ I = {1...I}, each taking values in
the set V = 1...V , and Pa : I → P(I) be a function which returns a set of
parents for each index (where P(.) denotes the powerset, and the underlying
graph of Pa may contain cycles). Then, a DCN over X consists of a collection
of probability kernels Ki(Xi = xi|XPa(i) = xPa(i)) specifying the conditional
distribution of each variable on its parents, and a partial ordering (I,≤) where
I is a subset of all perfect interventions on X with the inherited ordering on
interventions (for ι1, ι2 ∈ I, ι1 ≤ ι2 iff ι2 fixes all variables fixed by ι1 to
matching values, and possibly fixes additional variables). Further, a solution
to a DCN is a set of joint distributions Pdo(ι∈I)(X ) such that the conditional
distributions of all non-intervened variables Xi on XPa(i) match Ki, and the
marginals of all other variables are delta distributions at their respective in-
tervened values.

We note that our Def. 2.1 can be viewed as a Causal generalized Bayesian
network as introduced in [17] or a special case of a Structural Causal Model
(SCM) as in [5], with an additional restriction in each case to a subset of
interventions (I,≤) (for an equivalent SCM formulation, see Appendix C; also
note that for convenience we assume all variables in Def. 2.1 have a common
discrete codomain, V, which can be assumed without loss of generality, since
V may be taken large enought to embed all codomains if they are differently
sized). By adding the restriction on the interventions considered, we are able
to define a notion of transformation between DCMs, following the notion of
transformations between Structural Equation Models in [33]:

Definition 2.2. (Transformations between DCNs): Suppose we have two DCNs
over variables X = {Xi∈{1...I}=I}, Y = {Yj∈{1...J}=J} taking values in {1...V1}I
and {1...V2}J respectively, with kernels {K1

i } and {K2
j } (resp.) and interven-

tion posets over I and J (resp.). Let τ be a map from V I1 to V J
′

2 , where
J ′ = |A| for A ⊆ J, and ω be an order preserving surjective map from I to J .
Then (τ, ω) is a transformation of DCMs iff there exists a pair of solutions
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for which:

Pdo(ι)(X ∈ τ−1(yA)) = Pdo(ω(ι))(YA = yA) ∀ι, yA, (19)

where τ−1(y) is the pre-image of y under τ .

Further, we wish to be able to analyse the information shared between
DCN variables, and how this is affected by interventions. For this purpose,
we first summarize the Partial Information Decomposition (PID) framework,
using for convenience the formulation in [13]. As originally formulated [40], the
PID decomposes the mutual information between a set of predictors X1...I and
a dependent variable Y , such that every collection of subsets of predictors is
assigned an amount of (non-negative) redundant information. As noted by [13],
this is equivalent to defining the union information for subsets of predictors,
which we summarize as:

Definition 2.3. (Partial Information Decomposition (PID)): Given random
variables X = {Xi} indexed by i ∈ I = {1...I}, with joint distribution P (X ),
a collection of (possibly overlapping) subsets {S1, S2, ..., SJ}, ∀j : Sj ⊂ I, and
a subset T ⊂ I disjoint from all Sj’s, we use the symbol PID to denote the
union information, defined as:

PID({XS1 , XS2 , ..., XSJ} : XT ) = min
Q∈∆

IQ({XS1 , XS2 , ..., XSJ} : XT ),(20)

where IQ(X : Y ) is the mutual information of X and Y under the distribution
Q, and ∆ is the set of all distributions over {XS1 , XS2 , ..., XSJ , XT } whose
pairwise marginals over {XSj , XT } match those of P , i.e. Q({XSj , XT }) =
P ({XSj , XT }), ∀j.

Following [3], a number of further quantities may be defined in terms of the
PID in the case that J = 2. These include the shared or redundant information,
SI(XS1 ;XS2 : XT ) = I(XS1 : XT ) + I(XS2 : XT ) − PID({XS1 , XS2} : XT ),
the co-information or synergy, CI(XS1 ;XS2 : XT ) = I({XS1 , XS2} : XT ) −
PID({XS1

, XS2
} : XT ), and the unique information, UI(XS1

\XS2
: XT ) =

I(XS1
: XT ) − SI(XS1

;XS2
: XT ). Analogues of these quantities may be

defined for J > 2 as in [13].
To define a causal analogue to Def. 2.3, we include also a dependency on

an interventional distribution. Hence, we set:

Definition 2.4. (Causal Information Decomposition (CID)): Given a DCN
as in Def. 2.1, subsets over indices {S1, S2, ..., SJ} and T as in Def. 2.3, and
a distribution over interventions, PI , we define the CID as:

CID({XS1 , XS2 , ..., XSJ} : XT |do(ι) ∼ PI) =

min
Q∈∆(PI)

IQ({XS1 , XS2 , ..., XSJ} : XT ), (21)

where:

∆(PI) = {Q|Q({XSj , XT }) = Pdo(ι)∼PI ({XSj , XT }), ∀j}. (22)
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Further, we use the short-hand notations:

CID(XA1 , ..., XAJ → XB) = CID({XA1 , ..., XAJ} : XB |do(ι) ∼ QX\XB ),

(23)

and

CID(XA → XB1 , ..., XBJ ) = CID({XB1 , ..., XBJ} : XA|do(ι) ∼ QXA),

(24)

when I contains a single intervention for each configuration of XB and XA

in Eqs. 23 and 24 respectively, and QX\XB , QXA weight these according to the
marginals P (X\XB), P (XA) (resp.), while assigning 0 to all other interven-
tions (hence these intervention distributions capture the actual variation in
X\XB and XA resp. in the sense of [14]). We refer to Eqs. 23 and 24 as the
backward- and forward- CIDs respectively.

The CID may be viewed as both a generalization of the PID and the effec-
tive information (EI) [15,36]. The EI can be defined as: EI(PI(XA)→ XB) =
Ido(ι)∼PIA (XA;XB), where XA and XB are disjoint, and PIA is an interven-

tion distribution over XA (i.e., for any intervention ι affecting a variable in
X\XA, PIA(ι) = 0). We thus have:

Proposition 2.5. (Basic CID identities): Letting QXS be as in Def. 2.4, and
writing ∅ for the null intervention with δ∅(.) the intervention distribution which
places probability 1 on ∅:

(a) CID({XS1...J
} : XT |do(ι) ∼ δ∅(.)) = PID({XS1...J

} : XT ) (25)

(b) CID(X\XB → XB) = EI(QX\XB → XB) (26)

(c) CID(XA → XB) = EI(QXA → XB). (27)

Proof For (a), setting PI = δ∅(.) in Eq. 22 makes ∆(PI) identical to the set ∆
in Eq. 20, and hence the identity follows. For (b) and (c), when J = 1 in Eqs.
23 and 24, the CID reduces to the mutual information between variable sub-
sets under the intervention distributions QX\XB and QXA respectively. Hence,
setting the EI intervention distributions identically leads to the proposition.

ut

We now introduce a particular DCM model which will be important in
later sections. This is a causal analogue of a Dynamic Bayesian Network [20],
which we refer to as a Dynamic DCN (DDCN):

Definition 2.6. (Dynamic DCN (DDCN)): A dynamic DCN is a DCN whose
variables and kernel functions have a restricted structure. Particularly, we have
X = {X(i,t)} where i ∈ {1...I} and t ∈ {0...T}, so that X(i,t) represents an
observation of a quantity i at time t. Also, for all t > 0, Pa(i, t) = (Pa′(i), t−
1) and K(i,t)(X(i,t)|XPa(i,t)) = K ′i(X(i,t)|XPa(i,t)), where Pa′(.) K ′i(.|.) are
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auxiliary functions, and for t = 0, Pa(i, t) = {}. Further, it will be useful to
consider a restricted DDCN (r-DDCN) with a constrained set of interventions,
where we take I to include ∅, along with interventions of the form ι(i, vi) =
do(X(i,t=0...T ) = vi) and all combinations of such interventions. For an r-
DDCN, we assume that the network converges to a unique steady-state under
all interventions. Finally, we define a projected DDCN at time α (p-DDCN(α))
to be a DCN constructed from an r-DDCN, including variables {Xi} and {ζi},
with i ∈ {1...I} ranging across the same indices as the underlying r-DDCN,
and the Xi’s and ζi’s each taking values from the same set as the X(i,t)’s,
augmented in the case of the ζi’s with a null value 0. Writing (i, 0) for the
index of Xi, and (i, 1) for the index of ζi, we set Pa(i, 0) = (Pa′(i)\i, 0) ∪
{(i = 1...I, 1)}, Pa(i, 1) = {}, K(i,1) = δ0(.), and let K(i,0) be the conditional
distribution of X(i,α) on X(Pa′(i)\i,α) in the underlying r-DDCN under the
intervention ∧iι(i, ζi) (where ι(i, 0) = ∅, ∀i). The set of interventions in the
p-DDCN consists of ∅, along with all combinations of interventions involving
do(ζi = vi) where vi > 0. By construction, the limiting p-DDCN(α) as α →
∞ is well defined, and represents the set of equilibrium distributions (under
interventions) of the original r-DDCN, which we denote eq-DDCN.

We immediately note the following:

Proposition 2.7. For an r-DDCN and a derived p-DDCN(α), we have a
transformation of DCNs (τ, ω) from the former to the latter by setting:
ω(∧iι(i, vi)) = ∧i do(ζi = vi), ω(∅) = ∅ and τ to be the embedding
(x(1...I,{0...T}\α), x(1...I,α)) 7→ (x(1...I),α), where the set A in Def. 2.2 is A =
{(i = 1...I, 0)}.

Proof The proposition follows directly from the definitions, along with the
fact that ω(.) as defined is order preserving, since it simply maps the basic
intervention ι(i, vi) in the r-DDCN to the basic intervention do(ζi = vi) in
the p-DDCN, implying that order relations between all combinations will be
preserved. ut

Further, we introduce a special separability property on DDCN kernel func-
tions which we will make use of in several places below:

Definition 2.8. (Self-separable DDCN kernels): A DDCN kernel function
K(X(i,t)|X(Pa′(i),t−1)) will be said to be self-separable, if i 6∈ Pa′(i), or:

K(X(i,t)|X(Pa′(i),t−1)) = αK1(X(i,t)|X(i,t−1)) +

(1− α)K2(X(i,t)|X(Pa′(i)\i,t−1)). (28)

We finish by noting a number of further properties which follow from the
definitions above. First, we summarize a number of properties of DDCNs with
self-separable kernels as in Def. 2.8:

Theorem 2.9. (Properties of Separable DDCNs): Given an eq-DDCN, derived
from an r-DDCN in which all kernels are self-separable, we have (writing H(.)
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for the Shannon entropy):

(a) P (Xi = xi) = Pdo(ι)∼QX\Xi (Xi = xi) (29)

(b) H(Xi) ≥ CID(X\Xi → Xi) (30)

(c) H(S ⊂ X\Xi) ≥ CID(S → Xi). (31)

Proof For (a), we note that since P(.) is the equilibrium distribution of the
underlying r-DDCN, we can write (letting Yi = X\Xi):

P (xi) =
∑
xi,yi

P (xi, yi)K(xi|xi, yi)

= α
∑
xi

P (xi)K1(xi|xi) +

(1− α)
∑
yi

P (yi)K2(xi|yi), (32)

where the second line uses the self-separable property. Since the terms on the
RHS depend only on the marginals P (Xi) and P (Yi), the theorem follows, since
the marginals over Yi are preserved in the intervention distribution QX\Xi .

Part (b) follows directly from (a), since CID(X\Xi → Xi) is a mutual
information involving Xi under the intervention distribution QX\Xi . From
(a), H(Xi) is preserved under this intervention distribution, and the mutual
information between two variables cannot exceed the entropy of either alone.

Part (c) follows by noting that the entropy H(S) is also preserved in the
intervention distribution QX\Xi . Since the RHS is again a mutual information,
the inequality must hold. ut

We summarize also a number of bounds involving the unique information
in DCNs with a more restricted structure, namely a Pa(.) function which
forms a DAG (i.e. containing no cycles). Particularly, we focus on the effect
of an arbitrary variable X on another Z, where Z has no descendants. All
other variables are collapsed together as a single variable Y = X\{X,Z}.
Further, we refer to the causal strength, C (see [12,19]), where CX→Z =
KL(P (X)||P (Y )P (X|Y )· P ′(Z|Y )), writing KL(.||.) for the KL divergence,
and P ′(Z|Y ) =

∑
x P (X,Y )· P (Z|X,Y ).

Theorem 2.10. (Unique information bounds): For a DCN with Pa(.) forming
a DAG and X,Y, Z as above, we have:

(a) UI(Z : X\Y ) ≤ CX→Z (33)

(b) UI(Z : X\Y ) ≤ CID(X → Z), if Pa(X) = {} (34)

(c) UI(Z : X\Y ) ≤ CID(X → {Y, Z}) + C, if Pa(X) 6= {}, (35)

where

C = max
x,y

(KL(P (Z|x, y)||P ′(Z|y)))−min
x,y

(KL(P (Z|x, y)||P ′(Z|y))), (36)
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with P ′(Z|Y ) =
∑
x P (X,Y )P (Z|X,Y ).

Proof For (a), we have from [12] that CX→Z ≥ I(Z : X|Y ), where I(. : .|.)
denotes the conditional mutual information. Further, from [31] we have:

UI(Z : X\Y ) = min
Q∈∆

I(Z : X|Y ), (37)

with ∆ as in Def. 2.3. Since P ∈ ∆, UI(Z : X\Y ) ≤ I(Z : X|Y ) ≤ CX→Z .
For (b), from [12] (prior to Lemma 3), we have that CX→Z = I(X : Z)

when Pa(X) = {}. Further, for Pa(X) = {} we have that Pdo(ι)∼QX = P , and
hence I(X : Z) = CID(X → Z). Hence, from (a), UI(Z : X\Y ) ≤ CX→Z ≤
CID(X → Z).

For (c), we note that we may write the causal strength as:

CX→Z = KL(P (X)||P (Y )P (X|Y )P ′(Z|Y ))

=
∑
x,y

P (x, y)KL(P (Z|x, y)||P ′(Z, y)). (38)

Further, we may write:

CID(X → {Y,Z})
= KL(Pdo(ι)∼QX ||P (X)P (Y )P ′(Z|Y ))

=
∑
x,y

P (x)P (y)KL(P (Z|x, y)||P ′(Z, y)). (39)

Since Eqs. 38 and 39 are both weighted averages over ∪x,y{KL(P (Z|x, y)||
P ′(Z, y))}, we must have:

|CX→Z − CID(X → {Y,Z})| ≤ C, (40)

with C as in the theorem. The inequality follows from Eq. 40 and (a). ut

Since the RHS’s of (a), (b) and (c) in Theorem 2.10 may all be regarded
as measures of the impact interventions on X will have on Z (possibly in
combination with Y ), these bounds provide a way of predicting this effect
from knowledge of only the observed unique information (i.e. without applying
interventions). A corollary of Theorem 2.10 is that if UI(X : Z) > 0, CX→Z >
0, and necessarily CID(X → Z) > 0 if Pa(X) = {}. We explore Th. 2.10
further through simulations in Appendix D.

Appendix B Full Proofs and Definitions from Section 4

Below, we give in full the definitions and proofs omitted from Sec. 4.

Definition 4.2. (CTCM with embeded DDCM (CTCM*)): A CTCM* is a
CTCM with further structure as follows. We let φnt = {xntτ , yntτ , zntτ} and
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ent = {entτ}, where τ is an intra-generational time index, which runs from
0...Tτ . The kernels of a CTCM* have the form of an embedded DDCM:

hx(xnt|x(πt(n),t−1)) = h′x(xnt0|x(πt(n),t−1,0)) ·
∏
τ>0

δ(xntτ |x(n,t,τ−1))

g1(ynt|xnt, ent) = g′1(ynt0) ·
∏
τ>0

g′′1 (yntτ |x(n,t,τ−1), e(n,t,τ−1), y(n,t,τ−1))

g2(znt|ynt, ent) = g′2(znt0) ·
∏
τ>0

g′′2 (zntτ |y(n,t,τ−1), e(n,t,τ−1), z(n,t,τ−1))

g3(ent|znt) = g′3(ent0) ·
∏
τ>0

g′′3 (entτ |z(n,t,τ−1), e(n,t,τ−1)). (41)

We allow that these variables and kernels can be further factorized, for in-
stance by decomposing yntτ into sub-phenotypes representing expression values
of individual genes or gene modules, and entτ into different environmental fac-
tors, and introducing sub-kernels of g′1, g

′′
1 , g
′
3, g
′′
3 for each sub-variable. Given

a lowest level factorization, we require that the all transition kernels (i.e. the
kernels g′′1 , g

′′
2 , g
′′
3 , or their sub-kernels) are self-separable in the sense of Def.

2.8, where in all cases K1(.|.) in Eq. 28 is set to a delta function at the iden-
tity (K1(a|a) = δ(a|a)). In analogy with Def 2.6, we can define restricted and
projected CTCM*’s by applying these constructions to the embedded DDCMs.
In the former case, we restrict interventions over the variables X,Y, Z and e
to those which fix the variable in an individual at time t across all values of
τ , and in the latter case writing p-CTCM*(α) for the CTCM* formed by pro-
jecting the phenotype/environmental variables onto τ = α at each n and t. By
taking the limit τ →∞, we write eq-CTCM*=p-CTCM*(∞). Finally, we note
that there is a subtlety in that, in moving from an r-DDCN to a p-DDCN in
Def 2.6, we introduce the ‘intervention variables’ ζ; these may be conveniently
added as extra environmental variables in a p-CTCM*, since g1, g2, g3 are all
conditioned on e.

Theorem 4.3. (Backward-CID bounds): For a CTCM* represented as above
with latent factors C, and associated eq-CTCM*, where S ⊂ {X,Y, e}, V ∈
{X,Y, Z, e}, (.)V denotes the mean over values of V , and II is the interaction
information (II(S;Z;C∗) = I(S;Z|C∗)−I(S;Z)), in the limit α→ 1 we have
that:

[II(S;Z;C∗) ≤ 0] ∧ [CID(S → Z) ≤ (CID(S : Z|QV ))V ] =⇒
PID(S : Z) ≥ CID(S → Z), (42)

and similarly:

[II(S;Z;C∗) ≥ 0] ∧ [CID(S → Z) ≥ (CID(S : Z|QV ))V ] =⇒
PID(S : Z) ≤ CID(S → Z). (43)

where all II, CID and PID quantities are evaluated in the eq-CTCM* model
(at a given n and t, where C∗ is treated as an additional phenotype). Further,
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QV = Peq(¬V )KV
2 (V |¬V ) (unrelated to the notation QXA used in Def. 2.4)

with KV
2 the second component of V ’s kernel, as in Eq. 28, and we assume

Y,Z and e are not factorized. For the case that Y,Z or e are factorized, S
and V are subsets and elements of the sets of relevant factorized variables
respectively, and Eqs. 42 and 43 hold identically.

Proof For Eq. 42, we begin by considering the case that, in the underlying
CTCM*, at index τ we have C∗(τ) = V 6= ∅. Since all other variables ¬V are
arbitrarily sampled and V has just updated according to g′′V (i.e. letting g′′Y =
g′′1 , g′′Z = g′′2 , g′′e = g′′3 ), the distribution at time τ is Peq(¬V )g′′V (V |¬V ) = QV .
Hence, the mutual information between Z and S at τ is CID(S : Z|QV ). Since
we stipulate a common α for all transition kernels, the average of this quantity
across samples drawn from the equilibrium distribution is approximately the
conditional mutual information (neglecting the case in which C∗(τ) = ∅):

I(S;Z|C∗) =
∑
C∗

P (C∗)IP (.|C∗)(S;Z)

≈ (CID(S : Z|QV ))V . (44)

Further, since II(S;Z;C∗) = I(S;Z|C∗)− I(S;Z), in the limit α→ 1 and for
II(S;Z;C∗) ≤ 0 we have:

(CID(S : Z|QV ))V ≤ I(S;Z) = PID(S : Z). (45)

PID(S : Z) ≥ CID(S → Z) then follows from the second line of Eq. 42. For
Eq. 43 the proof is similar, with the direction of the inequalities reversed, and
the generalization to factorized Y, Z or e is straightforward. ut

Appendix C Representing DCNs as Structural Causal Models

In [5], a Structural Causal Model (SCM) is defined as a tuple, < I,J ,X , E , f ,
PE >, where I,J are finite index sets of endogenous and exogenous variables
respectively, X =

∏
i∈I Xi and E =

∏
j∈J Ej are products of codomains of

endogenous and exogenous variables respectively, where each codomain is a
measurable space, f : X×E → X is a measurable function, and PE =

∏
j∈J PEj

is a product of probability measures over the exogenous variables. A solution
to an SCM is a pair of random variables (X,E) taking values in X and E
resp., such that the distribution of E matches PE , and the structural equations
X = f(X,E) are satisfied almost surely.

We may represent a DCN as an SCM as follows (where we assume a DCN
solution exists, and construct from this an SCN solution). We let I contain
indices (0, i) for each variableXi in the original DCN, along with index (1, i) for
a mirror variable ζi corresponding to each original variable (these collectively
form the X’s of the SCM as defined above). We set the codomains X(0,i) to
be {1...V } for the X’s, and {0, 1...V } for the ζ’s. We then set J = IDCN ,
i.e. the intervention set in the original DCN, and the codomains Ej are all
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set to V I . The probability measure PEι is set so that, if joint configuration
[x1, ..., xI ] occurs with probability p under ι in the original DCN, the measure
assigned to [x1, ..., xI ] under PEι is p. We then set f so that f(0,i)(X, ζ,E) = v
if ζ corresponds to intervention ι in the original DCN and Eι(i) = v; f(1,i) is
the constant 0, and all other values of f are set arbitrarily. The intervention
ι in the original DCN corresponds to making a joint setting of the ζ mirror
variables in the SCM to the desired intervention values (with 0 corresponding
to no intervention). By construction, a joint setting of the endogenous variables
surely exists under any intervention in the SCM constructed, since f simply
‘copies’ the joint settings from Ej to X, where j corresponds to the relevant
intervention represented by ζ.

We note that, in Def 2.1, we use the term solution in a slightly differ-
ent sense to [5]. In our sense, the conditional distributions are specified un-
der each possible intervention, and a set of joint distributions must be found
which match these. In [5] however, the full joint distribution over the exoge-
nous variables is specified by the model, and a solution consists of specifying
the conditional distribution over the endogenous variables under each possible
intervention and setting of E which respects the constraints imposed by f .
Further, we note that while the SCM construction given above is fully general
in the sense that any DCN can be represented in the form given, it is also
purely ‘formal’ in the sense that the fi’s do not directly correspond to causal
mechanisms in the original DCN (represented by the kernels). Clearly, partic-
ular DCNs may have more compact representations as SCMs with a stronger
correspondence in this sense; for instance, for acyclic DCNs the ζ’s are not
required, and each Xi may be associated with an Ei ∈ [0 1] which is sampled
independently and uniformly, so that fi(X,Ei) = gi(Ei|XPa(i)), where gi(.|.) is
the inverse of the cumulative distribution function of the kernel Ki(Xi|XPa(i)),
and hence the fi’s correspond directly to the DCN kernels. However, even if
such direct correspondences cannot be drawn, the general SCM construction
above ensures that for any DCN an SCM exists whose behavior is identical on
all interventions.

Appendix D Simulation study of the Unique Information bound

We explore the behavior of the bound in Th. 2.10 both in conditions when
its assumptions are and are not satisfied through simulations. The results
are shown in Fig. 2. Here, we run simulations in three DDCN models over
the variables X,Y, Z, with the connectivity of each model shown on the left
(defining the Pa map). Each variable can take 4 values (V = 4), and we
use self-separable DDCN models for all kernels (Def. 2.8). For the kernel pa-
rameters, we set α = 1 − 10−γ , K1 to be the identity, K2 by sampling each
transition kernel entry uniformly at random and normalizing so that all con-
ditional distributions sum to one, and we set the initial distributions similarly
by uniform sampling. This parameterization lets γ act as a ‘stability’ param-
eter, which we sweep between 0 (low stability) and 5 (high stability), where
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Fig. 2 Simulation of the Unique Information bound. Figure shows results of the simulations
described in Appendix D. Rows correspond to simulations of the model shown on the left,
and columns show the forward-CID (a measure of causal effect) and its unique information
lower-bound calculated for each variable. See text for full details.

former implies the identity kernel is never chosen for updates, while the lat-
ter implies it almost always is. We first run 10 simulations of each model for
T = 500 time-steps under no interventions, where a simulation involves sam-
pling the parameters as above, building the full transition matrix T over the
43 system states, and analytically calculating pT = p0TT . From pT , we then
calculate all marginal distributions, and use these to calculate CID(V → ¬V ),
CID(V1 → V2) and CID(¬V → V ) for all variables V and variable pairs V1, V2

(V, V1, V2 ∈ {X,Y, Z}) in the projected DDCN at time T = 500, approximat-
ing the equilibrium DDCN (see Def. 2.6). We calculate these quantities by
running further simulations under the required intervention models, with the
intervention distributions set using the marginals calculated. The latter two
quantities allow us to calculate the unique information UI(V1\V2 : V3) for all
variable settings (Def. 2.3 and following). The figure shows, for each variable,
a plot which compares the quantity CID(V → ¬V ) (the ‘forward’-CID, which
may be taken to measure the causal effect of the variable), with the maximum
value of UI(V \V1 : V2), where V1, V2 ∈ ¬V . We take the average of these
quantities across the 10 simulations for the plots shown.

When the assumptions of Th. 2.10b are satisfied, the quantity
maxV1,V2

UI(V \V1 : V2) is guaranteed to be less than or equal to CID(V →
¬V ) (and all other unique information bounds will be looser than it). These
conditions are only satisfied for variable X in the first two models shown. How-
ever, variable Y in the first two models satisfies the conditions of Th. 2.10c;
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as shown, the unique information provides a lower bound in these cases also,
implying the constant C in Th. 2.10c does not typically lead to a violation of
the bound under the model sampling distribution described above (e.g. uni-
form sampling of transition kernels). Further, the last model investigates a case
in which the DAG assumption of Th. 2.10 is violated, and we have feedback
between X and Y . The results show that, again, under the model sampling
distribution adopted the unique information provides a reliable lower bound
here also. We note that in all models, since Z has no children, its causal impact
(CID(Z → ¬Z)) is zero; the unique information bound is similarly pushed
to 0, hence in the models tested the criterion UI(V \V1 : V2) > 0 provides a
reliable indicator that V has non-zero causal impact. The above implies that
the unique information bounds of Th. 2.10b and c provide a general indicator
of causal impact, which are robust to conditions in which the assumptions of
the theorem are not strictly met.

Appendix E Factorizing kernels in Discrete Causal Networks

We provide here further details on the notation we adopt for factorizations
of DCN kernels. As specified in Def. 2.1, a DCN requires a kernel function
to be specified for each variable Ki(xi|xPa(i)) representing the conditional
distribution of xi on its parents. We can summarize a DCN model using a
‘product of kernels’ notation, which we write as either

∏
iKi(xi|xPa(i)) or

K1(x1|xPa(1)) · K2(x2|xPa(2)) · .... We note that, if the Pa relation forms a
DAG, this product will directly represent the joint distribution over the DCN
variables (subject to no interventions); however, since in general Pa may con-
tain cycles, we adopt the convention that

∏
iKi(xi|xPa(i)) represents the set

of distributions which satisfy all the kernel relations. Further, in general, in-
dividual kernels may themselves be sets of conditional distributions, although
we assume for convenience throughout that the basic kernels use to define a
DCN are single distributions (note that a distribution satisfies a kernel only
if the conditional derived from the relevant variables matches one in the set
associated with the kernel; further, we treat basic kernels notationally as dis-
tributions, despite being singleton sets). An intervention which sets xi to value
v may be implemented by replacing Ki(xi|xPa(i)) by δ(xi|v), and a solution
to the DCN is a choice function which picks a single distribution from the
kernel product sets representing each intervention (including the null inter-
vention). For partial products, this notation represents a higher-order condi-
tional kernel, for instance, consider K(xi, xj |xk) = K(xi|xj , xk) ·K(xj |xi, xk).
Here, K(xi, xj |xk) is a set of conditional distributions over the joint variable
(xi, xj), which satisfy the kernel product relations between xi, xj specified by
the lower-order kernels (conditioned on xk). In a given kernel product, we
may thus combine groups of kernels together into higher-order kernels, or split
them into multiple lower order kernels, while maintaining the solution set for
the product. A particular DCN selects a ‘base-level’ factorization, which deter-
mines the variable index set I and thus which interventions may be performed
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on the model; for instance, if K(xi, xj |xk) is a base-level kernel, then variables
xi and xj must be treated as a single variable in the DCN, and interventions
cannot be applied to xi and xj separately. In this sense, once the base level
has been set and a particular DCN solution chosen, all higher-order kernels
are fully determined, and are used for notational convenience only.
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