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Abstract  

Recently, EEG recording techniques  and source analysis have improved, making it feasible to 

tap into fast network dynamics. Yet, analyzing whole-cortex EEG signals in source space is not 

standard, partly because EEG suffers from volume conduction: Functional connectivity (FC) 

reflecting genuine functional relationships is impossible to disentangle from spurious FC 

introduced by volume conduction. Here, we use information from white matter structural 

connectivity (SC) to attenuate the impact of volume conduction on EEG-FC. We confirm that FC 

(power envelope correlations) is predicted by SC beyond the impact of Euclidean distance, in 

line with the assumption that SC mediates genuine FC. We smooth the EEG signal in the space 

spanned by graphs derived from SC. Thereby, FC between nearby, structurally connected brain 
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regions increases while FC between non-connected regions remains unchanged. We hypothesize 

that this results in an increase in genuine relative to spurious FC. We analyze the induced 

changes in FC, assessing the resemblance between EEG- and volume-conduction-free fMRI-FC, 

and find that smoothing increases resemblance in terms of overall correlation and community 

structure. This result suggests that our method boosts genuine FC, resulting in more realistic 

functional networks, an outcome that is of interest for many EEG network neuroscience 

questions. 

  

 

Author summary 

In this study, we combine high-density EEG recorded during resting state with white matter 

connectivity obtained from diffusion MRI and fiber tracking. We leverage the additional 

information contained in the structural connectome towards augmenting the source level EEG 

functional connectivity. In particular, it is known - and confirmed in this study - that the activity 

of brain regions that possess a direct anatomical connection is, on average, more strongly 

correlated than that of regions that have no such direct link. We use the structural connectome to 

define a graph and smooth the source reconstructed EEG signal in the space spanned by this 

graph. We compare the resulting “filtered” signal correlation matrices to those obtained from 

fMRI and find that such “graph filtering” improves the agreement between EEG and fMRI 

functional connectivity structure. Thus suggests that structural connectivity can be used to 

attenuate some of the limitations imposed by volume conduction.  
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Introduction 

Electroencephalography (EEG) measures neural signals directly (Buzsáki et al., 2012) on a time 

scale of milliseconds,  fast enough to be relevant for neural events In MEG and fMRI, the study 

of functional connectivity (FC) with the tools of whole-brain network neuroscience has yielded a 

multitude of important and interesting insights (see (Bassett & Sporns, 2017), for a review). 

Concurring findings show that FC between regions of interest (ROIs)/sources located in the gray 

matter is in part shaped by anatomical connections of the SC, such that the strength of SC (fiber 

count, density) is predictive to some degree of the strength of FC (correlation, coherence, etc.) 

(Abdelnour et al., 2018; Atasoy et al., 2016; Cabral et al., 2014; Damoiseaux & Greicius, 2009; 

Deco et al., 2013; Glomb et al., 2017; Goñi et al., 2014; Hagmann et al., 2008; Honey et al., 

2009; Meier et al., 2016; Tewarie et al., 2019, 2014; Vincent et al., 2007) This finding has been 

shown to extend to EEG using data analytical (Chu et al., 2015; Wirsich et al., 2017) and 

modelling approaches (Bhattacharya et al., 2011; de Haan et al., 2012; Finger et al., 2016; Pons 

et al., 2010; Ponten et al., 2010; van Dellen et al., 2013).. The main hurdle when trying to 

understand EEG network architecture and -dynamics  is signal leakage due to volume 

conduction, which obscures genuine functional relationships between sources in the brain: . 

Additionally to the low spatial resolution (Buzsáki et al., 2012)(Schoffelen & Gross, 2009; 

Srinivasan et al., 2007)(Buzsáki et al., 2012) and SNR intrinsic to the EEG signal, the interaction 

of the electric field with the tissue  creates “sham” functional connections whose strengths 

depend on the Euclidean distance between locationsIn order to circumvent these problems, it has 

been suggested that zero-lag-statistical dependencies should be removed altogether from FC 

analysis since signal leakage is instantaneous, resulting in measures such as imaginary coherence 
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(Nolte et al., 2004) and phase lag index (Stam et al., 2007) Contrary to this, it has been pointed 

out that zero-lag-statistical dependencies still carry meaningful information about ongoing 

activity (Pascual-Marqui et al., 2017; Tognoli & Kelso, 2009; Uhlhaas et al., 2009), and may 

therefore be particularly important for the resting state. Furthermore, approaches exist that 

orthogonalize the time series, removing common dependencies between sources (M. J. Brookes 

et al., 2012; Colclough et al., 2015; Hipp et al., 2012; Wens et al., 2015).  

In this study, we propose an approach that incorporates additional information from structural 

connectivity (SC; obtained from dMRI and fiber tracking) in order to attenuate volume 

conduction in a principled way.  

We first replicate the previous finding (Chu et al., 2015; Finger et al., 2016; Siems et al., 2016; 

Wirsich et al., 2017) that SC partially shapes FC in EEG, beyond the impact of Euclidean 

distance induced by volume conduction. Subsequently, we use additional information in the SC 

to augment the EEG functional signal by applying a low-pass filter (or smoothing procedure) in 

the space spanned by the SC-graph. The motivation for this approach is that both SC and FC 

decay with increasing Euclidean distance. From an evolutionary standpoint, it makes sense for 

functionally related regions to be close together (Tomasi et al., 2013). As a result,  it is 

impossible to disentangle the contributions of volume conduction and genuine FC mediated by 

SC to a statistical dependency measured between two brain regions. However, if one assumes 

that genuine FC is mediated by SC, and therefore, genuine FC is higher between brain regions 

that are directly anatomically connected, increasing the impact of SC would also increase the 

contribution of genuine FC relative to FC generated by volume conduction.  
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We use an fMRI-FC acquired completely independently of the EEG dataset in order to determine 

whether our filtering procedure leads to improvements in terms of macroscopic network structure 

encoded in the FC.  Numerous studies have shown that the macroscopic network structure is, on 

a coarse level, similar between fMRI and EEG (Britz et al., 2010; Coito et al., 2019; Liu et al., 

2018; Musso et al., 2010). These networks have been demonstrated to be relevant on the several 

spatial and temporal scales of different recording techniques (Matthew J. Brookes et al., 2011; 

Kucyi et al., 2020; Liu et al., 2017). We hypothesize that, if our filtering procedure indeed 

removes spurious correlations, we should see favorable effects on the network structure encoded 

in the EEG-FCs; we quantify this by testing whether the EEG-FCs computed from filtered time 

courses are more similar to fMRI-FC than the original, unfiltered signals, both overall and by 

explicitly analyzing the FC-matrices’ community structure. Our results suggest that 

incorporating information from the SC by means of graph filtering leads to more realistic 

large-scale network structure in EEG-FC, making our approach a possible alternative to other 

methods that aim at correcting for volume conduction, especially for the study of large-scale 

functional networks.  

 

Results 

SC provides additional predictive power for EEG-FC 

Our goal is to use the structural connectivity (SC) matrix to attenuate the impact of spurious 

functional connectivity (FC) mediated by volume conduction  in source-level EEG time series 

(see Figure 1 for an illustration of our approach).  
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One of our main assumptions is that genuine FC is in part mediated by SC (Chu et al., 2015; 

Finger et al., 2016; Wirsich et al., 2017). To test this, we first show that SC can predict FC 

beyond the common dependence of FC and SC on Euclidean distance. We test this assumption 

by (Chu et al., 2015; Finger et al., 2016; Wirsich et al., 2017)fitting a stepwise general linear 

model (GLM) in order to quantify how well the following measures predict the EEG-FC 

averaged over all subjects:  

1) SC in the form of search information (Goñi et al., 2014), referred to as SCSI, a measure that is 

derived from fiber counts and that is non-zero for all connections, yielding a connectivity matrix 

that is dense just like the FC matrix (Figure S1); the intuitive interpretation of search information 

is that it measures how “hidden” the shortest path between two ROIs is. Note that search 

information and fiber count are roughly inversely proportional.  

2) Euclidean distance (ED) between ROI centers,  

3) relative regional variance (i.e. the variance of each ROI time course, normalized such that the 

maximum variance in each subject equals 1) as an estimate of SNR,  

4) ROI size (number of voxels in the parcellation).  

The 3rd and 4th predictors are control variables for possible confounds. Note that in each case, 

we predict a dependent univariate variable - the EEG-FC - with an independent univariate 

variable, such that each pair of brain regions is a sample (i.e. we have  samples).N )/2( * N − N  

We analyze how well the independent variables can predict the FC in two different ways: On the 

one hand, we use each variable as the only predictor variable (plus intercept; blue bars in Figure 

2; “single variable model”). On the other, we test their predictive power when they are entered 

progressively into a GLM that includes first order interaction terms (orange curves in Figure 2; 
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“full model”). The latter case allows us to quantify the additional predictive power that each 

variable has given all other predictors. This is important because the predictors are not 

independent of each other; most prominently, there is a three-way-dependence between SC, 

Euclidean distance, and FC, such that both SC and FC decay with increasing Euclidean distance.  

Figure 2A shows the results in terms of explained variance for the EEG-FCs and for comparison, 

for an fMRI-FC (average pairwise correlations over 88 subjects, see Methods for details; see SI 

Table 1 for detailed results of the GLM analysis). The correlation between the average EEG-FCs 

and the fMRI-FC is around 0.50 for all three bands (alpha, beta, gamma).  

Figure 2A shows that ED is the strongest predictor in both EEG and fMRI. This is true both for 

the single variable models (greatest explained variance as indicated by blue bars) and the full 

model (as indicated by the fact that they are the variables that are entered first into the model). 

However, the variance explained by ED is much higher in EEG than in fMRI, namely 0.55 in 

EEG (alpha band; other bands similar, full list in Table S1) and 0.18 in fMRI. This is due to the 

effect of volume conduction which introduces spurious correlations dependent on ED in the case 

of EEG-FC.  
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A - Graph combining parcellation and structural connectivity 

 

B - EEG signal in the graph domain  

 

Figure 1: A  - Brain regions are given by the Lausanne 2008 parcellation (top row). Diffusion MRI and 

fiber tracking reveal fiber bundles that exist between these regions, and are summarized in the structural 

connectivity matrix (bottom left; brain regions from above are color coded). The graph used for filtering 

is defined by nodes corresponding to the parcellation’s brain regions (color coded) and edges 

corresponding to the fiber bundles in the SC matrix (bottom right; lengths of edges are approximately 

inversely proportional to the weight in the structural connectivity matrix). B  - The graph defined by 

parcellation and SC does not change over time. EEG signals that do vary over time are conceptualized as 
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activation strengths of the nodes of the graph. Signals are thought to propagate along the fiber bundles, 

i.e. the edges, to neighboring nodes.  

 

When using SCSI as the only predictor, we find that the dependency of FC on SC SI is very similar 

in both modalities (r2 of SC SI alone 0.14 in both modalities). In both cases, FC values are high 

between close-by pairs of brain regions (small ED; see Figure S2A). For fMRI, there are also 

highly correlated pairs that are separated by an intermediate distance, and close-by pairs that are 

barely or not at all correlated. In contrast, for EEG, all far-away pairs of ROIs have low 

correlations and all close-by pairs have high correlations. We checked for which connections the 

prediction of FC by SCSI was worst, i.e. had the largest residuals (Figure S2B). We found that for 

fMRI, the largest errors occur on the secondary diagonal, replicating the well-known result that 

interhemispheric connections are underestimated in the SC. In EEG, this does not contribute as 

much to the unexplained variance as the FC between homotopic regions is low. In summary, 

while the variance explained by the SCSI is the same in both modalities, the structure of this 

dependency is different.  

In both cases, SCSI explains an additional 3-4% of the variance (SI Table 1) after regressing out 

Euclidean distance. For fMRI, some connections with intermediate distances remain 

underestimated after adding SCSI as a predictor, again related to interhemispheric connections 

(Figure S2B, right panel). For EEG, the most severely underestimated FC values are related to 

small distances, indicating that neither Euclidean distance nor SCSI can by themselves account 

for some of the large EEG-FC values between nearby pairs of regions. Note that the actual 

contribution of SCSI is likely to be higher than 3-4%, as SC strength is itself dependent on 
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Euclidean distance (two regions that are close together are more likely to be connected by white 

matter tracts; furthermore, short tracts are more easily traced by fiber tracking algorithms, (Jones, 

2010) ). Indeed, due to this mutual dependence, the actual contribution of SCSI cannot be 

estimated using this approach.  

Furthermore, a significant positive interaction term between ED and SCSI contributes to the 

prediction in both fMRI and EEG. The correlation between these two variables (ED and SCSI) is 

0.48, in line with previous findings (Wirsich et al., 2017). Since SC and SCSI are negatively 

correlated (see Methods), this translates to two interpretations: ED has less of an impact on the 

FC between ROI pairs that have a strong SC-connection (high weight in the SC matrix); and the 

strength of the SC connection has less of an impact on the FC between ROI pairs that are far 

apart from each other (high ED).  

A simple prediction from the hypothesis that FC is shaped by SC is that ROI pairs that are 

connected via white matter tracts should exhibit stronger FC than those that are not (Chu et al., 

2015) . In order to control for the common dependence of FC and SC on Euclidean distance, we 

compare averages over subsamples of pairs of ROIs that are matched in their Euclidean distance 

distribution. Figure 2B shows that even in those matched subsamples, there is indeed a 

significant difference between the mean FC values (Wilcoxon signed-rank test at alpha=0.05, 

Bonferroni-corrected for multiple comparisons) between structurally connected and unconnected 

ROI pairs.  

 

 

 

10 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2020. ; https://doi.org/10.1101/831743doi: bioRxiv preprint 

https://paperpile.com/c/TQEeY1/NmaqM
https://paperpile.com/c/TQEeY1/NmaqM
https://paperpile.com/c/TQEeY1/slEIw
https://paperpile.com/c/TQEeY1/U7tTP
https://paperpile.com/c/TQEeY1/U7tTP
https://doi.org/10.1101/831743
http://creativecommons.org/licenses/by-nc/4.0/


 

A - Results of GLM analysis 

 

B - Comparison of FC with and without structural connections  

 

Figure 2: A  - Stepwise general linear model results for EEG alpha, beta and gamma band, and for fMRI, 

using Euclidean distance (ED), relative regional variance (RRV), structural connectivity (SC; search 

information), and ROI size (number of voxels) as predictors. Only significant predictors are shown, in the 

order in which they were entered into the model (see Methods for details). Blue bars: variance explained 

when variables are used as the only predictor in separate “single variable” GLMs. Orange curves and 

crosses: Cumulative explained variance achieved when using all variables up to the variable 

corresponding to this data point (i.e. the variable in question and all variables to the left of the data point). 

B - Comparison between average EEG-FC values for pairs that are connected by SC (“SC+”) and those 

that are not (“SC-”). The samples that are compared are matched in their ED distribution to control for the 

fact that pairs that are connected tend to be closer together than those that are not. Stars mark significant 

differences according to the Wilcoxon signed-rank test at alpha=0.05 (Bonferroni-corrected for multiple 

comparisons). 
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Graph filtering increases resemblance between EEG-FC and fMRI-FC  

Building on the finding that SC shapes EEG-FC beyond the impact of ED, we use the fact that 

the EEG data live on a graph defined by the SC (Figure 1). In the following, we perform spatial 

smoothing, or low-pass filtering, in graph space. This means that the activity in one node of the 

graph - an ROI - is smoothed by computing a weighted average of the ROI’s activity and the 

activity of its nearest neighbors, i.e. nodes with which it is anatomically connected: 

(t) (t)  (t) x̂i = xi + G ∑
N

j=1
c xij j  

Here,  is the entry in the SC which corresponds to the pair of regions  and , and  is thecij i j G  

scalar “filter weight” which scales how much impact node ’s neighbors  have on the activityi j  

of . This will increase the effect shown in Figure 2B: Connected nodes’ activity will becomei  

more similar and unconnected nodes’ activity will become less similar. Since spurious 

correlations depend only on Euclidean distance, but not on the SC per se, this would correspond 

to an increase of genuine FC relative to spurious FC.  

We filter the single epoch, source-level activity  of each ROI using the above formula and(t)xi  

compute FC matrices from the filtered data  as before. We use four different graphs (Figure(t)x̂i  

3, from left to right): 

1. The SC (number of fibers) itself, averaged across subjects according to (Betzel et al., 

2019) . This graph has a connection density of 25%.  

2. A graph derived from Euclidean distances, setting connection weights with 

, where the weight just serves to scale the distribution such that thexp(− D)e k * E k  

multiplication of the graph weights with the filter weights will result in effective weights 
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in the same range as for the other SCs. This is a dense graph and will be referred to as 

“ED full”. 

3. A graph derived from Euclidean distances, but exactly matching the SC in terms of 

existing and absent fibers. This means that the connections are the same as for SC 1, but 

the weights are set as in SC 2 instead of the fiber count. This graph will be referred to as 

“ED match”. 

4. A graph derived from Euclidean distances, but preserving the density of SCs 1 and 3. 

This means keeping the connections which correspond to the smallest EDs up to a 

threshold which leads to the same connection density as in SC1 (and SC 3). We include 

this graph because otherwise, if matrices 1 or 3 outperform matrix 2, this could just be 

due to the difference in connection density. This graph will be referred to as “ED dens”. 

 

 

Figure 3: All SCs from which graphs for filtering are derived. From left to right. 1) SC derived from fiber 

tracking, averaged over subjects (log is used only for visualization purposes); 2) SC derived from 

Euclidean distances by using the distances as negative exponents; 3) SC derived from Euclidean distances 

(as 2), but masking the distances by using present connections as in 1); 4) SC derived from Euclidean 
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distances (as 2), but keeping only shortest distances such that the density is the same as in the left and 

middle right panels.  

 

A - Correlations between EEG- & fMRI-FC            B - Boxplots of correlations  

 

Figure 4: A :Fit (z-transformed correlation) between the EEG-FC (beta band) computed from time courses 

with different filter weights (G) and the fMRI-FC. The shaded regions mark the 95% confidence interval. 

B: Boxplots summarizing results of the Wilcoxon signed-rank test comparing individuals’ maximum fits 

(shown in panel A) across versions of the SC as well as to the baseline correlation between unfiltered 

EEG-FC and fMRI-FC. Black bars mark significant differences. Red lines mark the median, each black 

dot marks the value for one subject. Note that we did not compare the medians, but the individual 

differences (see Methods). 

 

After filtering, EEG-FCs are computed as for the unfiltered data. As expected, the filtered FCs 

become more similar to their respective SCSI (Pearson correlation between EEG-FCs and SCSI ), 
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and the difference in average correlation between structurally connected versus unconnected ROI 

pairs increases (see Figure S3).  

To validate our results, we compare our EEG-FCs to fMRI-FC (obtained by averaging over 88 

subjects, see Methods for details) by computing the Pearson correlation between the two 

matrices for each subject. The goal is to assess whether the changes in FC induced by graph 

filtering result in a change in the network/community structure encoded in the FC which is in 

line with known functional networks (Britz et al., 2010; Coito et al., 2019; Liu et al., 2018; 

Musso et al., 2010). We obtain a comparison for each filter weight  and each of the fourG  

graphs described above and shown in Figure 3.  

Figure 4A shows that correlations between the two matrices obtained from the two modalities 

increase as hypothesized (results shown for beta band, alpha and gamma similar [not shown]). 

The graph which reaches the highest maximum correlations between EEG- and fMRI-FC is the 

one in which Euclidean distance and SC are combined by masking the weights derived from 

Euclidean distances with the non-zero connections given by the SC (“ED match”; Wilcoxon 

signed rank test comparing the correlation coefficients of each subject, p<0.05 Bonferroni 

corrected). The mean correlation increases from 0.42 to 0.51 at a filter weight of G=100, 

corresponding to a 23% increase (increase computed based on the Fisher z-transformed values as 

shown in Figures 4A and B: 0.46 and 0.56, respectively). Figure 5 shows the original EEG-FC 

(beta band) and the EEG-FC derived from filtered data with G=100.  

 

We repeat the analysis using FC matrices computed from white Gaussian noise (WGN-FCs; see 

Methods) in order to test in how far our results can be explained purely by linear dependencies 
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imposed by the graphs used as filters. We find that the correlation between WGN-FCs that were 

filtered with the SC and the fMRI-FC reaches a maximum of 0.26 (Figure S4A), indicating that 

filtering white noise with the SC does not explain the association between fMRI-FC and 

EEG-FCs, where the correlation is 0.43 without any filtering (Figure 4A). The correlation 

between WGN-FCs and fMRI-FC reaches a value of r=0.49 (z-transformed value: 0.53) when 

using only Euclidean distances (dense ED) with G=500. This is comparable to the optimal fit of 

r=0.51 (z-transformed value: 0.56) obtained with empirical EEG-FCs at G=100 (ED match), but 

at G=100, the empirical EEG-FCs clearly outperform the WGN-FCs (r=0.35). We also checked 

whether the fit to fMRI can be explained by the fact that EEG-FCs become more similar to 

WGN-FCs as the filter weight is increased. At G=500, the filtered EEG-FCs are very similar to 

the FCs obtained from filtered WGN (average r=0.91 [z-transformed value: 1.5], Figure S4B). At 

G=100, this correlation is r=0.69 for ED match (z-transformed value: 0.85).  

As a further comparison, we use the orthogonalization approach described in (Colclough et al., 

2015)  to correct for leakage in the unfiltered data (Figure S5). We found that the correlation 

between fMRI- and EEG-FCs decreases for each subject (Table S3). Furthermore, we repeated 

our analyses using coherence and imaginary part of coherence (Figures S6 and S7), the latter of 

which is assumed to remove zero-lag correlations resulting from volume conduction (Nolte et al., 

2004)  We found no advantage of these measures over correlations between power envelopes. 

Specifically, the correlation between fMRI-FC and EEG-FCs computed using this measure was 

not higher than when using the power envelope correlations (Figure S6A).  
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                            A - fMRI FC             B - EEG FC before filtering    C - EEG FC with filtering 

 

Figure 5: A : fMRI-FC. B and C: EEG-FCs (beta band) before (B ) and after (C ) graph filtering with “ED 

match” and G=100. All correlations are z-transformed.  

 

Graph filtering increases resemblance between EEG- and fMRI-community structure  

In the following, we explore the effect of graph filtering on the EEG-FC structure. To this end, 

we use FCs averaged over all subjects. First, we consider seed correlations. In order to make 

correlations comparable, we resample average FCs such that FC values are normally distributed 

around mean 0 and with a standard deviation of 1. Figure 6 shows the normalized correlations 

between two seed regions and all other ROIs in the parcellation (i.e. one row/column of the 

EEG-FC) before and after filtering with the best SC identified above (“ED match”, G=100; beta 

band). We chose these regions because they exhibit the largest overall change in connection 

weights with other regions (all changes in Figure S8). In both cases, the correlations to the 

corresponding region on the other side of the brain are increased.  
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In general, the correlation structure of many regions changes considerably (Figure S7), but these 

changes are hard to interpret on a ROI by ROI basis. Therefore, to investigate this further, we 

extract the community structure of the average EEG-FCs before and after filtering by assessing 

the probability of any two regions to be assigned to the same community (Figure 7, top row and 

bottom left). We apply the same procedure to the average fMRI-FC (Figure 7, bottom right). As 

the filter weight (G) increases, more values in the “community matrices” tend towards 0 or 1, 

indicating that the variability in clustering outcomes decreases. Interestingly, also the community 

assignments derived from the fMRI-FC show some variability, especially for certain frontal and 

temporal regions. Figure 8A shows one example of community assignments. The main 

difference between EEG and fMRI is that EEG community structure is dominated by the lobe 

architecture, whereas in fMRI, we see the robust clustering of frontal with middle temporal and 

posterior cingulate cortices, reminiscent of the default mode network (Laird et al., 2009), as well 

as the symmetry across hemispheres between temporal regions.  
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A - Changes in seed correlations of left rostral middle frontal regions  

 

 

B - Changes in seed correlations of right superior parietal region

 

 

Figure 6: Surface renderings of FC before and after filtering. EEF-FC (beta band; correlation) values were 

resampled from a standard normal distribution in order to linearize them and make them comparable. A : 

Seed correlations of region left rostral middle frontal before (top panel) and after (bottom panel) graph 

filtering. B : Same as A, but for region right superior parietal.  

 

We quantify the similarity between the community structures in EEG- and fMRI-FCs by taking 

the rank correlation between each row/column of the “community matrices” (examples for ɣ=1.1 

in Figure 7). We compute this measure depending on  two parameters: 1) the resolution 

parameter ɣ which controls the spatial resolution of the Louvain algorithm and thus the number 

of communities, and 2) the filter weight G. Figure 9A shows the averaged (over ROIs) similarity 
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in community structure. There is a region where the average rank correlation is ~0.45, i.e. for 

filter weights between 200 and 1000 and ɣ≥1.075. At the same time, Figure 9B shows that with 

increasing ɣ, the number of communities also increases: The overall maximum in average rank 

correlation is 0.60 at ɣ=1.3 and G=800 (Figure S9), but at this point, we have 27 communities. 

Due to the coarseness of the parcellation used here, and according to the literature (Yeo et al., 

2011) , we seek to partition the cortex into as few communities as possible while also achieving a 

good agreement between the community structures of EEG- and fMRI-FCs. Choosing ɣ=1.1 

(row indicated in Figures 9A and B), the number of communities is 5 and the agreement with the 

fMRI community structure is 0.45 (at G=200, 300, or 400, see Figure 9C). The same fit can be 

achieved at ɣ=1.125 and G=300, but at this point we have 6.5 communities on average. 

Similarly, without filtering, the correlation is 0.42, but the number of communities is 6. Thus, 

ɣ=1.1 and G=200, 300, or 400 represents the optimal tradeoff between number of communities 

and community agreement in comparison to other filter weights, including G=0.  
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Figure 7: Results of Louvain clustering (“community matrices”). Each matrix shows, for each pair of 

ROIs, the fraction of repetitions of Louvain clustering (200 rounds, ɣ=1.1) which assigned both ROIs to 

the same community. ɣ=1.1 and G=400 (upper right matrix) are the parameter setting from a region of the 

parameter space where the agreement between EEG- and fMRI-community structures were found to be 

maximal (Figure 9; main text).  
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A - Example community structures (one iteration of Louvain clustering)  

 

B - Qualitative changes in community structure due to filtering 

 

Figure 8: A : One result of Louvain clustering community assignments. For EEG, ɣ=1.1, G=400 for the 

filtered version. In the legend, “*” marks communities only present in EEG. B : Surface renderings of the 

rows/columns of the matrices shown in Figure 7 corresponding to three example ROIs that tend to switch 

community membership due to filtering. Colors reflect the ROIs’ network membership according to the 

example in panel A. Left: right lateral orbitofrontal ROI; middle: right paracentral lobule; right: left 

fusiform area.  
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             A - Average rank correlation between                  B - Average number of communities 
               EEG- and fMRI-community structure                                   for EEG 

 

        C - Average rank correlation and number                    D - Rank correlation for single ROIs  
                       of communities at ɣ=1.1                                                      at ɣ=1.1 

           

Figure 9: A : Agreement between community structure of EEG- and fMRI-FC as measured by average 

rank correlations between “community matrices” (Figure 7). The black box marks the ɣ which is shown in 

panel C. B : Average number of communities found by the Louvain clustering algorithm. The red box 

marks the ɣ which is shown in panel C. C: Rank correlations and number of communities for ɣ=1.1 

(marked in the same colors in panels A and B). D : Rank correlations between rows/columns of 

“community matrices” (Figure 7) of EEG- and fMRI-FC, for ɣ=1.1 (marked with colored boxes in panels 

A and B).  
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Since Figure 8A only provides an example partition, we plot on the cortex rows/columns of the 

community matrices in Figure 7 in order to analyze the community structure across all iterations 

of the clustering, i.e., the probability of a specific ROI to be co-assigned to the same community 

as each of the other ROIs. We call this the “community behavior” of this ROI. In Figure 8B, we 

show three ROIs that exhibit a switch in community membership pertaining to three major 

communities found by the Louvain algorithm: the frontal community, the somatosensory/motor 

network, and one of the two temporal communities; we do not show the occipital network as it is 

quite stable.  

Figure 8B, left panel, shows how the “community behavior” of an example frontal ROI (right 

lateral orbitofrontal ROI) differs between unfiltered and filtered EEG-FCs. The most 

conspicuous change that is introduced by the filtering is the establishment of a coherent frontal 

network which includes orbitofrontal regions, as in fMRI. This can be observed both in Figure 

8A (blue network) as well as examining the changes in single ROIs displayed in Figure 9D.  

Figure 8B, middle panel, shows an example from the somatosensory/motor network (right 

paracentral lobule). This ROI shows a marked improvement in its agreement with fMRI. 

Namely, before filtering, this ROI is grouped with frontal regions (dark blue network in Figure 

8A). Afterwards, it becomes a member of the somatosensory/motor network (orange network in 

Figure 8A), as is the case in fMRI. However, in contrast to fMRI, a symmetrical network is not 

established. When using the SC graph for the smoothing procedure, this network is robustly 

expressed in a certain area of the parameter space (Figures S10 and S11), however, the overall 

correspondence between EEG- and fMRI-FCs and community structures is much lower at this 

point (average rank correlation: 0.22).  
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While the visual network is well-established even without any filtering (Figure 8A, cyan 

network, and Figure 9D), temporal regions are mostly grouped due to their anatomical proximity. 

Figure 8B, right panel, shows how the community behavior of an example temporal region (left 

fusiform area) changes due to filtering. Despite there being a qualitative improvement in that the 

region switches to a temporal network and decouples from visual regions, there are also many 

spurious co-assignments with other temporal regions which, in total, explain why this region 

shows no improvement due to filtering.  

 

Discussion  

In this study, we show that additional information in the SC can be used to selectively increase 

the FC between brain regions that are connected via white matter fibers, leading to a more 

realistic functional network structure. We present evidence that this procedure attenuates 

spurious correlations introduced by volume conduction.  

We first show that the strength of FC between pairs of regions that are connected via SC is 

higher than between those pairs that are not, confirming the assumption that both volume 

conduction and SC contribute to Euclidean distance-dependent functional connectivity. Second, 

we find that using a graph that combines SC and Euclidean distances to smooth functional EEG 

signals in nearest neighbor-graph space results in a higher agreement between fMRI- and 

EEG-FC structure.  
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SC is outperformed by graphs (partially) derived from Euclidean distance 

The result that a combination of SC and Euclidean distance performs best was contrary to our 

initial expectation that SC (fiber counts) would give the largest improvement due to 

strengthening of FC between distant pairs of ROIs. SC is correlated with Euclidean distance with 

r=0.48, and there exist many pairs of regions that are both nearby in terms of Euclidean distance 

and strongly connected according to the SC (Figure S2A). Thus, strong connections exist 

between these pairs in all four versions of the graph, and filtering based on any of the four graphs 

increases the strength of these connections. The increase in fit to the fMRI-FC common to all 

graphs indicates that despite the fact that these connections are already strong in the EEG-FCs, 

they are still underestimated compared to fMRI-FC. This is consistent with our rationale that 

strengthening these connections corresponds to boosting genuine FC relative to spurious FC.  

Furthermore, the GLM analysis showed that the 3rd-strongest predictor for fMRI-FC was an 

interaction between SC and Euclidean distance, explaining why, beyond the commonalities 

across graphs based on Euclidean distance, the graph containing information from both SC and 

Euclidean distances outperforms all other graphs.  

A trivial explanation for the increase in agreement between EEG- and fMRI-FC is that graph 

filtering removes pairwise non-linear relationships which are only present in EEG but not in 

fMRI. Indeed, (Messé et al., 2015) showed that a generative model of fMRI-FC which takes into 

account only linear relationships between structurally connected pairs outperformed all other 

models which included non-linearities. In order to investigate this possibility, we simulated white 

Gaussian noise (WGN) and applied the same filtering procedure, obtaining WGN-FC matrices. 

We found that at G=100, where the best fit (r=0.51) between EEG-FCs and fMRI-FC is reached, 
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the fit of WGN-FCs to fMRI-FC is 0.35 (Figure S4A), despite the EEG-FC being quite similar to 

filtered WGN-FCs (average maximum correlation: 0.69, Figure S4B). This suggests that making 

EEG-FCs more similar to linearly related WGN cannot fully account for the increase in fit 

between EEG- and fMRI-FC. However, at high G-values (G>500), the WGN-FCs did show a fit 

to the fMRI-FC that was just as good as that obtained through our filtering procedure with the 

empirical EEG-FCs, namely around 0.5, which is also the correlation between fMRI-FC and 

Euclidean distance. At this point, the correlation between WGN-FCs and EEG-FC reaches ~0.9. 

This indicates that indeed, imposing an interesting graph structure on white Gaussian noise is 

able to account for about 25% of the variability fMRI-FC. This result is in line with (Messé et 

al., 2015). Importantly though, our filtering procedure identifies a range of G where only about 

half of this variance is explained by WGN, suggesting that some interesting non-linearities are 

preserved.  

 

Comparison to other methods that attenuate volume conduction 

We used envelope-based correlations which are known to be strongly influenced by volume 

conduction. We opted for this measure because it is widely used (Cabral et al., 2014; Hipp et al., 

2012; O’Neill et al., 2015) and captures predominantly slow power modulations, which is closer 

to what the BOLD signal would capture. Also, the graph filtering does not remove zero-lag 

correlations.  

We repeated our analyses using coherence and imaginary part of coherence (Figures S5 and S6), 

the latter of which is thought to remove zero-lag correlations and thus, volume conduction (Nolte 

et al., 2004). We found that the increase in fit to the fMRI-FC was much smaller. However, this 
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was the case for both measures, and may therefore just reflect the fact that they are less suited for 

comparison with BOLD-FC. This does not mean that graph filtering does not work for 

coherence-based measures, but that comparing to fMRI-FC is not suitable in this case. 

Qualitatively, the results were the same with all three measures.  

We also used the method described in (Colclough et al., 2015), to orthogonalize the EEG signals, 

and found that this resulted in a decrease in the correlations between EEG-FCs and fMRI-FC for 

every subject, suggesting that orthogonalization removes genuine FC.  

Overall, these results suggest that both orthogonalization and imaginary coherence remove 

zero-lag correlations relevant to large-scale network structure. This does not mean that these 

methods are not useful in detecting true connectivity (Nolte et al., 2004), and some recent studies 

using such measures have shown network structure partly concordant with fMRI resting state 

networks, and have added some directionality in network analysis (Coito et al., 2016, 2019; 

Silfverhuth et al., 2012). 

 

Euclidean distance and fiber count differentially affect FC in different communities  

Our community analysis, using Louvain clustering, revealed that EEG functional networks are 

differentially affected by our filtering procedure (using “ED match”). For frontal regions, robust 

improvements are observed, yielding a network that resembles that found in fMRI, apart from 

missing functional connections that would constitute the hallmarks of the default mode network, 

i.e. long-range connections between frontal regions and the middle temporal, inferior parietal, 

and posterior cingulate cortices. However, note that with this coarse anatomical - not functional - 

parcellation, even the fMRI community structure does not clearly resolve the DMN, which is 
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mixed with the frontoparietal network. This indicates that for this network, “ED match” is a good 

choice. 

For temporal regions, fMRI shows a distinct structure which is not reproduced by EEG either 

with or without filtering. The main difference is that there is no FC across hemispheres between 

temporal regions. This shows a limitation of our approach (see below for more discussion on 

limitations), because even in the SC, there are very few, if any, white matter fiber tracts between 

the temporal lobes. This is because these fibers are very long and pass through the corpus 

callosum, making them hard to track. Beyond that, in fMRI, superior, middle, and inferior 

temporal gyri belong to different networks (somatosensory/motor/auditory, default 

mode/frontoparietal, limbic/visual, respectively – the resolution of this parcellation is too coarse 

to resolve these systems properly), while in EEG, the anatomical architecture of the lobes 

determines the partition into communities. This is a shortcoming which could potentially be 

improved by using a more EEG-appropriate parcellation. 

Finally, for parietal regions typically belonging to a prominent somatosensory/motor network, 

improvements are achieved using “ED dens”, however, the typical symmetric network including 

pre- and postcentral gyri is not established. This is due to the fact that the pre- and postcentral 

gyri are elongated and therefore, the Euclidean distances between ROI centers - which was used 

to establish the weights in the “ED match” graph - is quite high. Therefore, for this network, SC 

is the better choice even though overall, SC is outperformed by all ED-based graphs.  

These observations are in line with recent findings that show that the alignment between SC and 

FC, i.e. the degree to which FC is shaped by SC, differs across regions (Preti & Van De Ville, 

2019) , with sensory regions - i.e. the visual and somatosensory/motor cortices - are more 
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strongly aligned with the SC than higher cognitive areas. It may also correspond to a cortical 

gradient showing different levels of local recurrent connections across functional networks 

(Wang et al., 2019). 

 

Limitations 

We have already mentioned two limitations of our methodology. First, the SC has obvious 

shortcomings like the absence of many interhemispheric fibers and the underestimation of long 

fibers, which are hard to track (Jeurissen et al., 2019; Jones, 2010). Second, we used 

envelope-based correlations which are known to be strongly influenced by volume conduction. 

Although we compared to coherence and imaginary part of coherence, a closer investigation of 

how graph filtering impacts different measures is warranted.  

Additionally, the standard FreeSurfer parcellation is probably not optimal for EEG. The ROIs of 

this parcellation are mostly anatomically defined, not taking into account the nature of the EEG 

signal: Regions are highly unequal in size, resulting in a wide range of numbers of dipoles being 

averaged to obtain the ROI time courses. Furthermore, ROIs are in many cases elongated, while 

for EEG, more spherical regions (as far as this would be anatomically/functionally plausible) 

would be preferable. Finally, the appropriate number of ROIs is a matter of debate, as a simple 

correspondence between the number of ROIs and the number electrodes is not applicable 

(Farahibozorg et al., 2018). This is also in line with our finding that in the GLM, the relative 

regional variance (RRV) is the second-strongest predictor of EEG-FC in terms of added 

explained variance, indicating that noise is unequally distributed across ROIs. This could be due 
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to the fact that signals from deep sources are harder to pick up than those of superficial sources 

(Whittingstall et al., 2003)  

 

On the conceptual level, it is unclear how much EEG-FC should resemble fMRI-FC, since 

BOLD and the EEG signal are related in a way that is not straightforward. At the same time, 

recent studies show that RSNs are quite similar across these modalities and therefore, on this 

level of resolution and detail, we should expect a good agreement between the FC matrices 

(Coito et al., 2019; Liu et al., 2018). Still, validation should include a biophysical model which 

simulates both genuine FC based on FC as well as volume conduction.  

 

Conclusions and future work 

Taken together, we add to the thus far sparse knowledge on how SC and FC are related in EEG 

source space. Developing these methods is crucial for taking full advantage of the immense 

richness of the EEG signal in the temporal and frequency domain, and combining EEG with 

other modalities like MEG and fMRI. We have limited our analysis to the grand-average FC, but 

our method could be used to improve SNR on the single trial level, potentially easing statistical 

analysis of task-EEG in source space. One important conclusion from our results is that 

EEG-specific parcellation schemes are necessary to guarantee that we take full advantage of the 

richness of the EEG signal. Furthermore, our results confirm that it is feasible and sensible to use 

dynamical models that assume functional activity to spread through white matter fibers in EEG 

(Bhattacharya et al., 2011; de Haan et al., 2012; Finger et al., 2016; Pons et al., 2010; Ponten et 

al., 2010; van Dellen et al., 2013). On the data analysis side, this study provides a justification 
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and an avenue to applying more sophisticated methods like graph signal processing (Shuman et 

al., 2012).  

 

Methods 

EEG Data and source projection 

Data were recorded from 21 healthy controls as part of an epilepsy study at the EEG and 

Epilepsy Unit, University Hospital of Geneva. This study was approved by the local ethics 

committee. 3 subjects were excluded due to too many movement artifacts, leaving 18 for 

analysis. Since subjects were age-matched to patients (not analyzed here), 6 subjects aged less 

than 18 years were included (age range: 8 to 54 years, median: 29.5). Since we could not find 

any qualitative differences when excluding these subjects, we proceeded with using all 18 

available datasets.  

Resting state EEG was collected with the Geodesic Sensor Net with 256 electrodes (Electrical 

Geodesic, Inc., Eugene, USA) during resting state. Electrodes on cheeks and neck were 

excluded, leaving 204 electrodes for analysis. Data were downsampled to 1 kHz and artifacts 

were removed by Infomax-based ICA prior to source projection. Remaining artifacts were 

marked manually and visually and markers were later used to extract artifact-free intervals of 

varying length and number per subject (Table S3). Inverse solutions were computed using 

LAURA with LSMAC as implemented in CARTOOL (Brunet et al., 2011), employing 

individual head models that were extracted from T1-weighted images (acquired as magnetization 

prepared rapid-gradient echo MPRAGE volumes with a Siemens TrioTim 3T MRI scanner and a 

tfl3d1ns pulse sequence with flip angle = 9°; echo time = 2.66ms, repetition time = 1.51s, 
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inversion time = 0.9, voxel size = 1×1×1mm3 head first supine) obtained from the same subjects 

in order to create the forward model. Segmentation and ROI extraction (i.e., parcellation) was 

performed using Connectome mapper 3 (Tourbier et al., 2019). Gray and white matter were 

segmented from the MPRAGE volume using Freesurfer with the Lausanne 2008 multiscale 

parcellation (Hagmann et al., 2008), whose first scale corresponds to the Desikan atlas (Desikan 

et al., 2006).  

Data were source projected to ~5000 dipole locations equally spaced on a 3-dimensional grid, 

where the grey matter volume extracted from the same images served as a constraint for the 

dipole locations. In order to project the 3-dimensional time courses of the solution points to 

1-dimensional ROI time courses for further analysis, the main direction of variance was 

extracted using singular value decomposition (Rubega et al., 2019): all solution points were 

concatenated and their time courses were projected onto the first principal component, 

preserving most of the variance. This was done for each artifact-free interval (Table S3). Note 

that all analysis steps were done on the individual level. Since both functional (see below) and 

structural connectivity were computed between ROIs, averaging of the corresponding FC and SC 

matrices is possible without ever co-registering images to a common space.  

 

MRI data 

88 healthy control subjects (mean age 29.7 years, minimum 18.5, maximum 59.2 years; 34 

females) were scanned in a 3-Tesla MRI scanner (Trio, Siemens Medical, Germany) using a 

32-channel head-coil. Informed written consent in accordance with institutional guidelines 

(protocol approved by the Ethics Committee of Clinical Research of the Faculty of Biology and 
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Medicine, University of Lausanne, Switzerland, #82/14, #382/11, #26.4.2005) was obtained for 

all subjects. A large subset (70 out of 88 subjects) of the structural and functional connectivity 

matrices obtained from this data are available on Zenodo (Griffa et al., 2019), where the 

processing pipelines are described in detail. Briefly, for diffusion imaging, a DSI sequence (128 

diffusion-weighted volumes and a single b0 volume, maximum b-value 8,000 s/mm2, 

2.2x2.2x3.0 mm voxel size) was applied. For resting state fMRI, a gradient echo EPI sequence 

sensitive to BOLD contrast (3.3-mm in-plane resolution and slice thickness with a 0.3-mm gap, 

TR 1,920 ms, resulting in 280 images per participant) was applied. A  magnetization-prepared 

rapid acquisition gradient echo (MPRAGE) sequence sensitive to white/gray matter contrast 

(1-mm in-plane resolution, 1.2-mm slice thickness) was also acquired. ROI extraction (i.e., 

parcellation) was performed using the Connectome mapper (Daducci et al., 2012). Gray and 

white matter were segmented from the MPRAGE volume using Freesurfer with the Lausanne 

2008 multiscale parcellation (Hagmann et al., 2008), whose first scale corresponds to the 

Desikan atlas (Desikan et al., 2006). DSI data were reconstructed following the protocol 

described in (Van J. Wedeen et al., 2005).  

Structural connectivity matrices were estimated for individual participants using deterministic 

streamline tractography on reconstructed DSI data, initiating 32 streamline propagations per 

diffusion direction, per white matter voxel (V. J. Wedeen et al., 2008).  

FMRI volumes were corrected for physiological variables, including regression of white matter, 

cerebrospinal fluid, as well as motion (three translations and three rotations, estimated by rigid 

body co-registration). Time courses of voxels falling into each ROI were average and FC was 

computed as correlations between these ROI time courses.  
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Functional connectivity measures for EEG 

For our main analysis, we used power envelope correlations to measure functional connectivity 

in alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-40 Hz) bands. All data analysis was 

performed in Matlab 2017a (MathWorks, Natick, USA). We extracted artifact-free intervals from 

the resting state time courses by using the artifact markers mentioned above, admitting only 

intervals of at least 19s duration in order to guarantee a reliable estimation of slow envelope 

modulations (see below). Prior to extracting the FCs, for each artifact-free interval, the data were 

downsampled to 250 Hz in order to avoid numerical errors which can be induced if the band of 

interest is much lower than the sampling rate.  

Envelope correlations were computed as in (Cabral et al., 2014): after zero-phase band-pass 

filtering (eegfilt from EEGLAB software package) the EEG single trial time series in the 

respective bands, envelopes were extracted using the Hilbert transform. Envelopes were again 

low-pass filtered at 0.5 Hz, capturing ultraslow modulations in the respective bands. This 

measure was chosen to be as closely related as possible to fMRI-FC (Pearson correlation 

between BOLD time courses).  

As a comparison (see Discussion), we computed the EEG-/fMRI-FC-correlations also using FCs 

obtained with coherence and imaginary part of coherence (icoherence, (Nolte et al., 2004). This 

part of the analysis was performed using functions implemented in the Brainstorm toolbox 

(Tadel et al., 2011), which is documented and freely available for download online under the 

GNU general public license (http://neuroimage.usc.edu/brainstorm). Brainstorm estimates 

(i)coherence in a minimum number of 5 windows which overlap by 50%. At a sampling rate of 
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250 Hz, this results in a minimum required signal length of ~3s. Thus, artifact-free intervals were 

segmented into epochs of ~3s. Since we found that these measures were more susceptible to 

noise introduced by remaining artifacts than envelope correlations, we further rejected epochs 

which, at any point, deviated from the mean by more than 6 standard deviations. See Table S3 

for the number of epochs that was used for each subject.  

 

Average structural connectivity matrix 

All data analysis was performed in Matlab 2017a (MathWorks, Natick, USA). We used the 

method introduced in (Betzel et al., 2019), to obtain an unbiased group-consensus SC (average 

number of fibers). The reason for using a group average rather than individual SC matrices is 

that fiber tracking algorithms are not sufficiently reliable on an individual level, and information 

from the entire group is necessary to identify the most likely true-positive connections. In brief, 

this method takes into account the fact that interhemispheric connections are less reliable than 

intrahemispheric ones. Using a single recurrence-based threshold on the average SC (i.e. setting 

all connections that are present in less than a certain percentage of subjects to 0) results in an 

underestimated interhemispheric connection density compared to single subjects. This method 

preserves both intra- and interhemispheric connection density found in single subjects by 

applying separate thresholds. Additionally, we require a recurrence of at least 30%. The resulting 

connection density in our SC is 25%.  
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Search information 

All data analysis was performed in Matlab 2017a (MathWorks, Natick, USA). In order to 

correlate FC and SC matrices, we have to overcome the problem that FCs are dense (Pearson 

correlation of time courses can be computed for all pairs of ROIs), while fiber tracts only exist 

between a subset of ROI pairs. Here, we use search information as defined in (Goñi et al., 2014) 

to derive a dense matrix SCSI from the SC. A path  is a sequence of edges (non-zero entriesπs→t  

in the SC) leading from node s to node t. The search information  is then computed as(π )S s→t  

 

(π ) og (P )S s→t =  − l 2 (π )s→t
 

 

where  

 

 (π /w )P (π )s→t
= Πi∈Ω*

s→t
(1)

i→t i  

 

 is the probability that a signal travelling from node s to node t will take the shortest pathP (π )s→t
 

.  is the sequence of nodes on the shortest path,  is the first element (edge) onπs→t Ω*
s→t π(1)

i→t  

the path from node i to node t, and  is the weight of this edge. The intuition is that if therewi  

exist many such sequences between two given nodes s and t, the shortest path is “hidden” and 

more “information” is needed to find it. Figure S1 shows this matrix.  
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General linear model 

We use Matlab’s function stepwiseglm() to compute coefficients and p-values for a general 

linear model (GLM) that computes FC from four predictors:  

1. search information derived from SC, as detailed above 

2. Euclidean distance  

3. relative regional variance (RRV) 

4. ROI size 

RRV serves as a proxy for signal to noise ratio. First, we compute for each ROI and each subject 

the average (over intervals) variance of this ROI’s time courses. The variances are then scaled 

such that the maximum (over ROIs) variance is 1 and averaged over subjects.  

Matlab’s stepwiseglm() finds the order of predictor variables in terms of their deviances, i.e. 

twice the difference between the log-likelihood of that model and the full model (using all 

possible predictors, i.e. 4 main effects and 6 interaction terms). A variable is added into the 

model if the difference between deviances obtained by adding it is significant ( test). Removalχ2  

of a term is also possible; this can occur if predictors are linearly dependent. Any non-significant 

predictors are not included. Interactions are only included if the main effects are significant. For 

comparison, we fit single-variable GLMs that use only the intercept and one predictor variable at 

a time (see Figure 2A).  

 

Smoothing in graph space 

Figure 1 illustrates our filtering approach. We performed spatial low-pass filtering, or smoothing, 

using the space defined by different versions of the structural connectivity graph. Each node of 

38 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2020. ; https://doi.org/10.1101/831743doi: bioRxiv preprint 

https://doi.org/10.1101/831743
http://creativecommons.org/licenses/by-nc/4.0/


 

this  weighted and undirected graph is one region of interest defined by the Lausanne2008 

parcellation scheme (Hagmann et al., 2008), yielding 68 nodes. The edges of the graph are 

defined by the density of white matter tracts discovered between these ROIs via dMRI. 

Smoothing of node ’s signal at time , , is then performed using the nearest neighbors ofi t (t)xi  

node , i.e. all nodes which have a direct connection to  according to the connectivityi =j / i i  

matrix with entries :C cij   

(t) (t)  (t) x̂i = xi + G ∑
N

j=1
c xij j  

 is the resulting filtered signal.  is a scalar parameter which tunes the impact(t)x̂i G ≤G≤10000  

of the neighbors’ signal. The filtering procedure was implemented using Matlab 2017a.  

 

Statistical analysis for comparing EEG- and fMRI-FC matrices 

We compute individual FC matrices after smoothing in graph space of each subject’s EEG node 

time courses. Each subject’s FC matrix, for each value of , was correlated to the group averageG  

fMRI-FC matrix. Since the fMRI-FC matrix was computed from a rather large sample (88 

subjects), we assume that it represents a “canonical” functional network structure. In order to 

assess whether the filtering procedure increases each subject’s EEG-FC’s similarity to this 

canonical network structure, we compared the best fit resulting from each of the four versions of 

the graph to the baseline as well as among each other, using a Wilcoxon signed-rank test. This is 

a paired test, comparing the differences of each subject’s individual correlations against 0. Since 

there are 10 comparisons (each of the four graph versions against baseline, and 7 pairwise 
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comparisons between graph versions), we just show a summary of the results as boxplots, 

however, note that we did not compare the means or medians, but the individual differences. 

Functional connectivity matrices derived from white Gaussian noise 

In order to explore the effect that smoothing in graph space is likely to remove interesting 

non-linearities in EEG-FC, we created white Gaussian noise (WGN) time series using Matlab’s 

wgn()-function. We preserved the power (variance) of the original signals for each artifact-free 

interval separately and computed FC in exactly the same way as for the EEG data. In addition to 

assessing the correlation between these WGN-FCs and fMRI-FC, we quantified how much 

filtered EEG-FCs resemble WGN-FCs by computing for each filter weight the correlation 

between the EEG-FCs filtered with this weight and all filtered WGN-FCs, as a match between 

the weights cannot be assumed. In Figure S4B, the maximum correlations to any filtered 

WGN-FC are shown.  

 

Analysis of community/modular structure of FC matrices 

We used the Louvain community detection algorithm implemented in the Brain Connectivity 

toolbox (Rubinov & Sporns, 2010) to evaluate the community structure present in the FC 

matrices. This algorithm takes the FC (adjacency) matrix and assigns each ROI to a community. 

The function takes one parameter, ɣ, which controls the spatial resolution and thus, indirectly, 

the number of communities that are detected, with higher values of ɣ leading to more and smaller 

communities. We varied ɣ in a range of  , resulting in a minimum of 2 and a.9 ≤ γ ≤ 1.30  

maximum of 35 communities (Figure S8).  
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Since the community structure depends to some degree on the initial conditions (randomly 

assigned module memberships of ROIs), we repeated the procedure 200 times. Instead of opting 

for a “hard assignment” approach, we took into account the uncertainty of the cluster structures. 

For each round of clustering, we determined for each pair of ROIs whether they were assigned to 

the same community. This resulted in a “community matrix” which can be interpreted as 

indicating the probability of a pair of ROIs to belong to the same community. Thus, each 

row/column of one of these matrices describes the “community profile” of a given ROI. In order 

to compare the community structures of EEG- vs fMRI-FCs, we compute the rank correlations 

between the community profiles (row/column of community matrix) of each ROI.  
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