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Abstract 

Genetic association studies of many heritable traits resulting from physiological testing often 

have modest sample sizes due to the cost and invasiveness of the required phenotyping. This 

reduces statistical power to discover multiple genetic associations. We present a strategy to 

leverage pleiotropy between traits to both discover new loci and to provide mechanistic 

hypotheses of the underlying pathophysiology, using obstructive sleep apnea (OSA) as an 

exemplar. OSA is a common disorder diagnosed via overnight physiological testing 

(polysomnography). Here, we leverage pleiotropy with relevant cellular and cardio-metabolic 
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phenotypes and gene expression traits to map new risk loci in an underpowered OSA GWAS. 

We identify several pleiotropic loci harboring suggestive associations to OSA and genome-wide 

significant associations to other traits, and show that their OSA association replicates in 

independent cohorts of diverse ancestries. By investigating pleiotropic loci, our strategy allows 

proposing new hypotheses about OSA pathobiology across many physiological layers. For 

example we find links between OSA, a measure of lung function (FEV1/FVC), and an eQTL of 

desmoplakin (DSP) in lung tissue. We also link a previously known genome-wide significant 

peak for OSA in the hexokinase (HK1) locus to hematocrit and other red blood cell related traits. 

Thus, the analysis of pleiotropic associations has the potential to assemble diverse phenotypes 

into a chain of mechanistic hypotheses that provide insight into the pathogenesis of complex 

human diseases. 

	

Introduction 

Genome-wide association studies of human phenotypes ranging from gene expression to 

human diseases are now routine. Cumulatively, the data indicate that complex traits are highly 

polygenic, 1,2 and genetic correlation between these traits indicates abundant pleiotropy. 3–5 

Interpreting the plethora of results raises two major challenges: first, generating testable 

mechanistic hypotheses about the underlying pathophysiology; and second, increasing 

statistical power to identify associations in traits with small or moderate sample sizes. 

Leveraging pleiotropy can help address both of these challenges. Previous work has 

demonstrated that including many correlated traits in association studies increases power to 

detect associations common to multiple traits. 4,6 This approach is untried in genetic 

investigations of obstructive sleep apnea (OSA). Here, we demonstrate that using shared 

associations between correlated traits can identify effects in under-powered studies of 
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obstructive sleep apnea (OSA), and that leveraging molecular and physiological 

endophenotypes in this way also generates clear and testable biological hypotheses. 

	

OSA is characterized by recurrent episodes of partial or complete obstruction of the pharyngeal 

airway resulting in multiple physiological disturbances, including sympathetic nervous system 

activation, increased energy cost of breathing, intermittent hypoxemia, and wide swings in 

intrathoracic pressure. This disorder is highly prevalent in the general population, affecting more 

than 15% of middle-aged adults, with increased prevalence observed with aging, obesity, and 

cardiometabolic disease, and is more common in men.7 OSA leads to sleep disruption, 

particularly increased sleep fragmentation and decreased proportion of restorative stages of 

sleep, resulting in daytime sleepiness, impaired quality of life and cognitive deficits. 8 Moreover, 

OSA is associated with increased rates of hypertension, incident heart disease, stroke, 

diabetes, depression certain cancers and overall mortality. 9 10,11 12–18 Despite the large number 

of epidemiological studies indicating that OSA is closely associated with these outcomes, there 

appears to be subgroup differences in susceptibility, e.g., middle-aged individuals and men are 

more likely to experience OSA-related cardiovascular disease in some studies than older 

individuals and women, respectively. This underscores gaps in our knowledge of the 

pathophysiological pathways linking OSA to other diseases. 19,21 Pathophysiological pathways 

linking OSA to other diseases and factors that influence individual differences in susceptibility 

are poorly understood. While there are several effective treatments for OSA, including 

continuous positive airway pressure (CPAP), there appears to be substantial variation in overall 

clinical response and attenuation of cardiometabolic consequences, suggesting heterogeneity in 

both the etiology of the disease and susceptibility to its physiological disturbances. 	
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Indices of OSA, including the apnea hypopnea index (AHI; the number of breathing pauses per 

hour of sleep), apneic event duration, indices of overnight hypoxemia, habitual snoring, and 

excessive daytime sleepiness, show substantial heritability in family studies. 20 Past studies 

have identified only a handful of associations with a variety of OSA related traits. We have 

previously described a GWAS of OSA traits measured by overnight polysomnography in multi-

ethnic cohorts totaling ~20,000 individuals. 22 In that study, we found two genome-wide 

significant multiethnic associations: variants in a locus on 10q22 were associated with indices of 

average and minimum SpO2 and percentage of sleep with SpO2  < 90%, and variants in a locus 

on 2q12 were associated with minimum oxygen saturation (SpO2). In another study we identified 

a locus in 17p11 with a male specific effect on AHI. 23 Furthermore, in an admixture mapping 

study in Hispanic/Latino Americans, we identified a locus on 2q37 associated with AHI and one 

in a locus on 18q21 associated with AHI and SpO2< 90%.24 

	

The low number of genetic associations reported to date only explains a small fraction of OSA 

trait heritability. This relative paucity of findings is driven primarily by modest sample sizes, a 

reflection of the expense and difficulty of measuring physiological phenotypes by overnight 

polysomnography. This also limits our ability to fine-map associations down to causal variants 

and thus identify relevant genes. Overnight polysomnography is logistically difficult and 

expensive, so data on hundreds of thousands of individuals – sample sizes at which GWAS 

designs are well-powered to detect tens of loci and, aided by additional experiments, fine-map 

some of them – have yet to be collected and may never be available. 1,2   Biological 

interpretation of available genetic associations is further complicated by the observation that 

most GWAS effects localize to enhancer regions and other regulatory elements and are often 

distal to physiologically relevant genes. 25,26	
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Now that GWAS of massive sample sizes have been accumulated for various comorbid 

conditions and endophenotypes related to OSA, we hypothesize that analysis of shared 

associations across correlated traits can identify effects in under-powered studies of OSA and 

generate clear and testable biological hypotheses. A number of computational methods 

increase power for discovering genetic associations by capitalizing on pleiotropy between 

disease phenotypes or between a disease and a molecular trait such as gene expression. One 

common approach takes advantage of the genetic correlation among phenotypes. 6,27 This class 

of methods gains substantial additional power by pooling association signals across traits. 

However, such methods require large sample sizes and suffer from power loss when genetic 

correlation is limited to a subset of loci. An alternative approach analyzes individual loci to detect 

pleiotropic alleles, with no regard to overall genetic correlation.28–33,4,34–37 Only a handful of 

existing methods account for the possibility that the apparent pleiotropy is driven by the linkage 

disequilibrium (LD) between two distinct causal variants each of which drives only one 

phenotype. 4,31,32,34,36  

  

In this study, we apply a joint likelihood mapping method (JLIM) to detect shared associations 

between OSA and other related traits. JLIM has high specificity when rejecting apparent 

pleiotropy driven by distinct causal variants in LD, and does not depend on estimates of genetic 

correlation which necessitate large sample sizes. We have previously applied this approach to 

identify shared associations between gene expression traits and autoimmune disease risk. 35 

However, JLIM’s rationale generalizes beyond gene expression to any potential intermediate 

trait or biological marker that might also mediate OSA pathogenesis. Here, in a novel application 

of JLIM, we reverse our strategy to ask whether highly significant associations with traits that 
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plausibly influence OSA measures, also have pleiotropic effects on OSA parameters, as a way 

to discover and simultaneously interpret new associations to sleep apnea traits in an 

underpowered study.  

 

We focus on a set of well powered intermediate traits which have previously been implicated in 

the pathobiology of OSA. Given prior GWAS studies suggesting the involvement of inflammatory 

genes in OSA, 38–40 case-control and cohort studies reporting high levels of inflammation, 

including elevations in neutrophils and monocytes in OSA, 41,42 we included leukocyte and 

platelet related traits in our pleiotropic comparisons. Similarly, we also included red blood cell 

related traits given prior GWAS implicating iron metabolism 24 and erythrocyte function. 22 We 

will refer to these as clinical traits. In addition, OSA is associated with lung, 43,44 obesity and 

cardiovascular-related pathologies, 42,45–47 and we have included clinical traits that reflect that, 

together with gene expression traits in tissues implicated in such pathologies. 

 

By linking different clinical and gene expression traits to OSA at specific loci, our analysis leads 

to new hypotheses about OSA pathobiology across many physiological layers, in addition to 

finding new associations. 

 

Materials and Methods                                                                                            

 

OSA Cohorts  

 

To study pleiotropic associations underlying the risk of OSA, we prepared two sets of cohorts: 

the discovery cohorts to identify pleiotropic variants and independent replication cohorts to 

validate their associations to OSA traits. For the discovery cohorts, we used individual-level 
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genotype data in order to determine the significance of pleiotropy by permutation (JLIM). At the 

replication stage, we do not carry out any pleiotropy analysis, we only check for genetic 

association to OSA, so summary-level association statistics were sufficient. In addition, we 

restricted the genetic ancestry of GWAS discovery cohorts to that of European ancestry, to 

match GWAS of clinical traits. This was in order to avoid potential issues due to mismatch of LD 

patterns in our pleiotropy analysis. In contrast, we did not require the replication cohorts to have 

any specific ancestry. Thus, our replication cohorts included all available ethnicities. 

 

The discovery cohorts included the subset of samples of European ancestry from the following 

five cohorts: the Atherosclerosis Risk in Communities Study (ARIC),48 Osteoporotic Fractures in 

Men (MrOS) Study,49 Multi-Ethnic Study of Atherosclerosis (MESA),50 Cardiovascular Health 

Study (CHS),51 and the Western Australian Sleep Health Study (WASHS).52 ARIC is a study that 

investigates atherosclerosis and cardiovascular risk factors. It is one of the cohorts included in 

the Sleep Heart Health Study, which collected polysomnography and genotype data.53 Genotype 

data were obtained through dbGaP (phg000035.v1.p1).	MESA is a population-based study 

focused on cardiovascular risk factors, which included participants of four ethnicities: African-, 

Asian-,European- and Hispanic/Latino-Americans ranging from ages of 45 to 86 years old. We 

only included samples from European-Americans in the discovery cohort. Polysomnography 

data measuring sleep related traits was later obtained from individuals who did not use 

overnight oxygen, CPAP or an oral device for sleep apnea.54 MrOS is a multi-center prospective 

epidemiological cohort assembled to examine osteoporosis, fractures and prostate cancer in 

older males.55 An ancillary study (MrOS Sleep) measured sleep disturbances and related 

outcomes.56 CHS is a cohort aimed to study coronary heart disease and stroke in individuals 

aged 65 and older, and genotype data was obtained through dbGaP (Illumina	CNV370	and	IBC;	
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phg000135.v1.p1	and	phg000077.v1.p1).	WASHS is a clinic-based study designed to examine 

OSA and its associated genetic risk factors in patients referred to a sleep clinic in Western 

Australia. Not all individuals had measurements for the four OSA related traits of interest. 

Details on genotyping, imputation and QC procedures have been previously reported 22.See 

Table S8 for details.  

 

The replication cohorts were: the Hispanic Community Health Study/Study of Latinos 

(HCHS/SOL),57,58 Starr County Health Studies (Starr),59 Cleveland Family Study (CFS)60 and 

Framingham Heart Study (FHS),61 in addition to non-European samples of CHS and MESA. 

HCHS/SOL is a population-based study to examine protective and risk factors for many health 

conditions among Hispanic/Latinos living in four urban areas within the USA (Chicago IL, Miami 

FL, San Diego CA and Bronx NY). Starr is a cohort collected to study risk factors for diabetes in 

a population of Mexican-Americans in Texas, later phenotyped for sleep traits.62 CFS is a family-

based study, which recruited patients with OSA, their relatives, and neighborhood control 

families to study the familial and genetic basis of sleep apnea (356 families of African American 

or European American ancestry). We included only unrelated individuals from CFS. FHS is an 

epidemiological cohort established to study cardiovascular disease risk factors, using follow-up 

medical examinations every two years for the population of European Ancestry in Framingham, 

MA. Data from the first Sleep Heart Health Study was obtained between 1994-1998. Genotype 

data was obtained through dbGaP (Affymetrix	500k;	phg000006.v7).	See Table S9 for the 

details of each cohort.  

 

We examined the following four OSA related traits in the discovery and replication cohorts: 

minimum and average oxygen saturation (SpO2), apnea-hypopnea index (AHI), and event 
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duration. Briefly, the minimum and average SpO2 were calculated from oximetry-based SpO2 

measurements over the entire recorded sleep interval excluding occasional waking periods. AHI 

was scored by counting the number of episodes of complete (apnea) or partial (hypopneas) 

airflow reduction associated with > 3% desaturation per hour of sleep. The event duration was 

measured for the average length of apneas and hypopneas, from the nadir of the first reduced 

breath to the nadir following the last reduced breath (in seconds). The full description of 

phenotyping protocols is present in the original study which first reported their genetic analysis 

in the context of OSA.22–24 We rank-normalized all OSA traits, separately in each cohort, in order 

to obtain normally distributed phenotypes. 

 

Clinical Trait Data 

 

For clinical traits, we used GWAS summary statistics calculated for various traits in the UK 

Biobank,63,64  blood cell related phenotypes in a general UK population,65 and cardio-metabolic 

phenotypes in individuals of European Ancestry.66 There is no sample overlap between clinical 

trait GWAS data and our discovery or replication cohorts. The full list of clinical traits is shown in 

Table S1. The GWAS summary statistics for UK Biobank traits and blood cell counts were 

downloaded from their websites. The summary statistics of cardio-metabolic traits from66 were 

obtained directly from the authors.  

 

This research was approved by Partners in Healthcare IRB (protocol #2010P001765). 

 

Identifying pleiotropic variants affecting both clinical traits and OSA  
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We applied Joint Likelihood Mapping (JLIM version 2.0) 35 to test whether the association 

signals of two traits were driven by a shared genetic effect. We ran JLIM only on the loci in 

which there was strong evidence of association to a clinical trait (genome-wide significant) and a 

suggestive association to the OSA trait (p < 0.01). In these loci, JLIM compares the likelihood of 

observed association signals under the following three competing possibilities: the OSA trait has 

no causal variant in the locus (“!!”), the same OSA causal variant is shared with the clinical trait 

(“!!”) or the OSA causal variant is distinct from the clinical trait causal variant (“!!”) shown in 

Figure S1. Briefly, JLIM calculates the ratio between the likelihood of the data under !! 

compared to that under !! and evaluates the significance of this statistic by permuting the 

phenotypes simulating the lack of causal effect under !!. The false positives due to !! are 

indirectly controlled by the conservative behavior of JLIM: the expected value of JLIM statistic is 

lower under !! than under !!. JLIM assumes that only up to one causal variant is present for 

each trait in a locus. However, simulations showed that the accuracy of JLIM remained robust in 

the presence of multiple causal variants in a locus (Figure S7). 

 

To run JLIM, we used the genetic association statistics of OSA traits calculated over all SNPs in 

a 200kb analysis window around the focal SNP (the lead SNP in the clinical trait). We derived 

these statistics from our discovery cohorts by combining association signals of each cohort 

using an inverse-variance weighted meta-analysis approach. The association statistics were 

calculated in individual cohorts by linear regression adjusting for age, sex, BMI and the top three 

principal components. The principal components were calculated from genome-wide genotype 

data in each cohort separately. We used mean imputation for missing covariate values. Multi-

allelic SNPs and variants with minor allele frequencies (MAF) below 0.05 were excluded from 
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the analysis. We only used variants present in all of the discovery cohorts. We only ran JLIM in 

the discovery cohorts. 

 

We used the same pipeline to generate permuted association statistics for JLIM. OSA 

phenotypes were randomly shuffled in each cohort separately. For each permutation, the 

association statistics were calculated in the same way including all the covariates. Then, the 

cohort-level association statistics calculated on permuted data were combined across cohorts 

by meta-analysis. This permutation procedure was repeated for up to 100,000 times, adaptively, 

to estimate JLIM p-values.  

 

Replication of OSA associations in independent samples 

 

We validated the OSA associations identified in the discovery cohorts by replicating them in out-

of-sample multi-ethnic replication cohorts (Table S9). There was no sample overlap between our 

discovery and replication cohorts. We combined the p-values of associations across the six 

replication cohorts by applying an inverse variance-weighted meta-analysis technique. We 

defined the p-value of association < 0.05 as nominal evidence of replication and the p-value < 

0.05/65 as a more stringent Bonferroni-corrected replication cutoff, given that 65 loci were 

uncovered for their pleiotropic associations to OSA in the first analysis (Table 1, Table S3).  

 

Identifying pleiotropic variants affecting both gene expressions and OSA 

 

We used cis-expression quantitative trait loci (eQTLs) from the Gene-Tissue Expression project 

(GTEx release v7) 67 and BLUEPRINT epigenome project (release 20151109), 68 to examine 

pleiotropy between the variation in gene expression levels and OSA phenotypes. Among the 
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GTEx datasets, we only considered liver (N = 133), spleen (N = 116), skeletal muscle (N = 420) 

and lung (N = 333) tissues for our analysis, based on the potential relevance of these tissues to 

OSA and their sample sizes. Again, we included only samples of European ancestry for this 

analysis. Genetic ancestry was identified by the first two axes in principal component analysis 

(Figure S9,S10). The GTEx post-QC genotype data were obtained from dbGAP (phs000424.v7) 

along with the sample covariates. The post-QC normalized RNA levels were downloaded from 

the GTEx portal. For the analysis of immune-cell eQTLs, we used BLUEPRINT datasets which 

consisted of genotypes of participants and expression profiles of CD14+ monocytes (N = 194), 

neutrophils (N = 196) and CD4+ T cells (N = 169). The RNA transcripts of BLUEPRINT samples 

were derived from unstimulated primary cells collected from healthy individuals of European 

ancestry. The genotype data of BLUEPRINT participants were downloaded from the European 

Genome-phenome archive (EGA; EGAC00001000135). The QCed and normalized gene 

expression levels were obtained from the BLUEPRINT project. 

 

We focused this analysis on the 65 loci with putative pleiotropic associations between OSA and 

clinical traits (Table S3). Using GTEx and BLUEPRINT eQTLs, we scanned for pleiotropy 

between eQTLs and clinical or OSA traits. We considered all protein-coding genes whose 

transcription start sites (TSS) were less than 1Mb away from the focal SNP of a clinical trait. The 

protein-coding genes were defined by Ensembl annotation (release 92). The genes with eQTL 

association p-value > 0.01 at the focal SNP were excluded due to weak evidence of association 

to gene expression. Multiallelic SNPs and variants with MAF < 0.05, were excluded from the 

analysis. The default parameters were used for JLIM. The number of permutations to estimate 

the p-value of JLIM statistic were adaptively increased up to 100,000 starting from the minimum 

of 1,000. 
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Since JLIM requires permutation of eQTL associations to generate the null distribution of its 

statistic, we re-calculated the eQTL association statistics from the original data and generated 

permutation statistics from the same pipeline by randomly shuffling the phenotypes. Specifically, 

for each tested gene, we used normalized gene expression values as a phenotype and ran a 

linear regression for each SNP in a 200kb JLIM analysis window surrounding the focal SNP. 

Similarly as in the original study, when we calculated the eQTL association statistics for GTEx 

tissues, we included the top three principal components (PC), 15 PEER factors,69 sex and 

platform (Illumina HiSeq 2000 or HiSeq X) as covariates. For BLUEPRINT, we generated the 

eQTL association statistics including the covariates of the top three PCs, age and sex. The 

same set of covariates were also used to generate permutation data for JLIM. 

 

 

Simulated datasets 

 

To compare the accuracy of JLIM to other methods, we simulated genetic loci with pleiotropic 

associations under different scenarios with unbalanced sample sizes. For one of two traits, we 

simulated a well-powered GWAS of a quantitative trait with sample sizes of 100,000, 150,000 

and 200,000. For the other trait, we simulated an under-powered GWAS with much smaller 

sample sizes of 5,000, 10,000 and 15,000. To generate datasets of realistic LD backgrounds, 

we used real genotypes of 80 randomly picked loci across the genome. The genotype data of 

15,000 individuals were obtained by subsampling from six cohorts of European Ancestry 

(MESA, ARIC, MrOS, CHS, CFS, FHS and WASHS) and further down-sampled to a target 

cohort size as needed. Each locus was 200 kb in length. Chromosome 6 and the sex 

chromosomes were excluded from our simulations due to the difference in LD patterns from the 

rest of genome. We removed multiallelic sites and variants with MAF < 0.05.  
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In each of these simulated loci, the SNP in the midpoint of the genomic segment was chosen as 

the causal variant for the well-powered trait (focal SNP). We fixed the true genetic effect !! of 

the focal SNP to be large enough to explain 0.05% of the variance in the trait. This value was 

chosen to represent typical effect sizes of genome-wide significant association peaks in a well-

powered study. In GWAS of sample sizes of 100,000, 150,000 and 200,000, the median p-

values of association at such a focal SNP are 1.5 x 10-12, 4.7 x 10-18 and 1.5 x 10-23, 

respectively. JLIM only requires GWAS summary statistics for the well-powered trait. Therefore 

in each locus, we generated summary statistics by sampling the association statistics ! of the 

locus from the following multivariate normal distribution 70:  

 

! ~ ! !! !!, ! , 

 

where !! is the GWAS sample size, ! is the number of markers in the locus, ! is the !×! LD 

matrix, and ! is the !-dimensional vector of true causal effects  (on standardized genotype 

values) at all SNPs in the locus. ! was set to !! at the focal SNP and to 0 at all other SNPs. 

The p-values of association were calculated from ! = !!,… ,!! ,… ,!!
! as follows:  

 

!! = 2 ×Φ(− !! ), 

 

where !! is the association statistic at SNP !, and Φ is the standard normal cumulative 

distribution function. Because of sampling noise, in a minority of simulations, all SNPs in the 

locus failed to pass the genome-wide significance threshold. When this happened, we re-

simulated the locus until it reached the target threshold. This was done to mimic our data 
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analysis, where we only included loci in which the clinical trait association p-value was genome-

wide significant. 

 

For underpowered GWAS datasets, we simulated loci with no causal effect (!!), the same 

causal effect at the focal SNP (!!) or a causal effect at a distinct variant from the focal SNP 

(!!). For simulations of !!, we assumed that all SNPs had the causal effect size of 0.  For 

simulations of !! and !!, the true causal effect size was fixed to !!, but the causal variant was 

chosen to be the focal SNP in case !! or to be a distinct SNP in case of !!. The distinct SNPs 

were chosen from an LD window relative to the focal SNP, selecting one in each of the following 

LD ranges: low ( ! ≤ 0.3 ), intermediate ( 0.3 < |!| ≤ 0.6 ) and high (0.6 < |!| ≤ 0.8). Since 

JLIM requires individual-level genotype data, for the underpowered trait, we simulated 

phenotypes for all individuals and calculated the association statistics by linear regression, 

instead of sampling the summary statistics from a multivariate normal distribution. The 

genotypes were generated by down-sampling from a total of 15,000 samples to the target cohort 

size. For !!, we simulated baseline phenotype values by sampling from the standard normal 

distribution. For !! and !!, we added the genetic effect !! to the baseline phenotypes, 

depending on the genotypes of the simulated causal SNP. The simulated causal effect size of 

!! is expected to produce median association p-values of p= 0.11, 0.025, and 0.0062 , with 

GWAS sample sizes of 5,000, 10,000 and 15,000, respectively. Each parameter set was 

simulated 100 times per locus. 

 

Next, we examined the robustness of our method when the true effect sizes were only weakly 

correlated between two traits. Here, we assumed that the causal effect sizes between two traits 

were coupled and the degree of this coupling was governed by the correlation coefficient !!,!. 
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Specifically, we modeled the causal effect sizes !!! ,!!!  at the focal SNP! for the two traits 

as distributed according to the following bivariate normal distribution:  

 

!!!

!!!
  ~ ! 0

0 , !!! !!,!!!!!
!!,!!!!! !!!

, 

 

where !!! and !!! are the variance of per-SNP effect sizes for trait 1 and 2, respectively. We 

assumed that !!! = ℎ!!/!!! and !!! = ℎ!!/!!!. Here, ℎ!! and ℎ!! are the heritability of each trait, 

both set to 0.5. !! , !! are the numbers of independent causal SNPs in the genome for each 

trait, both set to 1,000,000 in our simulation, and ! is the fraction of SNPs expected to be causal 

in each trait, set to 0.01 in our simulation. We considered the correlation coefficient !!,! to be 0, 

0.35 or 0.7. In such a scenario, given a fixed value of !!! , the conditional distribution of !!!  

follows the normal distribution such that:  

 

!!!  | !!! ~ !  !!,!
!!
!!
!!! ,!!! 1 − !!,!! . 

 

Using this conditional normal distribution, we kept the effect size of the focal SNP for the well-

powered trait !!!  to be the constant !!, explaining 0.05% of trait vFariation, and sampled the 

causal effect size !!!  of the underpowered trait to differ from, but be correlated to that of the 

well-powered trait.  

 

Last, we also evaluated the accuracy of our method under the presence of additional causal 

variants that were not shared across two traits. Here, we randomly selected two additional SNPs 
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for each trait in a locus. The effect sizes of these four extra non-pleiotropic variants were 

sampled from a normal distribution with variance of !!!/5 and !!!/5 for each corresponding trait. 

We simulated the effect sizes of focal SNP for the well-powered trait and main causal SNP for 

the under-powered trait in the same manner as the previous set of simulations. 

 

Simulated benchmark of coloc and eCAVIAR 

 

We ran coloc (version 3.1)31 with summary statistics of GWAS for clinical and OSA traits as 

inputs. The sample sizes of tested GWAS cohorts were provided along with allele frequencies 

and p-values of association at all SNPs. We used the default prior settings, where the frequency 

of causal SNPs (!! and !!) was set to 10-4 for both traits, and the frequency of colocalization 

(!!,!) was set to 10-5. The pleiotropic variants were identified based on the posterior probability 

of colocalization (PP4).  

 

We ran eCAVIAR (version 2.2)34 with summary statistics of both traits and reference LD matrix. 

The default parameter setting was used. As a prior, eCAVIAR assumes that each variant in the 

locus analyzed is causal for a particular trait with a probability of 0.01, independently of other 

variants and phenotypes. It then computes the posterior probability of each variant being causal 

for both traits. By default, eCAVIAR considered up to two causal variants per trait in each locus. 

We used the top posterior probability that an identical SNP is causal for both traits (called “the 

maximum CLPP score”) to find the pleiotropic variants.  

 

Since the posterior probabilities of coloc and eCAVIAR were measured in relative scales, we 

needed to calibrate the cutoffs of these scores before comparing their accuracies with JLIM. For 
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this, we used null simulations of no causal effect for underpowered trait (!!) to find the score 

cutoffs corresponding to the 1% false positive rate. To calculate precision, we mixed a randomly 

sampled subset of positive cases with all of our negative cases at a specified ratio. This step 

was iterated for 500 rounds, and then the average precision was reported. 

 

Results 

 

Creating a framework to identify associations in underpowered GWAS through pleiotropy 

 

We used JLIM 35 to identify pleiotropic loci, where a genetic effect drives association to two 

traits. First, we selected genome-wide significant loci (association p < 5 x 10-8) in our well-

powered trait (here, a clinical trait), and from these we selected the subset where the lead 

(focal) SNP also shows nominal association to OSA traits (p < 0.01). We then used JLIM to 

directly evaluate if the association to the two traits was consistent with the same underlying 

effect, indicating a pleiotropic effect. This two-step strategy allowed us to distinguish between 

cases where there was association only in the clinical trait; where there was a shared 

association in both traits; and if there was distinct associations in both traits stemming from 

different underlying effects (Figure S1). 

 

Simulations 

 

We first assessed our strategy in simulated data, varying sample size, LD and the presence of 

multiple conditionally independent associations in a locus. For reference, we also compared 

JLIM results to those from two other popular pleiotropy detection methods, which unlike JLIM 
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are Bayesian: coloc 31 and eCAVIAR. 34 We simulated statistics for pairs of traits where the 

same variant is causal (positive cases), and where two different variants in LD are driving each 

of the associations at a locus (negative cases), and assessed the capacity of each method to 

discriminate between them. All three methods directly contrast the likelihood of true pleiotropy to 

that of the alternative driven by two distinct causal variants, although coloc does not explicitly 

account for the effect of LD in summary statistics. 

  

We used genotypes from European ancestry samples as a reference from which we simulated 

quantitative traits in 5,000; 10,000; and 15,000 samples as surrogates for the OSA GWAS. To 

simulate summary statistics from a well powered GWAS (representing our clinical traits), we 

sampled values from a multivariate normal (MVN) distribution using the local LD matrix as a 

variance-covariance parameter 70 with clinical trait samples sizes of 100,000; 150,000; and 

200,000 samples. We found that coloc was the most sensitive method (Figure 1A), though this 

came at a substantial false positive rate and drop in precision (Figure 1B and C). Overall, we 

found that JLIM has high specificity at discriminating pleiotropic associations from cases where 

two distinct variants in LD drive associations in the same locus in different traits (Figure S1). We 

explored a range of other parameters, including sample size for each trait, the correlation 

between effect sizes in both traits, the LD between causal variants in negative cases, and the 

level of allelic heterogeneity in the loci, detailed in supplemental section (Figures S2-S7).  

  

Identifying pleiotropic associations between clinical traits and sleep apnea-related traits 

Based on clinical relevance 71 and heritability, 20 we focused on four OSA-related traits 

measured in five European-ancestry cohorts: the apnea-hypopnea index (AHI), 23 average 

respiratory event duration, 24 minimum and average oxygen saturation (SpO2). 22 We used 

summary statistics from the remaining multiethnic cohorts in our replication effort. 
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We assembled a collection of GWAS summary statistics for a total of 55 candidate intermediate 

traits from across these physiological areas: erythroid, leukocyte and platelet counts and 

function, from a study combining the UK Biobank and INTERVAL datasets (170,000 individuals 

of European ancestry); 65 cardiovascular, metabolic and respiratory traits from the UK Biobank 

(380-450,000 European ancestry participants),64,72 and cardio-metabolic traits (36,000 European 

ancestry participants). 66 We then compared associations in each of these clinical traits to our 

OSA traits (6,781 European ancestry participants; Table S8), to identify potential associations in 

the latter. A complete list of clinical traits we considered is presented in Table S1 

 

We tested for directional causal effects of the selected clinical traits on our OSA related traits 

using Mendelian Randomization (MR).73 Due to the low sample sizes in OSA traits, no 

comparison reached statistical significance after multiple test correction (Table S11). After 

excluding the extended MHC region and the sex chromosomes, we identified 3,191 genome-

wide significant associations (p < 5 x 10-8) in the 55 clinical traits, of which 221 had a 

corresponding suggestive OSA association at the lead SNP (p < 0.01; Table S2). We then 

explicitly tested for evidence of pleiotropy between clinical and OSA traits using JLIM. We found 

evidence that in 65/221 of these regions the OSA and clinical trait associations are consistent 

with a shared, pleiotropic underlying causal variant (false discovery rate (FDR) < 0.05; Table 1, 

Table S3). FDR values were computed based on the JLIM p-values obtained, using the total 

number of trait comparisons tested (Table S2). 

 

To independently validate our 65 putative OSA trait associations from the discovery stage, we 

compiled summary statistics for the same traits in 15,594 individuals of Asian, African American, 

European and Hispanic ancestries (Table S9). These individuals do not overlap with those from 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2019. ; https://doi.org/10.1101/832162doi: bioRxiv preprint 

https://doi.org/10.1101/832162
http://creativecommons.org/licenses/by/4.0/


the cohorts used in our JLIM analysis. We do not attempt to replicate pleiotropic associations; 

we only replicate the OSA association statistics. JLIM relies on local LD patterns being 

preserved between clinical and OSA trait cohorts, so we cannot use multi-ethnic data in our 

discovery analysis. We found that 2/65 variants in Table S3 show significant association with 

the same OSA trait as the initial observation, after Bonferroni correction for the number of tests 

performed (which we consider more appropriate than FDR for out-of-sample testing). The 

variant in SNP rs17476364 (Figure 2A) links every single one of the red blood cell related 

clinical traits analyzed with average SpO2. It is an intronic variant in the hexokinase 1 (HK1) 

region in chromosome 10, and has been previously reported, as it reached genome-wide 

significance in association to minimum and average SpO2.22 The variant in SNP rs2277339 is a 

missense coding variant in DNA primase subunit 1 (PRIM1) in chromosome 12.  It links both 

plateletcrit and mean corpuscular volume to AHI. In the UK biobank, it has documented 

significant associations to height, waist to hip-ratio, age at menopause and multiple red blood 

cell related traits.74 A further 10 variants, shown in Table 1, were below nominal association p 

values < 0.05  in the replication set, but did not survive multiple test correction.  

 

We performed sensitivity analyses to assess whether our discovery analysis was generating 

false positive associations due to our selection criteria, or our replication data was generating 

false negatives due to low statistical power. We randomly selected 100,000 SNPs (excluding the 

HLA region and sex chromosomes) from our initial OSA GWAS in individuals of European 

ancestry, giving us 400,000 association statistics across four OSA traits. We found that 4,162 of 

these would have been selected for our JLIM analysis, in line with expectation for our in-sample 

threshold of association p < 0.01. Out of these, 223 had a significant out-of-sample nominal 

replication (association p < 0.05). In comparison, our pleiotropy analysis results are 3.5-fold 
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enriched at this threshold (12/65 hits), suggesting the presence of true associations to sleep 

traits (one-sided Fisher exact p = 0.00019; Figure 2).  

 

JLIM has higher statistical power to detect pleiotropy when the underlying association to OSA is 

stronger, raising a concern that loci with stronger OSA associations in the discovery set are 

driving the out-of-sample replication rate and are overrepresented among loci with significant 

evidence of pleiotropy. To address this, we compare the out-of-sample nominal replication after 

correcting for OSA associations in the discovery sample The rate of nominal replication 

remained significantly higher among the 65 pleiotropic associations compared to random 

controls when we controlled for the bias due to the difference in strength of association to OSA 

(Combined Fisher exact p = 0.00434, 3.23-fold enrichment; Table S10). In fact, the 156/221 

associations that did not show significant evidence of pleiotropy were also slightly enriched for 

nominal replication relative to the set of randomly selected variants (one-sided Fisher exact p = 

0.076, 1.7-fold enrichment; Figure 2). This suggests that the FDR cutoff we applied to our JLIM 

results is conservative, and additional pleiotropic effects – and therefore true OSA associations 

– remain to be discovered. In both cases where we could clearly replicate an OSA association in 

our multiethnic cohort data, we detected pleiotropy with multiple erythrocyte traits. 

 

Incorporating gene expression to construct molecular hypotheses of sleep apnea physiology 

Non-coding regions with evidence of gene regulatory activity carry a large proportion of 

heritability in most traits analyzed in large GWAS. 75 We reasoned that some OSA causal 

variants would reside in such regulatory regions, and thus act on gene regulation. We therefore 

sought shared associations between gene expression traits and the clinical traits for which we 

identified a pleiotropic association in the 65 loci in Table 1 and Table S3. To do so, we compiled 

expression quantitative trait loci (eQTL) data for protein-coding genes expressed in lung, liver, 
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spleen and skeletal muscle from individuals with European ancestry from the GTEx Project, 67 

and monocyte, T cell and neutrophil populations in individuals from BLUEPRINT. 76 We chose 

these tissues for potential relevance to OSA pathology: the lung is involved in OSA-related 

hypoxemia; 43,44 previous GWAS associations have implicated the neuromuscular junction in 

overnight SpO2 levels; 22 the spleen and liver are known to mediate filtration of erythrocytes and 

iron homeostasis; and leukocytes are key modulators of inflammation. We calculate FDR based 

on JLIM p-values over the 167 comparisons shown in Table S4, where we include these eQTL 

analyses. 

 

We were able to identify shared associations between eQTL and clinical traits in 34/65 loci 

(Table 2, Table S5). This includes several notable examples, including a locus on chromosome 

1, where eQTL for both PSEN2 (presenilin 2) and COQ8A (coenzyme Q8A) levels in neutrophils 

are pleiotropic with the percentage of neutrophils in white blood cells, which in turn is pleiotropic 

with AHI. Another example is a locus on chromosome 6 where we find that a known eQTL for 

desmoplakin expression in lung tissue is pleiotropic with a measure of lung function (FEV1/FVC, 

the ratio of forced expired volume per second to forced vital capacity), which in turn is pleiotropic 

with an association with AHI (Figure 3). Thus, in these and other loci we can attribute 

associations to gene expression in specific cell types, clinical and sleep apnea traits to the same 

genetic variant, and thus construct specific biological hypotheses of the pathophysiology 

underlying OSA. 

 

We also looked for pleiotropy between gene expression traits and OSA in the three loci 

harboring known genome-wide significant OSA associations in the discovery sample (Table S6). 

In each locus, we compared OSA trait summary statistics to eQTLs for genes within 1Mb from 

the most associated variant, where the OSA focal variant had an eQTL association p-value < 
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0.01 (Table 3). Given the low number of comparisons, we calculated the FDR values by pooling 

results from these three loci with the set of clinical to eQTL comparisons in Table S4. We 

replicated a previously found pleiotropic effect in a locus on chromosome 17, 22 where minimum 

oxygen saturation (SpO2) co-localizes with expression of the epsilon subunit of the nicotinic 

receptor (CHRNE), in various tissues, including lung, neutrophils, monocytes and muscle 

(Figure 4).  

 

Discussion 

 

In our comparison of clinical (respiratory, cardiometabolic, inflammatory) traits to OSA related 

traits, the strongest finding lies in an intronic region of hexokinase 1 (HK1) and is associated 

with average overnight oxygen saturation level (SpO2). This locus is pleiotropic with all red blood 

cell related traits tested (Figure 2A) and corresponds to one of the most significant genome wide 

associations we had previously reported from this data. 22 Prior to this analysis, two alternative 

hypotheses for the etiology of this signal had been proposed: that HK1 acted by modulating 

inflammation, or that it affected OSA by altering erythrocyte function. Our results provide 

evidence that is consistent with the erythrocyte related pathway. Mutations in HK1 have been 

implicated in anemia, together with severe hemolysis and marked decreases in red blood 

cells.77 As discussed previously,22 it is possible that HK1 affects the Rapoport-Luebering shunt 

through glycolytic pathway intermediates, which in turn mediates oxygen carrying in mature 

erythrocytes. Factors that influence arterial oxygen levels can lead to a more severe OSA 

phenotype (i.e., lower average levels of oxygen saturation predispose to greater hypoxemia with 

each breathing obstruction). Lowered oxygen carrying capacity and thus more tissue hypoxia 

could also contribute to breathing instability (and thus apneas) via Hypoxia-Inducible Factor-1 
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(HIF-1) and enhanced carotid body sensitivity and chemoreflex activation, or through long-term 

respiratory facilitation and plasticity. 78,79 

 

The analysis of pleiotropy can be used to concatenate more than one phenotype to create 

candidate “causal chains,” which by linking eQTLs to well-powered traits to sleep apnea related 

traits can hint at promising biological targets. Among the most significant results for this 

multicomponent model is desmoplakin (DSP), a gene whose expression in lung tissue is 

affected by an eQTL that co-localizes with a lung function phenotype (FEV1/FVC) which itself 

co-localizes with AHI. This same co-localizing SNP (rs2076295) has been implicated both in 

Interstitial Lung Disease (ILD) and DSP gene expression a separate study. 80 It is also the lead 

SNP in FEV1/FVC trait at that locus in the UK biobank GWAS used in our analysis. Desmoplakin 

is a key component of desmosomes, which have a role in cell-cell adhesion, suggesting a role in 

epithelial integrity in lung pathology, which, in turn, could have a downstream effect on OSA. 

OSA is highly prevalent in ILD as well as associated with subclinical markers of ILD. While prior 

research suggested that OSA may have been causally related to interstitial lung injury, the 

current data suggest a common causal pathway. 43 

 

We also found that PSEN2 (presenilin 2) and COQ8A (coenzyme Q8A) eQTLs in neutrophils 

colocalize with associations to the neutrophil percentage of white cells and AHI. Previous 

studies suggest that sleep disturbances can trigger increased hematopoiesis of neutrophils in 

the bone marrow. 46 Patients with OSA often present with elevated levels of circulating 

neutrophils, which may contribute to the pathogenesis of OSA through effects on upper airway 

and respiratory muscle inflammation, and possibly by effects on brain centers influencing 

breathing and sleep-wake organization. Other data implicate inflammation as a downstream 

consequence of OSA-related hypoxemia and sleep fragmentation that mediates increased 
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cardiovascular risk.41 The association with PSEN2 is also particularly interesting given that 

mutations of this gene result in increased production of amyloid-beta proteins, elevations of 

which are a hallmark of Alzheimer’s disease, which is associated with OSA.81 While these 

findings suggest a mechanistic link across sleep, neutrophils, cognition and cardio-respiratory 

disease, we did not specifically test respiratory, brain or cardiovascular traits for genetic 

associations at this locus. 

 

Another interesting result is an eQTL in the epsilon subunit of the nicotinic acetylcholine 

receptor CHRNE that co-localizes with a genome-wide significant association in minimum 

oxygen saturation. This receptor is present at neuromuscular junctions and mutations in this 

subunit are known to cause congenital myasthenic syndrome in humans that can result in 

progressive respiratory impairment. 82  

 

From a methodological perspective, the analysis of pleiotropy has become an important tool in 

the analysis of complex trait genetics. Most complex traits are highly polygenic, implying that 

many variants associated with a single trait will also be associated with other traits or will be in 

LD with such variants. Different computational methods are required for different applications 

and for different genetic architectures. If the goal is to increase power to detect an association 

and the genetic correlation is broadly dispersed over many loci, methods explicitly capitalizing 

on the broad genetic correlation are capable of producing large power gains. 6,27 This family of 

methods remains inaccessible for small GWAS studies, where estimates of genetic correlation 

from small samples are too noisy to be useful. We tested the genetic correlation between the 

four OSA traits and the clinical traits, and no genetic correlation estimate reached statistical 

significance after multiple test correction (Table S7).  
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In cases where genetic correlation varies across the genome, power can still be increased with 

the help of other methods that leverage pleiotropy to reduce multiple testing burden.28 

Development of another group of approaches was motivated by the need to link genetic 

associations to genes via eQTL data 31,34,35 but, as shown here, these methods can be easily 

adapted to the analysis of other traits. Because of the abundance of association signals, 

especially for cellular and molecular traits, distinguishing between true pleiotropy due to the 

same underlying causal variants and different causal variants in LD is important for all the 

applications. Therefore, in our study of OSA we elected a method that explicitly models LD 

structure in the locus. The drawback of this choice is the need to restrict the discovery sample to 

a demographically homogeneous subset while using the available multi-ethnic cohort for 

replication. 

 

Pleiotropy does not necessarily imply a causal relationship between phenotypes. Nonetheless, 

as we demonstrate here, a shared genetic basis between OSA and organismal, cellular and 

molecular traits can reveal new aspects of the underlying biology. This will likely be of benefit for 

other clinically relevant traits that are difficult to study at the scale required for GWAS. Traits that 

are burdensome or expensive to phenotype, rare diseases that are hard to sample and 

diseases that affect under-represented populations could all lead to underpowered genetic 

studies, which are unlikely to get dramatically higher sample sizes in the near future. Therefore, 

there is an unmet need to optimize the signals we can extract from small GWAS and the 

strategy presented here should help in achieving this goal. 

 

Supplemental Data 
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Supplemental Data include ten figures and eleven tables and can be found with this article 

online at:   
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Web Resources 

 JLIM 2.0: http://genetics.bwh.harvard.edu/wiki/sunyaevlab/jlim2.0 and  

https://github.com/cotsapaslab/jlim/ 

GWAS summary statistics in the UK Biobank: http://data.broadinstitute.org/alkesgroup/UKBB/ 

GWAS summary statistics of blood cell traits: http://www.bloodcellgenetics.org/ 
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GTEx portal (post-QC normalized gene expression levels): http://gtexportal.org/home/ 

Post-QC normalized gene expression levels for BLUEPRINT:  

ftp://ftp.ebi.ac.uk/pub/databases/blueprint/blueprint_Epivar/Pheno_Matrix/ 
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Figures 

Figure 1. JLIM has higher precision than competing methods. 

Examples of simulated data with increasing LD between the causal SNPs for the clinical and 

OSA traits. For each method (coloc, JLIM and eCAVIAR). The threshold of detection for each 

method was selected such that 1% of null simulations (!!) are accepted as positives. For each 

set, negative and positive cases were simulated 100 times in 80 loci. The positive cases (!!  in 

Figure S1) have the same SNP causing an effect on the clinical trait (N1=150,000) and the OSA 

trait (N2=10,000). As for the negative cases (!! in Figure S1), we randomly selected a causal 

SNP for the OSA trait within an LD window in a specified range. This SNP would have low (0.0 < 

| r | < 0.3), medium (0.3 < | r | < 0.6) and high (0.6 < | r | < 0.8) linkage to the causal SNP in the 

clinical trait. All causal SNPs had the same effect on the traits. We show A the sensitivity 

(fraction of true positives detected), B the false positive rate (fraction of false negatives among 

all negatives, also equal to 1-specificity) and C the precision (fraction of true positives among all 

cases detected) under a simulation where 1% of cases are positive. LD in negative cases does 

not affect sensitivity, given that it is computed from positive cases exclusively. 
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Figure 2. Pleiotropy at HK1 locus and fractions of loci that replicate out of sample. 

A) Putatively pleiotropic locus linking a clinical trait (hematocrit) with an OSA trait (average 

SpO2). The JLIM p-value which tests for pleiotropy between both traits at the locus is p=0.008. 

This SpO2 association replicates out of sample (! = 8.61 ∗  10!!.). B) Plots showing the 

fractions of randomly selected and putative pleiotropic loci with OSA associations that replicated 

in the multiethnic cohorts (out of sample). All loci included passed a discovery sample 

(European ancestry) 0.01 p-value threshold. JLIM significant loci (FDR<0.05) were more likely to 

have significant out of sample OSA association p-values than randomly selected cohorts 

(OR=4.00 Fisher exact p=0.00019). 
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Fig 3. Candidate causal chains linking a clinical trait (red), an OSA related trait (blue) and 

an eQTL (yellow).  

A) A candidate association in chromosome 1 with putative pleiotropic associations between the 

clinical trait neutrophil percentage of white cells (red), AHI (blue) and expression of PSEN2 

(presenilin 2) in neutrophils (yellow). Gene expression and the appropriate gene in the locus are 

shown in yellow. Pairwise comparisons of –log10(p-values) between associated traits are shown 

on the right with matching colors in axis labels. B) A candidate association in chromosome 6 

with putative pleiotropic associations between the clinical trait FEV1/FVC (red), AHI (blue) and 

expression of DSP (desmoplakin) in lung (yellow). 
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Fig 4. Pleiotropic locus linking gene expression and an OSA related trait. 

A locus in chromosome 17 has associations between minimum oxygen saturation (blue) and 

expression of CHRNE (cholinergic receptor nicotinic epsilon subunit) in lung (yellow). Gene 

expression trait p-values and the appropriate gene in the locus are shown in yellow. Pairwise 

comparisons of –log10(p-values) between associated traits are shown on the right with matching 

colors in axis labels. The JLIM p-value which tests for pleiotropy between both traits at the locus 

is ! = 5 ∗  10!!. 
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Table 1. Loci with significant pleiotropic associations between a clinical trait and an OSA trait with nominally significant  

replication. 

SNP Coordinate Clinical phenotype Clinical p-value JLIM p-value OSA 
phenotype 

OSA 
phenotype 

p-value 
Replication  

p-value 

rs17476364 *† 
 

chr10.71094504 
 

Hematocrit 7.65 x10-159 0.008 Average O2 
saturation 0.000156 8.61 x10-5 Reticulocyte count 1.90 x10-96 0.008 

Red blood cell count 1.75 x10-48 0.008 

rs2277339 † chr12.57146069 Plateletcrit 1.13 x10-10 0.009 AHI 0.00642 0.000629 Mean corpuscular volume 1.07 x10-9 0.011 

rs11187838 chr10.96038686 Systolic B.P 9.10 x10-46 0.015 Average O2 
saturation 0.00516 0.00419 

rs34211119 chr2.60720318 

High light scatter reticulocyte 
count 3.15 x10-9 0.002 

Event Duration 0.00283 0.00423 
 

High light scatter reticulocyte 
percentage of red cells 4.81 x10-9 0.002 

Immature fraction of 
reticulocytes 9.48 x10-13 0.002 

14:103566835 chr14.10356683
5 

Mean platelet volume 7.18 x10-70 0.007 
AHI 0.00724 0.00511 Platelet count 4.80 x10-39 0.008 

Platelet distribution width 2.40 x10-23 0.006 

rs17010961 chr4.86723103 Systolic B.P 7.90 x10-24 0.00078 Average O2 
saturation 2.74 x10-5 0.00744 

rs4711750 chr6.43757082 

Reticulocyte fraction of red cells 6.68 x10-11 0.009 

AHI 0.00529 0.0111 High light scatter reticulocyte 
percentage of red cells 5.42 x10-11 0.01 

Myeloid white cell count 6.71 x10-9 0.009 

rs17476364 * chr10.71094504 
Hematocrit 7.65 x10-159 0.00013 Minimum O2 

saturation 6.81 x10-7 0.0206 Red blood cell count 1.75 x10-48 0.00013 
Reticulocyte count 1.90 x10-96 0.00013 

rs2595105 chr4.111552761 Basal metabolic rate 7.00 x10-13 0.004 Minimum O2 
saturation 0.00481 0.0356 

rs11172113 chr12.57527283 FEV1/FVC 8.90 x10-30 0.012 Average O2 
saturation 0.00469 0.0405 

rs9825482 chr3.188448320 Sum eosinophil basophil counts 3.62 x10-13 0.002 AHI 0.000202 0.0450 

rs542618547* chr3.188446663 

Eosinophil percentage of white 
cells 7.56 x10-15 0.003 

AHI 0.000193 0.0453 Eosinophil count 1.03 x10-14 0.002 
Eosinophil percentage of 

granulocytes 7.55 x10-14 0.003 
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Each row denotes one SNP and its corresponding associations to clinical and OSA traits. Each SNP may be associated with more 
than one clinical trait. In SNPs marked with (*) redundant clinical traits were removed for clarity. Here we only show variants with 
nominally significant replication p-values, the full table of 65 loci/sleep associations including non-significant replication p-values is 
included in Table S3. Two variants had a significant out of sample replication p-value after Bonferroni correction (0.05/65) and are 
marked with the symbol (†). AHI stands for Apnea-hypopnea index. Coordinates correspond to hg19. The clinical p-value column 
refers to the association p-value of the SNP to the clinical phenotype. Clinical phenotypes and their corresponding datasets are listed 
in table S1. The OSA phenotype p-value refers to the association p-value of the SNP to the OSA trait when including the five 
European ancestry cohorts (sample sizes in Table S8). The replication p-value refers to the association p-value of the SNP to the 
OSA trait when including all replication cohorts (sample sizes in Table S9). The JLIM p-value tests for pleiotropy between the clinical 
and OSA phenotypes.  
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 Table 2.  Candidate causal chains. 
SNP Coordinate OSA 

phenotype 
OSA-clinical 
JLIM p-value 

Clinical 
phenotype 

eQTL-clinical 
JLIM p-value Gene eQTL           

p-value 
Tissue/Cell 
type 

rs6426558 chr1.227175367 AHI 0.014 
Neutrophil 
percentage 
of white cells 

5.00 x10-6 PSEN2  (presenilin 2) 9.80 x10-28 Neutrophils 

5.00 x10-6 COQ8A (coenzyme Q8A) 3.07 x10-37 Neutrophils 

9:13613990
7 chr9.136139907 Average O2 

saturation 0.00077 IL6 5.00 x10-6 BARHL1 (BarH like homeobox 
1) 3.85 x10-29 Neutrophils 

rs2076295 chr6.7563232 AHI 0.005 FEV1/FVC 5.00 x10-6 DSP (desmoplakin) 1.68 x10-42 Lung 

rs34233420 chr17.38004929 AHI 0.00273 Lymphocyte 
count 2.00 x10-6 GSDMA (gasdermin A) 3.16 x10-15 T-Cells 

rs11653357 chr17.33923607 Event 
Duration 0.015 

Platelet 
distribution 
width 

3.00 x10-6 SLFN12L (schlafen family 
member 12 like) 6.55 x10-8 T-Cells 

6.00 x10-6 SLFN13 (schlafen family 
member 13) 6.63 x10-5 T-Cells 

rs1693551 chr8.101675584 Average O2 
saturation 0.011 Diastolic 

B.P. 0.0001 SNX31 (sorting nexin 31) 4.72 x10-6 Lung 

rs66538782 chr1.46596236 Event 
Duration 0.008 

Sum 
neutrophil 
eosinophil 
counts 

0.0001 TMEM69 (transmembrane 
protein 69) 5.61 x10-6 T-Cells 

rs2277339 chr12.57146069 AHI 0.011 
Mean 
corpuscular 
volume 

0.00031 ZBTB39 (zinc finger and BTB 
domain containing 39) 0.000283 Neutrophils 

0.00044 B4GALNT1 (beta-1 4-N-acetyl-
galactosaminyltransferase 1) 0.00134 Muscle 

rs7162943 chr15.89615275 Average O2 
saturation 0.00016 

Mean 
platelet 
volume 

0.00047 DET1 (COP1 ubiquitin ligase 
partner) 0.000235 Lung 

rs35259020 chr9.136950919 AHI 0.004 Reticulocyte 
count 0.00064 STKLD1 (serine/threonine 

kinase like domain containing 1) 0.00482 Monocytes 

rs14667194 chr9.136934203 AHI 0.00191 
Red cell 
distribution 
width 

0.00071 STKLD1 (serine/threonine 
kinase like domain containing 1) 0.00482 Monocytes 

0.00077 BRD3 (bromodomain containing 
3) 0.000373 Spleen 

 
These SNPs link an OSA trait, a clinical trait and gene expression, with each association passing an FDR 0.05 threshold. The full set 
of putative causal chains is shown in Table S5. Here we only show chains with an eQTL-clinical JLIM p<0.001. AHI stands for Apnea-
hypopnea index. Coordinates correspond to hg19. The eQTL p-value refers to the association p-value of the SNP to the gene 
expression trait of the gene indicated, measure in the tissue/cell type indicated. The OSA-clinical JLIM p-value refers to a pleiotropy 
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test between the OSA and clinical traits, while the eQTL-clinical JLIM p-value corresponds to a test of pleiotropy between gene 
expression and the clinical trait. 
 
 
 
 
  Table 3. Genome wide significant loci in OSA traits colocalizing with eQTL. 

SNP Coordinate OSA 
phenotype 

OSA p-
value Gene Tissue/Cell type eQTL p-value JLIM p-value 

rs12150370 chr17.477763
4 

Minimum 
O2 

saturation 
 

3.37 x10-8 
 

CHRNE (cholinergic receptor 
nicotinic epsilon subunit) 

Lung 6.63 x10-43 5.00 x10-6 
Neutrophils 1.14 x10-10 2.00 x10-5 
Monocytes 3.98 x10-11 4.00 x10-5 

Muscle 3.64 x10-6 5.00 x10-5 
C17orf107 (chromosome 17 open 

reading frame 107) 
Neutrophils 1.98 x10-5 8.00 x10-5 

Lung 6.27 x10-12 0.006 
INCA1 (inhibitor of CDK  cyclin A1 

interacting protein 1) Liver 0.000246 0.005 

ALOX15 (arachidonate 15-
lipoxygenase) Monocytes 0.000122 0.018 

rs16926246 chr10.710933
92 

Average O2 
saturation 

 
2.46 x10-8 

 

SRGN (serglycin) Monocytes 0.000469 0.00047 
TYSND1 (trypsin domain 

containing 1) Neutrophils 0.00185 0.003 

SUPV3L1 (Suv3 like RNA helicase) Liver 0.00376 0.01 
 
SNPs shown are genome wide significant in the OSA trait and are pleiotropic to eQTL, where the JLIM p-value passed an 0.05 FDR 
significance threshold, and the eQTL p-value passed a 0.01 nominal p-value threshold. The eQTL p-value refers to the association p-
value of the SNP to the gene expression trait of the gene indicated, measured in the tissue/cell type indicated. The JLIM p-value 
refers to a pleiotropy test between the OSA and gene expression traits. Full corresponding set of comparisons tested with JLIM in 
Table S6. 
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