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Abstract

The ability to detect the identity of a sample obtained from its environment is a cornerstone of molecular

ecological research. Thanks to the falling price of shotgun sequencing, genome skimming, the acquisition

of short reads spread across the genome at low coverage, is emerging as an alternative to traditional

barcoding. By obtaining far more data across the whole genome, skimming has the promise to increase

the precision of sample identification beyond traditional barcoding while keeping the costs manageable.

While methods for assembly-free sample identification based on genome skims are now available, little

is known about how these methods react to the presence of DNA from organisms other than the target

species. In this paper, we show that the accuracy of distances computed between a pair of genome skims

based on k-mer similarity can degrade dramatically if the skims include contaminant reads; i.e., any reads

originating from other organisms. We establish a theoretical model of the impact of contamination. We

then suggest and evaluate a solution to the contamination problem: Query reads in a genome skim against

an extensive database of possible contaminants (e.g., all microbial organisms) and filter out any read that

matches. We evaluate the effectiveness of this strategy when implemented using Kraken-II, in detailed

analyses. Our results show substantial improvements in accuracy as a result of filtering but also point to

limitations, including a need for relatively close matches in the contaminant database.
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1 Introduction

Anthropogenic pressure and other natural causes have resulted in severe disruption of the global ecosystems

in recent years, including loss of biodiversity and invasion of non-native flora and fauna. Conservationists,

struggling with an unprecedented rate of extinction, are using innovative approaches to measure the changing

biodiversity of the planet. Genome sequencing provides an attractive alternative to physical sampling and

cataloging, as falling costs have made it possible to shotgun sequence a reference specimen sample for at

most $10 per Gb (with another $60 for sample prep). However, the analysis typically requires assembling

and finishing a reference genome, which can still be prohibitively costly. It could be many decades before the

biodiversity of our planet is represented in the form of finished genomes (and cataloged genomic variants)

and before biodiversity measurements for each population can be acquired on an ongoing basis.

The standard molecular technique for measuring biodiversity at the organismal level is barcoding (Hebert

et al., 2003; Savolainen et al., 2005; Taberlet et al., 2012), which involves DNA sequencing of taxonomically

informative and group-specific marker genes (e.g., mtDNA COI (Hebert et al., 2003; Seifert et al., 2007),

12S/16S (Vences et al., 2005), plastid genes (Hollingsworth et al., 2009), and ITS (Schoch et al., 2012)).

Existing reference databases and computational methods enable measurements of biodiversity using bar-

codes (Ratnasingham and Hebert, 2007; Steinke et al., 2005; Taberlet et al., 2012). However, since barcodes

are short regions, their phylogenetic signal is limited (Hickerson et al., 2006). For example, 896 of the 4,174

species of wasps could not be distinguished from other species using COI barcodes (Quicke et al., 2012).

As an alternative, a genome skim is a low-coverage acquisition of short reads from a sample, typically

around 1-5 Gbp (Coissac et al., 2016; Dodsworth, 2015), providing 0.1-10× coverage, and usually insufficient

for assembling nuclear contigs. Falling sequencing costs have made genome-skimming cost-effective while

providing richer data than barcoding, but the data is harder to analyze. Skimming applications often rely on

assembling organelle genomes (e.g., Malé et al., 2014; Weitemier et al., 2014) from their over-represented

reads. This approach throws away the vast majority of the reads, potentially limiting the resolution. Moreover,

organelle genomes may not represent the rest of the genome and are not always easy to assemble. Ideally,

we should use both reads from both nuclear and organelle genomes. However, methods that seek to mine all

information from genome skims must be assembly-free and map-free and face additional challenges.

Recently, Sarmashghi et al., 2019 developed a method, Skmer, that accurately computes genomic distance
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between genome skims by simply analyzing k-mers (short substrings of length k) in both genome skims.

Skmer is based on three principles. First, as observed by Ondov et al. (2016), the Jaccard index, J (the size

of the intersection of two sets divided by the size of their union) between k-mer sets of the two genomes can

be computed efficiently. Second, J can be used to estimate the genomic distance (D) between two species by

carefully accounting for dependence on coverage, sequencing error, and genome length. Third, both coverage

and error rate can be computed from genome skim data by modelling histograms of k-mer frequencies. By

combining these three principles, Skmer provides excellent accuracy in estimating distances between genome

skims. These distances can then be used for taxonomic identification and phylogenetic placement (Balaban

et al., 2019) of query genome skims with respect to a set of reference genome skims. Previous results have

shown high accuracy and increased resolution compared to barcodes when using genome skims for taxonomic

identification (Balaban et al., 2019; Sarmashghi et al., 2019).

The Skmer methodology, however, completely ignores the very real possibility that a genome skim

includes extraneous reads originating from other species, often bacteria, virus or fungi, that cohabit inside

the biological organism. With a slight abuse of terminology, we refer to all reads originating from species other

than the target species being identified as contamination. Contamination of genome skims is unavoidable

in many cases as microorganisms that co-exist with a species are often hard or impossible to separate from

the original sample. To make matters worse, lab protocols used for genome skimming also can add human

and other forms of contamination. The standard organelle-based analyses of skims manages to deal with

sequencing errors and contamination by focusing on and assembling a small portion of the reads. These

contaminates have the potential to mislead the Jaccard-based calculation of distance using methods such as

Skmer. Thus, to take advantage of all reads across the genome, contaminants will have to be dealt with.

In this paper, we study the impact of contamination on Skmer estimates of the genomic distance. We then

study whether the negative impact of contamination can be reduced using “exclusion filters”: search every

read of a skim against a library of all known contaminants (e.g., bacterial, fungal, and viral genomes), filter

out reads that map to the library, and use the remaining reads to compute the distance. The efficacy of this

exclusion filtering approach is unclear and can depend on several factors, which we thoroughly explore here.

We study these effects both based on a theoretical model and in careful simulation and empirical analyses

using a leading read matching tool called Kraken-II (Wood et al., 2019).
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Figure 1: Model. (a) Definition of terms. Contaminating k-mers change the estimated Jaccard in a complex manner.
(b) Assuming equal lengths for the two genomes, all quantities are measured as a fraction of the number of k-mers in
each genome: 1−ρ of the k-mers are shared between the base genomes; additionally, out of a total of a = c1

1−c1
+ c2

1−c2

contaminants, aH
1+H are shared, making the total number of shared k-mers equal to (1− ρ) + aH

1+H and the total number
of distinct k-mers in the union equal (1 + ρ) + a

1+H . See Appendix A.1 for details. (c) Impact of false positives and
negatives in contaminant removal in the disjoint contaminant scenario. We keep (1− cl)(1− fp) + clfn of the k-mers
in each set, with the intersection proportion being (1− cl)(1− fp)(1− ρ).

2 Material and methods

2.1 Theoretical Exposition

Consider two genomes of equal length and separated by genomic distance D, defined as the portion of

positions that do not match in a perfect alignment of the two genomes. Let ρ denote the proportion of k-mers

in one species that are absent in the other. The Jaccard-index of k-mers is given by (Fig. 1a):

J =
Intersection of k-mer sets

Union of k-mer sets
=

1− ρ
2− (1− ρ)

=
1− ρ
1 + ρ

.

Assuming a uniform distribution of mutations along the genome, E(ρ) = 1 − (1 − D)k, and thus, we can

estimate (Fan et al., 2015):

D̂ = 1−
(

2J

1 + J

) 1
k

(1)

Skmer further models coverage and sequencing error and uses

D̂ = 1−
( 2(ζ1L1 + ζ2L2)J

η1η2(L1 + L2)(1 + J)

)1/k
(2)

where ηi, ζi, and Li are parameters related to coverage, error, and genome length, all automatically estimated

by Skmer from k-mer profiles. As the simpler equation is easier to manipulate, we use (1) in our theoretical
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exposition. However, our empirical results will use the Skmer software, which uses (2). Throughout the

paper, we use the relative error to quantify any error in estimating D:

relative error of D̂ =
D̂ −D
D

(3)

where D is the true genomic distance and D̂ is the estimated genomic distance.

2.1.1 Impact of contamination

Contamination can clearly alter Jaccard and hence the estimated genomic distance (Fig. 1a). The impact of

contamination depends on factors such as the amount and exact composition of contaminants. For exposition

purposes, let us assume that an identical proportion of k-mers (denoted by cl) of both skims are contaminated,

and contaminant k-mers are entirely disjoint between the two genome skims. Then, J becomes a function of

cl:

J =
(1− cl)(1− ρ)

2− (1− cl)(1− ρ)
≈ (1− cl)(1−D)k

2− (1− cl)(1−D)k

where the approximation is achieved by replacing ρ with its expectation.

Under these assumptions, Jaccard reduces under contamination and extent of reduction depends on cl

and to a lesser degree on D (Fig. S1a). If the impact of contamination on Jaccard is ignored, distance will

be overestimated at a level that strongly depends on the true distance (Fig. S1b). When D is sufficiently

high, substantial levels of contamination result in relatively low errors. However, with smaller distances,

contamination can drastically increase the relative error. At D = 0.001 (e.g., within species differentiation),

3% contamination is enough to cause 100% relative error. Thus, under the simple disjoint contamination

model, contamination has a large negative impacts only when the distance between base genomes is small.

Disjoint contamination assumptions, however, is quite strong. When both samples are contaminated with

the same species (say, human), the assumption of disjoint contaminant k-mers can mislead. To generalize,

consider two genomes with an equal number of k-mers L. Let c1 denote the fraction of the k-mers from

sample 1 that are contaminated. Then, the ratio of contaminated k-mers to true k-mers in genome 1 is

given by c1
1−c1 (Appendix A.1). Define c2 in an analogous fashion for genome 2, and let a = c1

1−c1 + c2
1−c2

(Fig. 1a). Removing the disjoint contamination assumption, define the Jaccard index between the k-mers of
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Figure 2: Theoretical modeling. (a) Impact of contamination on the genomic distance estimated from
Jaccard according to theoretical expectation assuming contaminant k-mers of the two skims have a Jaccard
of H (4). For several D and varying H , relative error is shown for eight contamination levels cl = c1 = c2.
(b) Error in Skmer distance (computed using (1), with Jaccard approximated using (5)) in the presence of
filtering and with the disjoint contaminant k-mer assumption for various levels of FP portion (fp), FN (fn)
rate, and cl. Red lines show the error in the absence of filtering. y-axis is in square root scale and k = 31.

the contaminants of the two samples as H . Then, as shown in Appendix A.1 and Figure 1b,

J =
(1− ρ)(1 +H) + aH

(1 + ρ)(1 +H) + a
. (4)

Plotting this formula shows that depending onH , the estimated Jaccard may over-estimate or under-estimate

the true Jaccard, and converting the Jaccard to distance without any consideration of contaminants can lead

to over or under-estimate the true distance (Fig. 2a). Once again, error depends on the true distance D,

where most dramatic error happens when distance is low and H is also low. Introduction of H shows that

contamination can result in both over and under-estimation of error. In particular, for larger values of D, if

contaminants are similar between the two samples, relatively low levels of contamination can lead to sever

under-estimation of distance. For example, with D = 0.18, if the samples are contaminated at 5% with

somewhat similar species with H = 0.5, the estimated distance will be under-estimated by 43%.
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2.1.2 Impact of exclusion filtering

One approach to deal with contamination is using exclusion filters: search all reads in a genome skim against

a (potentially incomplete) library of known contaminants and filter out reads that match the library. This

approach will impose a trade-off between two types of possible errors. A false positive (FP) occurs when

we incorrectly filter out a read that belongs to the target genome. A false negative (FN) occurs when we

fail to filter out a read that belongs to contaminants, perhaps due to an insufficient similarity between the

read and genomes included in the exclusion library. The exact choice of the method and parameters used

for mapping reads to reference contaminant libraries, in addition to the composition of the reference library,

create a trade-off between FP and FN error. The trade-off poses an important question: which type of error, FP

or FN, is more damaging? Falling back on the disjoint contaminant k-mer assumption, we can approximate

impact of FP and FN on J given one more assumption: A k-mer shared between the two genome skims is

either kept or removed from both skims.

Let fp be the portion of all k-mers that we remove by mistake (FP) and fn be the portion of the contaminant

k-mers that we fail to remove (FN). The proportion of k-mers shared between genome skims after filtering is

(1− cl)(1− fp)(1− ρ) (Fig. 1c). Additionally, (1− cl)(1− fp) + clfn of the k-mers in each set are retained

after filtering for the total number of unique k-mers to be 2((1−cl)(1−fp)+clfn)− (1−cl)(1−ρ)(1−fp).

Thus,

J =
(1− cl)(1− ρ)(1− fp)

(1− cl)(1 + ρ)(1− fp) + 2fnc
(5)

By plotting this equation as we vary the four parameters (D, cl, fp, and fn), we observe that filtering

can successfully reduce the impact of contamination under many but not all conditions (Figs. 2b and S2).

Filtering can be very effective in making Jaccard index close to what we would obtain without contamination,

and overall, Jaccard is more sensitive to FN errors than it is to FP errors. Impact of filtering on genomic

distance depends on the level of contamination, false negatives, and most of all, the true genomic distance.

Reassuringly, in this model, the estimated accuracy of distance after filtering is reasonably high in most cases

(Figs. S2 and S3). Nevertheless, in the most challenging cases, filtering cannot sufficiently reduce the error.

With D = 0.002, unless fn is low or cl is moderate, error can be very high. Overall, fp errors are less

damaging than fn. Practically, it seems that with fn ≤ 0.2, highly accurate estimates of distance are possible

unless contamination levels are very high and the genomic distance is very low.
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2.2 Empirical analyses using Kraken-II.

Our empirical experiments validate the effectiveness of exclusion filtering, focusing on a leading k-mer-based

read mapping tool called Kraken-II, originally designed for metagenomics and adopted here for contamination

filtering. We start by describing Kraken-II and then detail the setup for the four experiments performed.

2.2.1 Kraken

Kraken-II works by mapping all k-mers of a read to k-mers in a reference library and calls a read a match if the

number of k-mers matching is strictly larger than a user-provided threshold called the confidence level (α).

Kraken-II uses LCA-mapping to find lowest taxonomic level at which the read can be confidently matched.

It also uses wild-carding s random positions of each k-mer (Brinda et al., 2015) to increase the sensitivity

of matches. We will explore both k and α settings but fix other parametrs. We set minimizer length l = k

or use the maximum allowed l value (31) for reference databases built with k > 31. We set s, the number

of wild-card positions, to its maximum allowable value, l/4. We design our reference Kraken-II libraries to

include a set of potential contaminants and as query, we use the bag of all reads in a genome skim (details

described below). We will use microbial genomes to simulate contamination, and thus, all reference libraries

we use are microbial. In contrast, our base genomes are Eukaryotic (plants or insects).

2.2.2 Experiments

We present four experiments that explore the impact of D (equivalently, ρ), cl, fp, and fn. In addition, we

test the running time of Kraken-II. Below, we describe the setup used in each experiment.

Exploring FN and FP of Kraken-II. We start by examining the sensitivity of Kraken-II to two parameters:

k and α. We also consider completeness of the reference library, which is expected to have a direct effect on

fp and fn rates. A lack of sufficiently close genomes to the contaminant can prevent Kraken-II from finding

a match, and presence of genomes similar to non-contaminant genomes can cause FP matches. Thus, we

define a third variable, M , as the genomic distance between a query and its closest match in the library. We

control M by carefully selecting species included in the reference library and those used as query.

To control M , we use an available reference phylogeny of 10,575 bacterial and archaeal genomes (Zhu
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et al., 2019). Five genomes from this set had IDs that did not exist in NCBI anymore. We assigned remaining

genomes to the reference library (10,460 genomes), the query set (100), or both (10). Based on the available

phylogeny, we select 10 sets of 10 query genomes such that all genomes in a set have similar patristic (tree)

distance to their closest leaf in the tree, not counting the query genomes. These sets had mean tree distance

of {0.01, 0.02, 0.04, 0.06, 0.09, 0.10, 0.18, 0.23, 0.57, 1.20} and at most 25% divergence from the mean. We

also randomly chose 10 genomes to be added to both reference and query sets. Then, for each of the 110

query genomes, we used Mash to computeM : its minimum distance to any of the 10,470 reference genomes.

We then binned the 110 queries into 10 bins based on M (Table S1). Finally, we added 10 plant genomes

(Table S9) to the set of query genomes in every bin. Plant species are from a different domain of life compared

to the reference set and should not match the library; thus, they allow us to measure FP and TN rates.

We built Kraken-II reference libraries for selected k values (ranging from 23 to 35) using the 10,470

bacterial and archael reference genomes. Kraken-II only allows adding additional custom genomes of interest

to its existing standard reference libraries. We used Kraken-II RefSeq viral genome database as a base library.

All custom reference libraries were constructed without masking low complexity sequences.

We used the ART simulation tool (Huang et al., 2012) with HiSeq 2500 single read profile, 150bp read

length with 10bp standard deviation to generate≈1.4GB of synthetic reads (1000× coverage for each genome)

for all query genomes. Every query genome was then downsampled to 1G for normalization purposes.

Reads in each query bin were queried against every constructed reference library for each k using several

confidence levels (0 – 0.3). We then calculated TP, FP, FN, TN for every bin. TP is the count of bacterial/archael

reads matched to Bacterial or Archaeal domains; FP is the count of plant reads matched to Bacterial or Archaeal

domains; TN is the number of plant reads that are left unclassified by Kraken; FN is the number of unclassified

bacterial/archaeal sequences. We use standard definitions of FPR=(FP)/(FP+TN) and Recall=TP/(TP+FN)

and construct ROC curves in the standard fashion for every tested condition.

Skmer distances (simulation). We next study the impact of contamination on distances computed from

pairs of genome skims simulated from Drosophila assemblies. We first emulate the disjoint contaminant

scenario by contaminating one of the two genome skims at a level cl. We used D. simulans w501 to simulate

the contaminated genome skim and used D. simulans WXD1, D. sechellia, or D. yakuba to simulate the

uncontaminated skim. Based on assemblies, the distances between D. simulans w501 and the three other
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species are 0.2%, 2.1%, and 6.3%, respectively, and we treat these as true distances. To add contamination, we

use the same 110 query genomes described earlier but bin M into four ranges: [0, 0], (0, 0.05], (0.05, 0.15],

and (0.15, 0.25], which include 10, 43, 19, and 17 species, respectively, corresponding to a total size of

37Mb, 76Mb, 37Mb, and 35Mb. Since our base Drosophila genomes are roughly 150Mb in size, we can

add up to 25% contaminant reads for all bins, except for the (0, 0.05] bin, where we can add up to 60%. We

concatenated all the genomes in each bin and used ART with the same settings indicated above to generate

contaminant reads, which we then mixed with reads simulated from the main genome at levels varying from

0% to 60% (for the second bin) or to 25% (for all other bins) for a total of 0.1Gb per skim (thus, no more than

1× coverage). These read contamination levels translate to similar k-mer contamination levels (Table S3).

We report the relative error in estimated distances as we increase the contamination level, both with and

without Kraken-II filtering. Kraken is run with the same reference library used in the previous analysis.

We then simulate a scenario where both genome skims are contaminated with overlapping sets of species.

Here, we only use theM ∈ (0, 0.05] bin and fix read contamination level to 15%. To controlH , we randomly

split bacterial reads into three parts: two unique parts and one part that served as an overlap. Every sample was

generated by mixing unique and overlap contaminant portions with Drosophila genome skims at controlled

ratios, with overlap set to 0% – 50%. Since unique parts can have evolutionary similar species, even the case

of 0% overlap results in some k-mer overlap. Thus, we estimated contamination overlap (H) empirically

using Jellyfish (Marçais and Kingsford, 2011) and saw it varied between 11% and 41% (Table S4). Finally,

to have H = 0%, we added the disjoint set experiment with M ∈ (0, 0.05] and cl = 15% to this set as well.

Skmer distances on real data. To move beyond simulations, we also evaluate effectiveness on real data with

real contaminants. To do so, we utilized data from recent Drosophila assembly study by Miller et al., 2018.

We subsampled available short read sequencing data (e.g., SRA files) to obtain 100Mb genome skims for 14

Drosophila species. We removed adapters, deduplicated and merged paired end reads using BBtools Bushnell

et al. (2017). Then, we determined distances for all pairs of genomes before and after filtering them with

Kraken-II. Distance error for every pair of genomes was estimated relative to the true distance defined to be

the value computed by running Skmer on corresponding assemblies. In this experiment, we used a standard

reference library available from Kraken-II distribution. This database includes RefSeq assemblies of all

available bacterial, archaeal, viral and human (GRCh38) genomes as well as the UniVec_Core subset of the
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UniVec database (a total of 168483 genomes, as of July, 2019). We used default Kraken-II settings.

Impact of filtering on phylogeny On the real Drosophila data, we also infer phylogenetic trees from

distances and measure phylogenetic error. To estimate the phylogeny, we use FastME 2.0 software (Lefort

et al., 2015) with JC69+Γ (Jin and Nei, 1990) model of evolution. Alpha parameter of JC69+Γ model is set

equal to 1, which is the default value in FastME. We infer phylogenies from distance matrices obtained from

assemblies and from genome skims before and after filtering. As the gold standard reference tree used for

error calculations, we use the tree obtained from Open Tree of Life (OTL) (Hinchliff et al., 2015)(Fig. S4).

We estimated branch lengths of the true tree using OTL tree topology and assembly distances under JC69+Γ

model. We measure phylogenetic error using three metrics. (1) Normalized Robinson and Foulds, 1981 (RF)

distance is total number of branches not matching. (2) Normalized weighted RF (wRF) distance is similar

but each present or absent branch in each tree is weighted by the absolute difference between its lengths

in the two trees, and then the total sum is normalized by the sum of branch lengths of the two trees. (3)

Fitch-Margoliash (Fitch and Margoliash, 1967) is the weighted least squares error (FME) for species i, given

as: Q(i) =
∑

i6=j (Dij/dij − 1)2 where Dij is the (corrected) distance between species i and j, and dij is

sum of the branch lengths on the path connecting i and j on the phylogeny inferred using D. We also report

cumulative FME of a phylogeny, which is Q =
∑N

i=1Q(i). Denoting FME error on true and estimated

phylogenies with Q(i) and Q̂(i) respectively, relative FME error is defined similarly to (3).

3 Results

3.1 Sensitivity of Kraken-II (FN and FP analysis)

The ability of the default version of Kraken-II (k = 35, α = 0) to find a match in the database is a direct

function of M , the distance of the query to the closest match (Figs S5 and 3a). When the query has a close

match in the library (e.g.,D < 0.05), Kraken-II is able to match 80% – 100% of reads, which would result in

tolerable fn rates of 20% or less. As M increases, the ability of Kraken-II to classify degrades linearly with

M up until around M ≈ 0.3 where Kraken-II fails to classify almost all reads (Fig. S5). Interestingly, when

Kraken-II finds a match, it is often able to classify the read all the way down to the species level (Fig. S6).

Consistent with these results, when mixed plant/microbe skims are queried using the default Kraken, the
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Figure 3: Sensitivity analysis of Kraken-II. (a) For three selected values of k and two selected values of α, the lines
show recall for different bins of M (x-axis). Each line is labelled with its associated FPR. Note that FPR is a function
of the plant genomes, which are identical across bins; thus, FPR is not a function of the match parameter M . (b) ROC
curves for all k and α values across different bins of M , reduced to 5 ranges for ease of visualization (boxes). See
Figure S7 for all 10 bins.

recall of the filtering step is reasonably high (e.g., >85%) and the FP is low (4.5%) for M ≤ 0.05 (Fig. 3a).

When 0.05 < M ≤ 0.1 or 0.1 < M ≤ 0.15, there is a substantial reduction in the recall to 67% and 56%,

respectively; for 0.15 < M , recall is less than 33%, and thus filtering is not effective in those conditions.

Given the low recall in some conditions and our expectation that FP error is less damaging than FN, one

may aspire to increase the sensitivity of Kraken-II by adjusting its parameters k and α. However, our careful

analysis of FP versus FN shows very limited ability to control the rates in a reasonable range (Figs. 3ab and

S7). Many settings of k and α result in FP error above 50% and often close to 100%. Many of the settings

also have high FP without improving recall compared to default settings (Figs. 3b). The only settings that

seem to provide a reasonable trade-off between FPR and recall are k ∈ {35, 32, 28} and α ≤ 0.05. Focusing

on these settings (Fig. 3a), we observe that setting k = 28 and α = 0 provides a substantial increase in recall

but increases FPR to unacceptable levels (55%). k = 32 improves recall compared to the default setting for

M ≥ 0.05 bins by a consistent but relatively small margins (5–8%), but also increases the FPR to 8.5%.

Overall, changing parameters do not result in substantial improvements over the default settings.
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Figure 4: Filtering on simulated Drosophila genome skims. Relative error of Skmer distances without (dashed) and
with (solid) Kraken-II filtering. Three pairs of Drosophila are chosen to be at true distance D = 0.2%, D = 2.1%,
or D = 6.3% (rows). Contaminants are selected such that they are at distance M from their closest match in the
reference contaminant library. (a) Simulating contaminants in only one of the two species (disjoint contaminants) for
four ranges of M (columns) and various levels of contamination (x-axis). (b) Contaminating both genomes such that
the overlap between contaminants measured by Jaccard similarity is 0% ≤ H ≤ 41%. Here, cl = 15% per species and
M ∈ (0, 0.05]. Y-axis is on square root scale; see S8 for normal scale and a range of k and α values.

3.2 Impact of filtering on Skmer distances (simulated contaminants)

Disjoint contaminants. Focusing on simulated contamination between pairs of Drosophila genome skims,

when only one species is contaminated, increasing the contamination level results in increasing error in

estimated Skmer distances, going up to 90% error for D = 2% and 1000% for D = 0.2% when cl = 60%

(Fig. 4a). As theory suggested, here, the strongest detrimental effect appears for D = 0.2%.

Filtering using default Kraken-II dramatically reduces the error when the contaminant has an exact or

close match in the reference library (Fig. 4a). For M ≤ 0.05, remarkably high levels of contamination are

tolerated after filtering. For example, for 0 < M ≤ 0.05 and D = 2.1%, even with high cl in 25% – 50%,

distances have only 0.3% – 4% relative error after filtering. For D = 6.3%, error after filtering is never more
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than 5% for M ≤ 0.05. Even in the most challenging case of D = 0.2%, cl = 25% leads to only 6% error

after filtering in contrast to 206% error before filtering. Despite the improved accuracy overall, in some cases,

filtering can increase the error slightly but noticeably, perhaps due to FP filtering of correct reads. ForM = 0

and D = 6.3%, if contamination is below 5%, no filtering is better than filtering, which always results in

≈0.6% relative error regardless of the level of contamination. Interestingly, in some cases, filtering can result

in underestimation of distances (e.g., up to 1% for D = 2.1% and M = 0).

In contrast, for contaminants without a close match with M > 0.05, filtering fails to fully remove

contaminants. Nevertheless, for 0.5 < M ≤ 0.15, filtering has substantial benefits. For example, error is

reduced from 180% and 16% with no filtering to 65% and 6%, respectively for D = 0.2% and D = 2.1%.

These reductions, while substantial, may not be sufficient. Even worse, forM > 0.15, filtering has very little

or no ability to reduce the error and decreases or increases the error by very small margins.

Finally, changing k, α settings of Kraken-II does not consistently improve the accuracy above and beyond

the default setting (Fig. S8). Using α = 0.05 can very slightly reduce the error for the D = 6.3% case but is

not dramatically different. Thus, we will exclusively use the defaults in the next experiments.

Overlapping contaminants. When both skims are contaminated with overlapping species, as theory

suggested, we see under-estimation of distances (Fig. 4b). These under-estimations can be dramatic, going

all the way down to −100% (i.e., the estimated distance is 0). Once again, filtering using Kraken is able to

improve results dramatically, resulting in relative error that does not exceed 23% for D = 0.2% and is at

most 6% in the remaining cases.

3.3 Impact of filtering on Skmer distances (real contaminants)

In the experiment on real unassembled Drosophila sequences, absent any filtering, Skmer often under-

estimates distances (Fig. 5a). The under-estimation of distances is consistent with our theory assuming

H > 0 (Fig. 2). Kraken-II run on these data identifies between 5.5% and 15.1% of the reads as belonging

to human or microbes (Fig. 5b). Interestingly, for most Drosophila species, Kraken-II assigns ∼40–50% of

the matched reads to one of three genera (Homo, Acetobacter, and Clostridium), indicating that many pairs

of genome skims have similar contaminants (i.e., H > 0). Therefore, the under-estimations of distances

matches the theory. Consistent with this explanation, we observe that the error in computed distances is
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filtering
filtering

Figure 5: Filtering of real contaminants. (a) Relative distance error before (upper triangle) and after (lower triangle)
filtering per pair of Drosophila species. Numeric lables on y-axis represent percentage of reads filtered per species. (b)
Percent of reads classified by Kraken-II to different groups. “Other” corresponds “cellular organisms” (shared between
domains). (c) Change in the relative distance error after filtering. Positive values indicate a reduction in error. (d)
Change in relative FME error per species after filtering. Solid red line: a trend line fitted to the points.

associated with the percentage of the reads found by Kraken-II to be of human or microbial origin (Fig. S9).

Filtering reads using Kraken-II dramatically reduces the errors in Skmer distances (Fig. 5c). Over all

pairs, the mean absolute relative error reduce from 9.1% before filtering to 3.4% after filtering. In some

cases, reductions are dramatic. For example, the relative error in pairwise distances between D. virilis and

D. bipectinata, D. eugracilis and D. mauritiana, decreased from 46.2%, 36.9% and 35.9% before filtering to

1.3%, 0.8%, and 1.0% after filtering. In a minority of cases, error increased after filtering but the increase

in error never exceeded 8% (D. mauritiana vs. D. mojavensis) while reductions in error could be as high as
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45% (D. virilis vs. D. bipectinata) (Fig. 5c). The wide range of error reductions is unsurprising given that

the actual level of contamination in original sample can vary substantially. The magnitude of improvement in

distance estimates is positively correlated with the percentage of reads filtered (Fig. 5c), the genomic distance

(Fig. S10a), and the magnitude of the error before filtering (Fig. S10b).

When there is error after Kraken-II filtering, it tends to be due to over-estimation of distance, as opposed

to under-estimation observed before filtering, suggesting that Kraken-II perhaps over-filters reads. Most

extreme cases of over-filtering involve distance estimates between a single species, D. mojavensis, and other

species such as D. bipectinata, D. mauritiana and D. virilis. The D. mojavensis is the only species with high

levels of Kraken-II filtering but low error rates in pairwise comparisons. Interestingly, D. mojavensis also

includes the highest levels of contamination from unknown sources.

3.4 Impact on phylogenetic reconstruction

The phylogeny inferred from Skmer distances computed from the assembly and modeled using JC69+Γ is

topologically identical to the gold standard OTL phylogeny, and its total FME error is only 0.03 (Fig. S4).

However, the phylogeny estimated using the same method but using genome skims has two wrong branches

(RF = 4), and a FME of 1.26. Thus, absent filtering, genome skims produce trees with substantial error.

Improvements in estimated genomic distances due to filtering translate to improved phylogenetic trees.

The tree topology improves only slightly and has one incorrect branch (RF = 2) after filtering. However, the

improvements in estimated branch lengths, as reflected in wRF and total FME error, are dramatic. Filtering

leads to nearly 70% decrease in total FME metric, from 1.26 to 0.38, and a similar level of reduction is

observed for wRF (Table S5). Examining individual branch lengths, the phylogeny using filtered data is

much more similar to the true tree (Fig. S4).

When we use FME to measure the impact of filtering on the phylogenetic error of individual species,

we observe patterns consistent with reductions in distance error (Fig. 5d). Individually, majority of species

have reduced FME after filtering, with the most extreme FME reduction happening for D. virilis by nearly

%350. Consistent with previous results, we observe that the FME error of D. mojavensis does not decrease

(but it also does not increase). As expected, gains in phylogenetic error measured by FME correlate with the

amount of filtering performed by Kraken (Fig. 5d).
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3.5 Running time

We assessed running time performance of Kraken-II on skims of five randomly selected species from different

domains of life (Table S6) using both single-threaded and multi-threaded (24 threads) modes of operation.

Run time was found to linearly increase with the skim size, regardless of the number of threads used (Fig. S11).

With 1Gb of reads, the running time of the single-threaded version was below 100 seconds on an Intel Xeon

CPU in all cases we tested. Running Kraken-II with 24 threads reduced the speed by a factor of 10, offering

a significant improvement. The main limitation with Kraken-II is its significant memory requirement during

queries, which requires between 100Gb and 120Gb for our reference libraries.

4 Discussion

The use of genome skimming in the literature has mostly relied on assembled organelle genomes (e.g., Coissac

et al., 2016; Dodsworth, 2015; Malé et al., 2014; Weitemier et al., 2014). These approaches rely on assembly

construction pipelines (e.g., Jin et al., 2019) to remove contaminants (i.e., to avoid mis-assembly or to filter

out mis-assembled contigs). Elsewhere, we have advocated going beyond organelle genomes and using all

reads in an assembly-free fashion to increase the resolution of taxonomic identification (Balaban et al., 2019;

Sarmashghi et al., 2019). However, this goal has been hampered by the presence of contaminants. This study

showed a relatively effective way of dealing with contamination, hence bringing genome skimming based on

nuclar reads one step closer to a reality.

Our study showed that Kraken-II is able to find contaminants that are within 5–10% genomic distance

to the closest match in a reference library in a computationally efficient manner. Our modeling showed

that FP errors were perhaps less detrimental to distance calculations than FN. Analysis of different k and

α parameters did not reveal parameter combinations that could improve upon the using default settings of

Kraken-II (k = 35, α = 0). Analyses of real data demonstrated that contamination removal can dramatically

improve Skmer distance estimates in the presence of contaminants. These more accurate distance metrics

computed after filtering can lead to reduced phylogenetic branch length error by up to 70% and can also

improve the tree topology.
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4.1 Usefulness of Theoretical Models

Simplified assumptions allowed us to establish theoretical models of the impact of contamination on estimated

distance. The theory predicted that even small levels of similarity between contaminants (H) can lead to

substantial under-estimation of distance when distance is large. Consistently, on the real data, where distances

are often > 0.10, we observe under-estimation by 5% or more in 47 out of 91 pairs. Our results also showed

high levels of similarity between contaminants of Drosophila genomes (where three genera made up 40–50%

of contaminants). Thus, there is a reassuring match between the theoretical model and the observed data.

Kraken filtering improved accuracy on simulated and real data. On real data, it occasionally over-corrected

errors, leading to over-estimation of the distance. These may be due to FP filtering, reduced coverage after

filtering, or other factors not fully understood here. In our runs of Kraken-II on real data, we observed

5%–15% filtering. The lower value can be explained by ∼5% Kraken-II FP rate when run under its default

setting. The upper value is consistent with ∼10% contamination level, a scenario that can easily happen in

real sequencing projects.

Another potential use of the theory could have been developing filter-free methods of dealing with con-

tamination. Just as impact of coverage and error on Jaccard can be modelled, we can compute the Jaccard

index with no filtering but correct for the modelled impact of contamination on Jaccard. Given reliable

estimates of H , c1, and c2, we can manipulate (4) to update (1) and obtain:

D̂ = 1−
((2 + a)J

1 + J
− aH

1 +H

)1/k
.

Adding coverage and error models, we can update (2) to:

D̂ = 1−
((2 + a)(ζ1L1 + ζ2L2)J

η1η2(L1 + L2)(1 + J)
− aH

1 +H

)1/k
(6)

This equation allows for filter-free contamination-aware distance calculation. Unfortunately, however,

this equation is extremely sensitive to correct estimation of all parameters, includingH , c1, and c2 (Fig. S12).

Even small mistakes (1-5% relative error) in the estimated contamination level or Jaccard can lead to dramatic

errors in the estimated distance computed using (6). Since computation of these parameters is noisy, we do

not advocate this filter-free method despite its theoretical elegance.
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4.2 Filtering methods

Filtering requires a tool to answer queries of the following type: “Does this particular read belong to one

of the genomes in a given reference library?”. We chose Kraken-II for answering these queries because

of its high accuracy and reasonable scalability, as established in several bench-marking studies from the

metagenomics field (McIntyre et al., 2017; Meyer et al., 2019; Sczyrba et al., 2017; Ye et al., 2019). It is also

one of the most widely-used tools, with an active user support and stable and robust software development.

Further, we explored three parameters of Kraken-II: k-mer length, confidence score and database content.

Other parameters such as minimizer length (mostly relevant to storage and not accuracy) and minimizer space

count are not explored here (Brinda et al., 2015). In our experiments we kept the number of wild-carding

positions at its recommended upper limit and turned masking off but there might be a set of settings which

in combination with masking can produce a more optimal sensitivity. We note that results from Wood et al.,

2019 have indicated that Kraken-II is not very sensitive to particular parameter settings.

Alternatives to Kraken-II exist, and future studies can compare them to Kraken-II for genome skimming.

BLAST (Altschul et al., 1990) and MegaBLAST (Morgulis et al., 2008) are the obvious alternatives but are

an overkill for our problem. These tools perform alignment and can yield higher sensitivity than Kraken-II

but are orders of magnitude slower (Wood and Salzberg, 2014; Ye et al., 2019). However, they produce more

precise results (maps to individual species) than what we need.

Beyond alignment tools, most alternatives to Kraken-II are also k-mer-based, but differ in the way

reference library is constructed and how the query is run. k-mer-based methods inculde LMAT (Ames et al.,

2013), and CLARK(-S) (Ounit and Lonardi, 2016; Ounit et al., 2015). Benchmarking studies (e.g., McIntyre

et al., 2017; Meyer et al., 2019; Sczyrba et al., 2017; Ye et al., 2019) do not indicate any consistent advantage

in using these methods over Kraken-II, and many of them are slower. Among sufficiently fast tools are

KrakenUniq (Breitwieser et al., 2018), Braken (Lu et al., 2017), and Centrifuge (Kim et al., 2016). KrakenUniq

is recommended for use in cases where FP can be detrimental (e.g. in pathogen identification/diagnoses),

but our theory and empirical data suggest FP is less important and FN in our application. Braken (Lu et al.,

2017), an extension of Kraken-II, is focused on improving aggregated abundance profiles, a feature that is

irrelevant to our usage. Centrifuge (Kim et al., 2016) uses FM-index lookups and within-species compression

for mapping a read to one or more species. Compared to Kraken-II, Centrifuge is slower and needs more
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time for building its reference database. We leave its comparison to Kraken for future work.

A separate set of k-mer-based methods have been developed for finding RNAseq experiments that include

a specific k-mer. Solomon and Kingsford (2016) introduced Sequence Bloom Tree (SBT) to allow very fast

queries of a k-mer versus a reference set of experiments by creating a hierarchy of compressed bloom filters

that store k-mers. Mantis (Pandey et al., 2018) is an alternative to Bloom filters based on counting quotient

filters and is reported to be more memory efficient and faster that SBT-based methods. While these tools have

been developed mainly for RNASeq analyses, in the future, they can perhaps be adopted for mapping reads

to genomes with minimal changes to the algorithm. In fact, Kraken might implement counting quotient filter

data structure in its future releases (Wood et al., 2019).

Beyond these tools, many other metagenomic methods have been designed for finding the taxonomic

composition of a mixed sample (e.g., Liu et al., 2010; Milanese et al., 2019; Nguyen et al., 2014; Segata et al.,

2012). However, these tools do not seek to classify every read from anywhere in the genome; they are either

marker-based or use composition data. Thus, these tools are irrelevant to our queries.

4.3 Remaining gaps

In our study, we focused solely on prokaryotic and human contamination. Real contamination is more

complex and can include eukaryotic microorganisms, traces of endosymbionts and diet, and various forms of

lab contamination. Thus, many applications will benefit from more inclusive Kraken-II contaminant libraries.

At a minimum, fungi need to be considered, especially for plants. Moreover, removing reads from organelle

genomes, which are expected to be over-represented, may further improve accuracy.

Luckily, Kraken-II enables a straightforward mechanism for extending reference libraries. Our future

efforts will include building a larger library of potential contaminants that includes fungi and perhaps expected

sources of diet. However, such libraries will have to be group specific; for example, for skimming insects, we

can treat plants as contaminants whereas in skimming plants, we should treat insects as contaminants. Ideally,

individual genome skimming reference libraries for a target group (e.g., all insects) should be furnished with a

relevant contaminant library especially designed for that group based on the knowledge of taxonomic groups

expected to be present in its diet and its endosymbiont. Clearly, this approach runs into its limitations when

endosymbionts or the diet happen to be from species with similar genomes to the target species.
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The fundamental limitation of our exclusion filtering approach is that we need to know what broad group

of species is expected to contaminate. This limitation is a result of our implicit assumption that a read is correct

unless we find evidence to the contrary. Even when such biological knowledge is available – it may not be

– this approach can fail to capture lab-introduced contamination (e.g., a plant species that was contaminated

with fish due to failures in sample preparation or sequencing on the same lane).

Inclusion filtering is an attractive alternative to exclusion filters. Given a reference database of purified

(perhaps using exclusion filters) genome skims, we can build a Kraken reference library from species in the

skimming reference library. Then, for every new query genome skim, we can use that library to find reads

that seem to match the broad taxonomic group of interest and only include those reads in the calculation

of Jaccard. Our results indicate that this method would work only if the skimming reference database is so

dense that each new query skim is expected to have a close match (e.g., <5%) to one of the reference skims.

Moreover, this approach is predicated on the reference library being free of contaminants. Despite these

shortcomings, we believe this approach should be further explored in the future.

Finally, better algorithms for read matching seem necessary. Our results showed that Kraken-II provides

a reasonable solution. Nevertheless, the method remains incapable of finding domain level matches when the

closest match is moderately distant from the query. We believe it is possible to design more sensitive read

mapping techniques that can match a species even when its closest match is > 10% distance. Note that in

genome skimming, we are only interested to know whether a read belongs to a large taxonomic group, as

opposed to metagenomics, when abundances and exact matches are desired. Given the less demanding needs

of the skimming application, we anticipate that better algorithms can be developed in future to increase recall

with little or no loss of specificity and speed.

Availability of data and materials

Scripts and summary data tables are publicly available on https://github.com/noraracht/kraken_scripts.git.

Raw data used in the manuscript is deposited in https://github.com/noraracht/kraken_raw_data.git. The

detailed description of genomic datasets used in our experiments, accession numbers of the assemblies and

the exact commands used to simulate genome skims are provided in Supplemental Material.

21

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 5, 2019. ; https://doi.org/10.1101/831941doi: bioRxiv preprint 

https://github.com/noraracht/kraken_scripts.git
https://github.com/noraracht/kraken_raw_data.git
https://doi.org/10.1101/831941


Funding

This work was supported by the National Science Foundation (NSF) grant IIS-1815485 to ER, MB, VB, and

SM.

Author Contributions

All authors conceived the idea. SM and VB developed a theoretical model. ER implemented the pipeline and

performed experiments. MB completed phylogenetic experiments. All authors contributed to the analyses

of data and the writing. All authors read and approved the final manuscript.

References
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3):403–410.

Ames, S. K., Hysom, D. A., Gardner, S. N., Lloyd, G. S., Gokhale, M. B., and Allen, J. E. (2013). Scalable metagenomic taxonomy classification using a reference
genome database. Bioinformatics (Oxford, England), 29(18):2253–2260.

Balaban, M., Sarmashghi, S., and Mirarab, S. (2019). APPLES: Scalable Distance-based Phylogenetic Placement with or without Alignments. Systematic Biology, page
syz063.

Breitwieser, F. P., Baker, D. N., and Salzberg, S. L. (2018). KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biology,
19(1):198.

Brinda, K., Sykulski, M., and Kucherov, G. (2015). Spaced seeds improve k-mer-based metagenomic classification. Bioinformatics (Oxford, England), 31(22):3584–3592.

Bushnell, B., Rood, J., and Singer, E. (2017). BBMerge âŁ“ Accurate paired shotgun read merging via overlap. PLOS ONE, 12(10):1–15.

Coissac, E., Hollingsworth, P. M., Lavergne, S., and Taberlet, P. (2016). From barcodes to genomes: Extending the concept of DNA barcoding. Molecular Ecology,
25(7):1423–1428.

Dodsworth, S. (2015). Genome skimming for next-generation biodiversity analysis. Trends in Plant Science, 20(9):525–527.

Fan, H., Ives, A. R., Surget-Groba, Y., and Cannon, C. H. (2015). An assembly and alignment-free method of phylogeny reconstruction from next-generation sequencing
data. BMC Genomics, 16(1):522.

Fitch, W. M. and Margoliash, E. (1967). Construction of phylogenetic trees. Science, 155(3760):279–284.

Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological
Sciences, 270(1512):313–321.

Hickerson, M. J., Meyer, C. P., Moritz, C., and Hedin, M. (2006). DNA Barcoding Will Often Fail to Discover New Animal Species over Broad Parameter Space.
Systematic Biology, 55(5):729–739.

Hinchliff, C. E., Smith, S. a., Allman, J. F., Burleigh, J. G., Chaudhary, R., Coghill, L. M., Crandall, K. A., Deng, J., Drew, B. T., Gazis, R., Gude, K., Hibbett, D. S., Katz,
L. a., Laughinghouse, H. D., McTavish, E. J., Midford, P. E., Owen, C. L., Ree, R. H., Rees, J. a., Soltis, D. E., Williams, T. L., and Cranston, K. a. (2015). Synthesis
of phylogeny and taxonomy into a comprehensive tree of life. Proceedings of the National Academy of Sciences, 112(41):12764–12769.

Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S., van der Bank, M., Chase, M. W., Cowan, R. S., Erickson, D. L., Fazekas, A. J.,
Graham, S. W., James, K. E., Kim, K.-J., Kress, W. J., Schneider, H., van AlphenStahl, J., Barrett, S. C., van den Berg, C., Bogarin, D., Burgess, K. S., Cameron,
K. M., Carine, M., Chacon, J., Clark, A., Clarkson, J. J., Conrad, F., Devey, D. S., Ford, C. S., Hedderson, T. A., Hollingsworth, M. L., Husband, B. C., Kelly, L. J.,
Kesanakurti, P. R., Kim, J. S., Kim, Y.-D., Lahaye, R., Lee, H.-L., Long, D. G., Madrinan, S., Maurin, O., Meusnier, I., Newmaster, S. G., Park, C.-W., Percy, D. M.,
Petersen, G., Richardson, J. E., Salazar, G. A., Savolainen, V., Seberg, O., Wilkinson, M. J., Yi, D.-K., and Little, D. P. (2009). A DNA barcode for land plants.
Proceedings of the National Academy of Sciences, 106(31):12794–12797.

22

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 5, 2019. ; https://doi.org/10.1101/831941doi: bioRxiv preprint 

https://doi.org/10.1101/831941


Huang, W., Li, L., Myers, J. R., and Marth, G. T. (2012). ART: a next-generation sequencing read simulator. Bioinformatics, 28(4):593–594.

Jin, J.-J., Yu, W.-B., Yang, J.-B., Song, Y., DePamphilis, C. W., Yi, T.-S., and Li, D.-Z. (2019). GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of
organelle genomes. bioRxiv.

Jin, L. and Nei, M. (1990). Limitations of the evolutionary parsimony method of phylogenetic analysis. Molecular Biology and Evolution, 7(1):82–102.

Kim, D., Song, L., Breitwieser, F. P., and Salzberg, S. L. (2016). Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome research, 26(12):1721–
1729.

Lefort, V., Desper, R., and Gascuel, O. (2015). FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Molecular Biology and
Evolution, 32(10):2798–2800.

Liu, B., Gibbons, T., Ghodsi, M., and Pop, M. (2010). MetaPhyler: Taxonomic profiling for metagenomic sequences. Proceedings - 2010 IEEE International Conference
on Bioinformatics and Biomedicine, BIBM 2010, pages 95–100.

Lu, J., Breitwieser, F. P., Thielen, P., and Salzberg, S. L. (2017). Bracken: estimating species abundance in metagenomics data. PeerJ Computer Science, 3:e104.

Malé, P.-J. G., Bardon, L., Besnard, G., Coissac, E., Delsuc, F., Engel, J., Lhuillier, E., Scotti-Saintagne, C., Tinaut, A., and Chave, J. (2014). Genome skimming by
shotgun sequencing helps resolve the phylogeny of a pantropical tree family. Molecular ecology resources, 14(5):966–75.

Marçais, G. and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 27(6):764–770.

McIntyre, A. B. R., Ounit, R., Afshinnekoo, E., Prill, R. J., Hénaff, E., Alexander, N., Minot, S. S., Danko, D., Foox, J., Ahsanuddin, S., Tighe, S., Hasan, N. A.,
Subramanian, P., Moffat, K., Levy, S., Lonardi, S., Greenfield, N., Colwell, R. R., Rosen, G. L., and Mason, C. E. (2017). Comprehensive benchmarking and ensemble
approaches for metagenomic classifiers. Genome Biology, 18(1):182.

Meyer, F., Bremges, A., Belmann, P., Janssen, S., McHardy, A. C., and Koslicki, D. (2019). Assessing taxonomic metagenome profilers with OPAL. Genome Biology,
20(1):51.

Milanese, A., Mende, D. R., Paoli, L., Salazar, G., Ruscheweyh, H.-J., Cuenca, M., Hingamp, P., Alves, R., Costea, P. I., Coelho, L. P., Schmidt, T. S. B., Almeida, A.,
Mitchell, A. L., Finn, R. D., Huerta-Cepas, J., Bork, P., Zeller, G., and Sunagawa, S. (2019). Microbial abundance, activity and population genomic profiling with
mOTUs2. Nature Communications, 10(1):1014.

Miller, D. E., Staber, C., Zeitlinger, J., and Hawley, R. S. (2018). Highly contiguous genome assemblies of 15 drosophila species generated using nanopore sequencing.
G3: Genes, Genomes, Genetics, 8(10):3131–3141.

Morgulis, A., Coulouris, G., Raytselis, Y., Madden, T. L., Agarwala, R., and Schaffer, A. A. (2008). Database indexing for production MegaBLAST searches. Bioinformatics
(Oxford, England), 24(16):1757–1764.

Nguyen, N., Mirarab, S., Liu, B., Pop, M., and Warnow, T. (2014). TIPP: taxonomic identification and phylogenetic profiling. Bioinformatics, 30(24):3548–3555.

Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H., Koren, S., and Phillippy, A. M. (2016). Mash: fast genome and metagenome distance
estimation using MinHash. Genome Biology, 17(1):132.

Ounit, R. and Lonardi, S. (2016). Higher classification sensitivity of short metagenomic reads with CLARK-S. Bioinformatics (Oxford, England), 32(24):3823–3825.

Ounit, R., Wanamaker, S., Close, T. J., and Lonardi, S. (2015). CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative
k-mers. BMC genomics, 16:236.

Pandey, P., Almodaresi, F., Bender, M. A., Ferdman, M., Johnson, R., and Patro, R. (2018). Mantis: A Fast, Small, and Exact Large-Scale Sequence-Search Index. Cell
systems, 7(2):201–207.e4.

Quicke, D. L. J., Alex Smith, M., Janzen, D. H., Hallwachs, W., Fernandez-Triana, J., Laurenne, N. M., Zaldívar-Riverón, A., Shaw, M. R., Broad, G. R., Klopfstein, S.,
Shaw, S. R., Hrcek, J., Hebert, P. D. N., Miller, S. E., Rodriguez, J. J., Whitfield, J. B., Sharkey, M. J., Sharanowski, B. J., Jussila, R., Gauld, I. D., Chesters, D., and
Vogler, A. P. (2012). Utility of the DNA barcoding gene fragment for parasitic wasp phylogeny (Hymenoptera: Ichneumonoidea): Data release and new measure of
taxonomic congruence. Molecular Ecology Resources, 12(4):676–685.

Ratnasingham, S. and Hebert, P. D. N. (2007). BOLD: The Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes, 7(April 2016):355–364.

Robinson, D. and Foulds, L. (1981). Comparison of phylogenetic trees. Mathematical Biosciences, 53(1-2):131–147.

Sarmashghi, S., Bohmann, K., P Gilbert, M. T., Bafna, V., and Mirarab, S. (2019). Skmer: assembly-free and alignment-free sample identification using genome skims.
Genome biology, 20(1):34.

Savolainen, V., Cowan, R. S., Vogler, A. P., Roderick, G. K., and Lane, R. (2005). Towards writing the encyclopaedia of life: an introduction to DNA barcoding.
Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462):1805–1811.

23

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 5, 2019. ; https://doi.org/10.1101/831941doi: bioRxiv preprint 

https://doi.org/10.1101/831941


Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., Bolchacova, E., Voigt, K., Crous, P. W., Miller, A. N., Wingfield, M. J.,
Aime, M. C., An, K.-D., Bai, F.-Y., Barreto, R. W., Begerow, D., Bergeron, M.-J., Blackwell, M., Boekhout, T., Bogale, M., Boonyuen, N., Burgaz, A. R., Buyck, B.,
Cai, L., Cai, Q., Cardinali, G., Chaverri, P., Coppins, B. J., Crespo, A., Cubas, P., Cummings, C., Damm, U., de Beer, Z. W., de Hoog, G. S., Del-Prado, R., Dentinger,
B., Dieguez-Uribeondo, J., Divakar, P. K., Douglas, B., Duenas, M., Duong, T. A., Eberhardt, U., Edwards, J. E., Elshahed, M. S., Fliegerova, K., Furtado, M., Garcia,
M. A., Ge, Z.-W., Griffith, G. W., Griffiths, K., Groenewald, J. Z., Groenewald, M., Grube, M., Gryzenhout, M., Guo, L.-D., Hagen, F., Hambleton, S., Hamelin, R. C.,
Hansen, K., Harrold, P., Heller, G., Herrera, C., Hirayama, K., Hirooka, Y., Ho, H.-M., Hoffmann, K., Hofstetter, V., Hognabba, F., Hollingsworth, P. M., Hong, S.-B.,
Hosaka, K., Houbraken, J., Hughes, K., Huhtinen, S., Hyde, K. D., James, T., Johnson, E. M., Johnson, J. E., Johnston, P. R., Jones, E. B. G., Kelly, L. J., Kirk, P. M.,
Knapp, D. G., Koljalg, U., Kovacs, G. M., Kurtzman, C. P., Landvik, S., Leavitt, S. D., Liggenstoffer, A. S., Liimatainen, K., Lombard, L., Luangsa-ard, J. J., Lumbsch,
H. T., Maganti, H., Maharachchikumbura, S. S. N., Martin, M. P., May, T. W., McTaggart, A. R., Methven, A. S., Meyer, W., Moncalvo, J.-M., Mongkolsamrit, S.,
Nagy, L. G., Nilsson, R. H., Niskanen, T., Nyilasi, I., Okada, G., Okane, I., Olariaga, I., Otte, J., Papp, T., Park, D., Petkovits, T., Pino-Bodas, R., Quaedvlieg, W., Raja,
H. A., Redecker, D., Rintoul, T. L., Ruibal, C., Sarmiento-Ramirez, J. M., Schmitt, I., Schussler, A., Shearer, C., Sotome, K., Stefani, F. O. P., Stenroos, S., Stielow, B.,
Stockinger, H., Suetrong, S., Suh, S.-O., Sung, G.-H., Suzuki, M., Tanaka, K., Tedersoo, L., Telleria, M. T., Tretter, E., Untereiner, W. A., Urbina, H., Vagvolgyi, C.,
Vialle, A., Vu, T. D., Walther, G., Wang, Q.-M., Wang, Y., Weir, B. S., Weiss, M., White, M. M., Xu, J., Yahr, R., Yang, Z. L., Yurkov, A., Zamora, J.-C., Zhang, N.,
Zhuang, W.-Y., and Schindel, D. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the
National Academy of Sciences, 109(16):6241–6246.

Sczyrba, A., Hofmann, P., Belmann, P., Koslicki, D., Janssen, S., Dröge, J., Gregor, I., Majda, S., Fiedler, J., Dahms, E., Bremges, A., Fritz, A., Garrido-Oter, R., Jørgensen,
T. S., Shapiro, N., Blood, P. D., Gurevich, A., Bai, Y., Turaev, D., DeMaere, M. Z., Chikhi, R., Nagarajan, N., Quince, C., Meyer, F., BalvočiÅ«tÄ—, M., Hansen,
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Appendix A Derivations

Appendix A.1 Derivation of (4)

Definitions

• Let L be the number of unique k-mers in the base genomes of species of interest, which for each of
calculation, we assume is the same between genomes.

• ρ is the fraction of L k-mers that are different between the two base genomes.

• Y1 and Y2 are the total number of unique k-mers from each of the two contaminants.

• c1, c2 are the fraction of k-mers in sample one and sample two that come from contaminants. Thus,
c1 = Y1

Y1+L and c2 = Y2
Y2+L .

• a = c1
1−c1 + c2

1−c2 = Y1
L + Y2

L = Y1+Y2
L . Thus, Y1 + Y2 = aL.

• X is the total number of k-mers shared between the two contaminant sets, andH is the Jaccard similarity
between k-mers of the contaminants of the two skims. Thus,

H =
X

Y1 + Y2 −X
=⇒ X =

H(Y1 + Y2)

1 +H
=
H(aL)

1 +H

Goal. We want to derive

J =
(1− ρ)(1 +H) + aH

(1 + ρ)(1 +H) + a
.

Derivation. We assume coverage is high enough that all L k-mers from each genome are in the skim. Then,

J =
L(1− ρ) +X

2L− L(1− ρ) + Y1 + Y2 −H

where the numerator counts the number of shared k-mers from the two base genomes plus the number of
shared k-mers from the contaminants, and the denominator counts the total number of k-mers. Results are
obtained as follows.

J =
L(1− ρ) +X

2L− L(1− ρ) + Y1 + Y2 −H

= H
L(1− ρ) +X

L(1 + ρ)H + (Y1 + Y2 −H)(H)

= H
L(1− ρ) +X

L(1 + ρ)H +X

= H
L(1− ρ) + H(aL)

1+H

L(1 + ρ)H + H(aL)
1+H

=
(1− ρ) + aH

1+H

(1 + ρ) + a
1+H

=
(1− ρ)(1 +H) + aH

(1 + ρ)(1 +H) + a
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Appendix B Supplementary Figures
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Figure S1: Theoretical modeling. Impact of contamination on Jaccard (a) and the genomic distance estimated
from Jaccard (b) according to theoretical expectation under the disjoint contaminant k-mer assumption. For
various genomic distance (D ∈ {0.001} ∪ {0.01, 0.02, . . . , 0.2}) corresponding to 0.03 < ρ < 0.99 and
contamination levels 0.01 ≤ cl ≤ 0.5, the relative error of the Jaccard index (a) and the estimated Skmer
distance (b) as a result of ignoring contamination are shown. k = 31.
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Figure S2: Theoretical impact of filtering on Jaccard (top) and Skmer distance (bottom). Two genomes withD
between 0.001 and 0.05 are both contaminated at 0.01 ≤ cl ≤ 0.32. Skmer distances are approximated using
(1), with Jaccard approximated using (5). Results are for various levels of FP portion (fp), and FN (fn) rate.
Solid lines show the relative error in Skmer distance after filtering, normalized by the true uncontaminated
value, expressed as percentage. The error in the absence of filtering is shown as a horizontal dashed red line.
See Figure S3 for a tabular view.
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Figure S3: Approximate impact on Jaccard (top) and distance (bottom). Two genomes with portion 0.05 ≤
ρ ≤ 0.75 of their k-mers not matching (corresponding toD between 0.002 and 0.044) are both contaminated
at 0.02 ≤ cl ≤ 0.32. Approximation of Jaccard using (5) Skmer distance D using (1) for various levels of
FP portion (fp), defined as the percentage of each genome skim that is filtered out by mistake, and FN Rate
(fn), defined as the proportion of the contaminating k-mers that have not been removed. Each box shows
the error in Jaccard or distance estimation after filtering, normalized by the true value (i.e., value with no
contamination), expressed as percentage. The error in the absence of filtering is shown as a single number
below each box.
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Figure S4: Drosophila phylogeny inferred from distances computed without filtering (top, left), and after
filtering with Kraken-II (bottom, left) on 100Mb genome skims. Gold standard Drosophila phylogeny obtained
from Open Tree of Life, whose branch lengths are computed using assembly distances, is show twice (top and
bottom, right). All trees are based on Jukes-Cantor model of evolution accounting for rate variation across
sites using Γ model with α = 1 and are inferred using FastME. Branches that do not match the gold standard
phylogeny are indicated with red.
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Figure S5: Sensitivity analysis of Kraken-II. (a) For each query genome, dots show the percentage of reads
classified (i.e., 1 − fn) by the default Kraken-II at the domain level or lower versus the distance of a query
to the best match in the reference library (M ), measured using Skmer. Default Skmer is not accurate for
M > 0.3 and thus we show M ≤ 0.3. (b) Similar to part (a), except, here, on the left, we measure M using
either a phylogeny inferred from 381 marker genes and applying the inverse of the JC69 correction or by
applying Skmer to the base assemblies. Using phylogenetic distances allows us to measure M > 0.3.
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Figure S8: Relative error of Skmer distances without (None) and with (colored) Kraken-II filtering with
different confidence levels α and k. Contaminants are added based on sequences that are at distance range
M from the sequences in the reference library, for four ranges of M (boxes). The pairs of Drosophilas are
chosen to be at true distance D = 0.2%, D = 2.1%, or D = 6.3%. top: normal scale; bottom: squre root
scale. 32
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Figure S9: (a) Proportion of reads filtered by Kraken-II from one of the two species being compared versus the
error before Kraken-II in the genomic distance. (b) For each pair of species, colors show the relative distance error
before Kraken-II versus the proportion of reads filtered from each of the two genomes. Error is associated strongly, but
imperfectly, with high levels of filtering.
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Figure S10: Change in relative distance error after filtering with Kraken-II for 100Mb Drosophila dataset
versus (a) gold standard (assembly) genomic distance D, and (b) error before Kraken-II filtering.
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Figure S11: Kraken-II processing speed (s per query) with respect to different genome skim sizes. Sequences
were simulated using ART (Huang et al., 2012) (same settings as before) to reach at least 1.4GB of synthetic
reads and subsequently downsampled to generate 1GB, 0.7GB, 0.4GB and 0.1GB genome skim benchmark
set. The dataset was queried using Kraken-II default settings and standard reference library. Kraken-II was
run on a machine with Intel Xeon E5-2680v3 2.5 GHz CPU and 120GB of RAM running CentOS Linux
release-6-10.
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Figure S12: The sensitivity of filter-free correction using theoretical modelling. For six values of D (boxes)
and varying H , relative error is shown for various contamination levels (setting cl = c1 = c2) when the
estimated distance is corrected using (6) when cl is miscalculated by small margins (1% or 5% over or
under-estimated). Missing values indicate cases where (6) gives undefined values. k = 31 in all cases.
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Appendix C Supplementary Tables

Bin
Number of
genomes in

bin

Minimum distance
encountered within

bin

Maximum distance
encountered within

bin

Mean distance for
all species within

bin
0 10 0.000 0.000 0.000

(0 - 1] 17 0.000 0.009 0.004
(1 - 2] 10 0.010 0.018 0.013
(2 - 3] 8 0.020 0.030 0.025
(3 - 5] 8 0.031 0.049 0.038

(5 - 10] 8 0.058 0.099 0.084
(10 - 15] 11 0.109 0.146 0.124
(15 - 20] 6 0.157 0.197 0.176
(20 - 25] 11 0.211 0.244 0.229

>25 21 0.263 1.000 0.729

Table S1: Bin assignment based on Mash distances.

Species name Genome size (M)
Arabidopsis thaliana 119.167
Arabidopsis lyrata 202.97
Carya illinoinensis 649.75
Carya cathayensis 721.33

Nicotiana sylvestris 2221.99
Zea mays 2182.61

Oryza sativa 382.63
Coffee arabica 1094.45
Prunus persica 212.77

Bathycoccus prasinos 15.07

Table S2: Plant species used as query sequences. Plants were selected to represent a wide range of genome
sizes.
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Bin
Contamina-
tion level (%

reads

cl (%): Unique
contaminant

k-mers in sample
(%)

Unique base k-mers
in sample (%)

Common k-mers
between base and
contaminant (%)

0-5 60 53.728625 46.271364 0.000011
0-5 50 46.000931 53.999065 0.000004
0-5 40 38.455505 61.544490 0.000005
0-5 30 30.730685 69.269315 0.000000
0-5 25 26.630857 73.369142 0.000001
0-5 20 22.286244 77.713750 0.000007
0-5 15 17.595401 82.404592 0.000007
0-5 10 12.408705 87.591295 0.000000
0-5 5 6.630852 93.369148 0.000000
0-5 2 2.769620 97.230380 0.000000
0-5 1 1.406449 98.593551 0.000000
0-5 0 0.000000 100.000000 0.000000
0-0 25 24.707830 75.292146 0.000024
0-0 20 20.899131 79.100838 0.000031
0-0 15 16.686621 83.313353 0.000026
0-0 10 11.968806 88.031170 0.000023
0-0 5 6.494518 93.505472 0.000010
0-0 2 2.742933 97.257067 0.000000
0-0 1 1.395767 98.604233 0.000000
0-0 0 0.000000 100.000000 0.000000

5-15 25 24.797418 75.202570 0.000012
5-15 20 20.977979 79.021978 0.000043
5-15 15 16.738171 83.261791 0.000038
5-15 10 12.010540 87.989451 0.000010
5-15 5 6.502650 93.497350 0.000000
5-15 2 2.745543 97.254457 0.000000
5-15 1 1.402008 98.597992 0.000000
5-15 0 0.000000 100.000000 0.000000
15-25 25 24.514304 75.485614 0.000082
15-25 20 20.760153 79.239792 0.000055
15-25 15 16.620725 83.379207 0.000068
15-25 10 11.916805 88.083179 0.000016
15-25 5 6.484925 93.515047 0.000028
15-25 2 2.738899 97.261078 0.000023
15-25 1 1.398807 98.601185 0.000009
15-25 0 0.000000 100.000000 0.000000

Table S3: Contamination level (cl) with the corresponding number of unique k-mers for base (D.
simulans w501) and contaminant (bacteria) in mixture samples.

Expected overlap (%) 0.00 1.00 5.00 10.00 25.00 50.00
Actual k-mer overlap (%) 11.12 11.54 13.31 15.83 23.82 40.78

Table S4: Actual amount of non-unique k-mers (%) in contaminant reads used to generate simulated
Drosophila skims with H overlap.
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Skim size
(Mb)

Filtering
status RF wRF total

FME
100 Pre-filtering 4 0.147 1.257
100 Post-filtering 2 0.043 0.381
200 Pre-filtering 4 0.141 1.140
200 Post-filtering 2 0.037 0.371

Table S5: The effect of filtering on the quality of phylogenies inferred from genomic skims.

Species name Genome size (M)
Arabidopsis thaliana 119.167
Anopheles gambiae 250.715

Drosophila melanogaster 137.688
Capnocytophaga sputigena 2.998

Euryarchaeota archaeon 1.504

Table S6: Species used as query sequences for assessing Kraken-II running time. Genomes were
arbitrarily selected but represent a diverse set of both eukaryotic and prokaryotic species.

37

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 5, 2019. ; https://doi.org/10.1101/831941doi: bioRxiv preprint 

https://doi.org/10.1101/831941


Appendix D Supplementary method details and commands

Here we provide the exact procedures and commands that we used to run external software throughout our
experiments.

Genome skims simulation

To simulate short reads with length l = 150 and coverage c, in single read mode with default error and quality
profiles of Illumina HiSeq 2500, we ran

art_illumina -ss HS25 -i FASTA_FILE -l 150 -f c -na -s 10 -o
FASTQ_FILE

Downsampling reads

To subsample reads down a specified number of reads n we used

seqtk sample -s150 INPUT_FASTQ_FILE n > OUTPUT_FASTQ_FILE

Reference library construction

To construct standard Kraken reference library we used default command

kraken2-build −−standard −−no-masking −−use-ftp −−db DATABASE_NAME

To build custom Kraken reference library we used a set of commands below:

• Download taxonomy

kraken2-build −−download-taxonomy −−no-masking −−use-ftp −−db
DATABASE_NAME

• Download viral database

kraken2-build −−download-library viral −−no-masking −−use-ftp
−−db DATABASE_NAME

• Rename file extensions to .fa

find . -name "*.fna" -exec sh -c ’mv "$1" "${1%.fna}.fa"’ _ {} \;

• Add custom genomes to the reference library

find genomes/ -name ’*.fa’ -print0 | xargs -0 -I -n1 kraken2-build
−−no-masking −−add-to-library {} −−db DATABASE_NAME

• Build database with specified k-mer length k, minimizer length l and number of wind-carding positions
s we used

kraken2-build −−build −−no-masking −−kmer-len k −−minimizer-len l
−−minimizer-spaces s −−use-ftp −−db DATABASE_NAME
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Reference library querying

To query reference library at variable confidence level α we used

kraken2 −−use-names −−threads 24 −−report REPORT_FILE_NAME −−db
DATABASE_NAME −−confidence α −−classified-out
CLASSIFIED_FASTQ_FILE −−unclassified-out UNCLASSIFIED_FASTQ_FILE
QUERY_FASTQ_FILE > KRAKEN_OUTPUT_FILE

Computing k-mer frequencies

To estimate k-mer frequencies we used Jellyfish.

• Computing k-mer profile

jellyfish count -m 31 -s 100M -t 18 -C INPUT_FASTQ_FILE
-o COUNT_FASTQ_FILE

• Extracting k-mer statistics

jellyfish stats COUNT_FASTQ_FILE

Computing genomic distances

To estimate genomic distances we used Mash and Skmer.

• To compute genomic distance using Mash we used

mash dist FASTQ_FILE_ONE FASTQ_FILE_TWO

• To compute genomic distance using Skmer we used

skmer reference FASTQ_DIRECTORY -p 24 -o REF_DISTANCE_MATRIX

Preprocessing real data sequencing files

We used BBTools to preprocess real data sequencing read files.

• To decontaminate .fastq files we used

bbduk.sh in1=FASTQ_READ1 in2=FASTQ_READ2 out1=FASTQ_READ1 out2=FASTQ_READ2
ref=adapters,phix ktrim=r k=23 mink=11 hdist=1 tpe tbo

• To deduplicate reads we used

dedupe.sh in1=FASTQ_READ1 in2=FASTQ_READ2 out=DEDUP_OUTPUT_FASTQ_FILE

• To reformat deduplicated output files we used

reformat.sh in=DEDUP_OUTPUT_FASTQ_FILE out1=FASTQ_READ1
out2=FASTQ_READ2

• To merge paired-end reads .fastq we used

bbmerge.sh in1=FASTQ_READ1 in2=FASTQ_READ2 out1=OUTPUT_FASTQ_FILE
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Appendix E Raw data

Species Run URL
Drosophila bipectinata SRR6425989 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425989

Drosophila erecta SRR6425990 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425990
Drosophila ananassae SRR6425991 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425991
Drosophila biarmipes SRR6425992 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425992
Drosophila mauritiana SRR6425993 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425993
Drosophila eugracilis SRR6425995 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425995

Drosophila mojavensis SRR6425997 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425997
Drosophila persimilis SRR6425998 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425998
Drosophila simulans SRR6425999 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425999

Drosophila virilis SRR6426000 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6426000
Drosophila pseudoobscura SRR6426001 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6426001

Drosophila sechellia SRR6426002 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6426002
Drosophila willistoni SRR6426003 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6426003
Drosophila yakuba SRR6426004 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6426004

Table S7: List of SRRs and URLs for Drosophila species used in real data experiment.

Species Assembly accession URL

Drosophila simulans w501 GCF_000754195.2 https://www.ncbi.nlm.nih.gov/assembly/
GCF_000754195.2

Drosophila simulans WXD1 GCA_004382185.1 https://www.ncbi.nlm.nih.gov/assembly/
GCA_004382185.1

Drosophila sechellia GCF_000005215.3 https://www.ncbi.nlm.nih.gov/assembly/
GCF_000005215.3

Drosophila yakuba GCF_000005975.2 https://www.ncbi.nlm.nih.gov/assembly/
GCF_000005975.2

Table S8: List of accession numbers and URLs for Drosophila species used in contamination simulation
experiment.
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Species Assembly accession URL

Arabidopsis thaliana GCF_000001735.4 https:
//www.ncbi.nlm.nih.gov/assembly/GCF_000001735.4

Arabidopsis lyrata GCF_000004255.2 https:
//www.ncbi.nlm.nih.gov/assembly/GCF_000004255.2

Carya illinoinensis Cil.genome.fa.gz ftp://parrot.genomics.cn/gigadb/pub/10.5524/
100001_101000/100571/Cil.genome.fa.gz

Carya cathayensis Cca.genome.fa.gz ftp://parrot.genomics.cn/gigadb/pub/10.5524/
100001_101000/100571/Cca.genome.fa.gz

Nicotiana sylvestris GCF_000393655.1 https:
//www.ncbi.nlm.nih.gov/assembly/GCF_000393655.1

Zea mays GCF_000005005.2 https:
//www.ncbi.nlm.nih.gov/assembly/GCF_000005005.2

Oryza sativa GCF_001433935.1 https:
//www.ncbi.nlm.nih.gov/assembly/GCF_001433935.1

Coffee arabica GCF_003713225.1 https:
//www.ncbi.nlm.nih.gov/assembly/GCF_003713225.1

Prunus persica GCF_000346465.2 https:
//www.ncbi.nlm.nih.gov/assembly/GCF_000346465.2

Bathycoccus prasinos GCF_002220235.1 https:
//www.ncbi.nlm.nih.gov/assembly/GCF_002220235.1

Table S9: List of accession numbers and URLs for plant species added to query set.
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