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Abstract 

The metacommunity concept has greatly advanced our understanding of how spatial dynamics 

shape ecological communities. To date, this framework has emphasized discrete differences 

between mechanisms structuring metacommunities (e.g. niche vs. neutral), despite the 

recognition that assembly processes are continuous. Here we present a fundamental 

reconception of the framework that explicitly links local coexistence theory to metacommunity 

theory and allows for a continuous range of competitive metacommunity dynamics. These 

dynamics emerge from the underlying processes that shape the dynamics of ecological 

communities: 1) density-independent responses to abiotic conditions, 2) density-dependent 

biotic interactions, and 3) dispersal. We also incorporate stochasticity in the demographic 

realization of each of these processes. The traditional metacommunity archetypes exist as 

discrete regions within this space, but our framework highlights a range of dynamics that are 

missed in classic metacommunity theory. We formalize this framework using a simulation 

model that explores the full range of competitive metacommunity dynamics by varying the 

strength of the underlying processes. We illustrate how the different processes interactively 

shape the diversity, functioning, and stability of metacommunities. This process-based 

framework extends the rich history of metacommunity ecology and can be used to generate 

testable hypotheses on the processes structuring metacommunities in nature.  
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Introduction 

Recent decades have seen a shift from a primarily local perspective on species coexistence via 

interspecific interactions to include regional processes such as habitat heterogeneity, dispersal, 

and ecological drift within metacommunities (e.g. Levins & Culver 1971; Hubbell 2001; 

Mouquet & Loreau 2002; Amarasekare 2003). These advances have allowed a deeper 

understanding of how species vary in their relative abundances and co-occurrence across 

spatial scales, as well as the influence of these on biodiversity patterns and ecosystem 

functioning (reviewed in Holyoak et al. 2005; Leibold & Chase 2018). 

 

In building theory to understand how local and regional processes interact in 

metacommunities, a number of simplifying assumptions have been made. Hanski and 

Gyllenberg (1997) incorporated habitat heterogeneity and colonization/extinction dynamics, 

but ignored species interactions. Hubbell’s (2001) neutral model incorporated dispersal and 

ecological drift, but ignored interspecific niche differences. And Tilman’s (1982) resource-ratio 

model (see also Tilman & Pacala 1993) incorporates local species interactions and 

environmental variation, but largely ignored stochasticity and dispersal. Indeed, there are 

dozens of metacommunity models that incorporate fundamentally different assumptions about 

how species interact, trait differences among species, and aspects of dispersal and stochasticity 

(overviewed in Leibold & Chase 2018).  

 

In an initial synthesis, Leibold et al. (2004) categorized the divergent theories into four 

archetypes based on their assumptions and outcomes: neutral, species sorting, patch dynamics, 

and mass effects. While this categorization was useful, it led to the perception that these are 

the key ways that metacommunities are structured. As empirical tests were developed to test 

them as alternative hypotheses (e.g. Cottenie 2005), studies focused largely on the matching of 

data to the predictions of the archetypes.  

 

An alternative way to achieve synthesis in metacommunity theory is by emphasizing a series of 

core processes that each vary in strength among metacommunities. Loreau et al. (2003) 
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demonstrated how dispersal limitation, species sorting, and mass effects emerge from the 

same model by varying rates of dispersal. Likewise, Gravel et al. (2006) demonstrated how 

niche-like and neutral-like dynamics are opposite ends of a continuum defined by the degree to 

which species overlap in their abiotic niches. These findings reflect the increasing appreciation 

of a focus on the processes and their variation along continua (e.g. Vellend 2010; Logue et al. 

2011; Vellend 2016; Leibold & Chase 2018).  

 

A series of models have recently been developed that are capable of generating the 

metacommunity archetypes by altering key parameters (e.g. dispersal, niche breadth, species 

interactions, stochasticity), bringing us closer to the goal of redefining metacommunity theory 

based on processes (e.g. Shoemaker & Melbourne 2016; Fournier et al. 2017). These models 

each include elements that build towards a general process-based framework, but as of yet, 

none have fully reached this goal. That is, a model that 1) is based on continuous processes 

rather than discrete combinations of parameters that correspond to the different archetypes, 

2) relaxes the simplifying assumption that all species compete equally for resources, 3) is 

spatially explicit and applicable to any landscape structure, and 4) is abundance-based, 

including dynamics at the local scale.  

 

Here we develop a metacommunity framework that incorporates all of these elements. Our 

framework is based on three fundamental processes, as well as stochasticity in how they 

impact demography: 1) Density-independent responses to abiotic heterogeneity (i.e. the abiotic 

niche). This determines how local abiotic conditions affect each species’ performance in the 

absence of competition. 2) Density-dependent biotic interactions, focusing on competition. 

Intraspecific and interspecific competition for resources limits population growth and affects 

local scale species coexistence. 3) Dispersal. Immigration and emigration alter local population 

sizes. We separate processes based on whether their effects on populations depend on density. 

This distinction is critical, because density-independent and dependent processes affect 

population dynamics and species coexistence in fundamentally different ways (Chase & Leibold 

2003). While stochasticity is a critical feature of our framework, we do not consider it as a 
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separate process, but instead include stochasticity in abiotic conditions, as well as in 

demography (which depends on the abiotic responses, biotic interactions, and dispersal). By 

distinguishing processes in this way, we can capture all metacommunity dynamics in a single 

mathematical framework and move between them by modifying the strength of these 

processes.  

 

A general framework for competitive metacommunities 

We formalize a metacommunity as a set of local communities where populations of multiple 

species potentially compete and can disperse among local communities that are distributed in 

space. Figure 1 depicts a schematic of such a metacommunity, visualizing a landscape in which 

local communities are separated via an uninhabitable matrix and connected via dispersal. 

Nevertheless, it is important to recognize that all communities exist within a metacommunity 

characterized by differences in scale (i.e. local and regional), heterogeneity, and dispersal, and 

so our framework applies much more broadly. We overview four basic propositions that form 

the foundation for a generalized metacommunity theory.  

 

1) The density-independent growth rate of a population depends on the local abiotic conditions 

(Figure 1a). Density-independent growth in the absence of intra- or interspecific competition is 

determined by the dimensions of the abiotic environment (e.g. temperature, rainfall) that 

influence organism performance, but where the organisms do not impact that abiotic 

dimension (Tilman 1982; Chase & Leibold 2003). Thus, density-independent growth defines the 

range of conditions that allow for positive intrinsic growth (i.e. fundamental niche; Hutchinson 

1957). In classic models (e.g. Lotka-Volterra), density-independent growth is expressed using a 

constant (e.g. r).  

 

Abiotic conditions vary in space and time, resulting in differences in density-independent 

growth (r) depending on the shape of the species' abiotic niche. Abiotic niches are often 

thought to have a Gaussian shape, but they can take any form, including skewed (e.g. thermal 

performance curves) or positive (e.g. growth over increasing nutrient supply). When abiotic 
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niche curves are narrow over the range of abiotic conditions, species will respond strongly to 

this variation (closer to the assumptions of classical ‘niche-based’ theory). In contrast, if abiotic 

niches are broad or flat over the range of abiotic conditions experienced, species will respond 

weakly or not at all (closer to the assumptions of neutral theory). 

 

Density-independent responses to environmental conditions have been the focus of most 

niche-based metacommunity models (e.g. Loreau et al. 2003; Gravel et al. 2006; Shoemaker & 

Melbourne 2016; Fournier et al. 2017). However, density-independent responses to the 

environment are only one aspect of the realized niche, and this has led to confusion in how 

niche processes govern the dynamics of metacommunities. Coexistence within a habitat patch 

is more likely when species have similar density-independent growth rates, because it makes 

equal fitness (sensu Chesson 2000; Godoy & Levine 2014) more likely. But, local scale 

coexistence also requires stabilizing density-dependent biotic interactions or dispersal (Chesson 

2000; Snyder & Chesson 2004). 

 

2) The realized growth rate of a population depends on the density-dependent intra- and 

interspecific interactions (Figure 1b). Density-dependent competition limits species growth and, 

along with density independent abiotic responses, determines equilibrium abundances (i.e. 

carrying capacity Verhulst 1838; Lotka 1922; Volterra 1926). Most niche-based metacommunity 

theory assumes that species do not differ in their resource use (i.e. equal intra- and 

interspecific competition), but rather their competitive ability depends only on their density-

independent match with the local environment (e.g. Loreau et al. 2003; Gravel et al. 2006; 

Shoemaker & Melbourne 2016; Fournier et al. 2017; Worm & Tittensor 2018; but see Liautaud 

et al. 2019). Yet, we know from local coexistence theory and empirical evidence that this is 

rarely the case (Chesson 2000; Adler et al. 2018). Density-dependent competition results 

because organisms impact resource availability (e.g. space, nutrients, water availability, prey). 

The density-dependent interaction strength of any species with its competitors for shared 

resources depends on the degree of overlap in resource use (sometimes termed ‘niche 

differentiation’; Chesson 2000).  
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The biotic aspect of the niche has very different implications for community dynamics 

compared to the density-independent abiotic niche responses outlined above. In classic Lotka-

Volterra models, density-dependent interactions are expressed using the , which is the per 

capita impact of species j on species i.  is a phenomenological parameter and is just one way 

that density-dependent biotic interactions can be expressed (Tilman 1982; Letten et al. 2017), 

but is useful to understand how biotic interactions can lead to a range of dynamics.  

 

In a community of two species that have equal intraspecific competition (i.e. ), equal 

density-independent growth (i.e. ), and thus equal equilibrium abundance, four 

different outcomes are possible within a single habitat, depending on the balance of inter- (i.e.

) to intraspecific (i.e. ) competition (Dorschner et al. 1987): 

a) stable coexistence - species compete more strongly with themselves than with 

each other (i.e.   and ),  

b) competitive exclusion - competition is unbalanced (i.e.  and ) so 

that the superior competitor i excludes the inferior species j, regardless of initial 

abundances, 

 c) multiple local equilibria - species compete with each other more strongly than with 

themselves (i.e.  and ) so that the species with higher initial 

abundance excludes the other species, 

d) equal competition - individuals of all species compete equally (i.e. 

), so that coexistence is unstable, but exclusion is slow and 

determined by stochastic processes.  

Of course, the outcome of competition becomes more complicated in more diverse 

communities (Barabás et al. 2016; Saavedra et al. 2017), when species have different strengths 

of intraspecific competition, and have different density-independent growth rates (Godoy & 

Levine 2014). Nevertheless, these four outcomes set the context for the dynamics of 

multispecies communities by determining whether local scale communities have single or 

multiple attractors.  
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Because density-dependent biotic interactions are strong determinants of local scale dynamics, 

they also influence how species respond to environmental change. This is because density-

independent abiotic environmental factors can alter the abundance of interacting species, 

which effectively modifies density-dependent interactions (Ives & Cardinale 2004). These 

indirect effects of the environment are often strong in empirical communities (Davis et al. 1998; 

Alexander et al. 2015), but are absent from models assuming that species all interact equally. 

By including density-dependent biotic interactions, we can explore how the range of 

community dynamics that result from biotic interactions at local scales influence, and are 

influenced by, metacommunity processes.  

 

3) The size of a population depends on dispersal (Figure 1c). Dispersal modifies the dynamics of 

local populations and communities both directly and indirectly. Emigration reduces population 

size, while immigration increases population size, and can bring in species that, through their 

density-dependent biotic interactions, strongly impact community structure. Furthermore, 

dispersal provides additional mechanisms that can allow species to coexist at local scales 

(Chesson 2000; Snyder & Chesson 2004). 

 

Along a gradient from low to high dispersal, we expect to see the following processes (Mouquet 

& Loreau 2003): 

a) low dispersal rates result in dispersal limitation, where spatial isolation prevents 

potential colonizers 

b) intermediate dispersal allows species to colonize new habitats, allowing for 

environmental tracking, rescue effects, and recolonization  

c) high dispersal rates facilitate source-sink dynamics where immigration lifts local 

population densities beyond the level that could be achieved based on local 

environmental conditions. 

Multiple dispersal-mediated processes are likely to occur simultaneously within a 

metacommunity, especially when patches are not equally connected (Thompson et al. 2017).  
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Dispersal is a spatially explicit process that depends on the spatial connectivity of landscapes, 

the distance between habitats, species dispersal traits (e.g. dispersal rate and kernel), and 

population sizes. Metacommunity models have typically been spatially implicit for tractability, 

but explicit space can be an important determinant of dynamics (e.g. Fournier et al. 2017; 

Thompson et al. 2017).  

 

Because dispersal alters population sizes, it also alters the realized strength of density-

dependent processes and competition (Holt 1985). Likewise, population sizes alter the number 

of dispersing individuals, creating a feedback between dispersal and biotic interactions. This 

contrasts with the view that dispersal, the abiotic environment, and the biotic environment 

form a series of hierarchical filters to determine community assembly (e.g. Vellend 2016). 

 

4) Births, deaths, immigration, and emigration are stochastic processes that prevent 

metacommunity dynamics from being purely deterministic. Stochasticity is inherent to any 

ecological system (McShea & Brandon 2010; Vellend 2016). Yet, rather than incorporating it as 

a separate process per se (e.g. Vellend 2016), we consider it to be an element of each of the 

three processes; this is because biological processes are probabilistic resulting in stochasticity in 

demography and dispersal (Shoemaker et al. 2019). This view of stochasticity aligns with the 

long history of models that have included it via probabilistic draws of the underlying biological 

processes (e.g. Levins & Culver 1971; Hubbell 2001; Matias et al. 2012; Shoemaker & 

Melbourne 2016; Fournier et al. 2017). Stochasticity in environmental conditions then alters 

metacommunity dynamics via the three processes (Shoemaker et al. 2019).  

 

Delineating the range of possible competitive metacommunity dynamics 

We illustrate this framework of a continuum of processes in three-dimensional space, with the 

axes referring to density-independent abiotic responses, density-dependent biotic interactions, 

and dispersal (Figure 2). While such an illustration is imperfect because these processes are not 

strictly one dimensional (e.g. dispersal depends on both rate and distance), it is a useful 
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heuristic that allows us to compare and relate different metacommunity dynamics across this 

three-dimensional parameter space. The first axis is defined by the strength of density-

independent abiotic responses. At one extreme, species have no response to abiotic 

heterogeneity (i.e. flat abiotic niches) and at the other extreme, heterogeneity results in large 

differences in density-independent growth (i.e. narrow abiotic niches). The second axis is 

defined by the degree to which competition for resources is stabilizing (i.e. ), equal 

(i.e. ), or destabilizing (i.e. ). The final axis is defined by the probability of 

dispersal, ranging from no dispersal to the limit where all individuals disperse in every time 

step. Within a given metacommunity, it is possible that species will differ in their positioning on 

these axes, for example if species have different dispersal rates, abiotic niche breadths, and 

competitive strengths.  

 

The traditional organization of metacommunity theories into archetypes (Leibold et al. 2004) is 

consistent with this framework. In articulating them based on the three defining processes, we 

can see how they relate to one another (Figure 2). It also illustrates that these traditional 

archetypes encompass only a small subset of the possible parameter space of dynamics (Figure 

2); other theories have explored some of the interactive space between the archetypes (e.g. 

Leibold & Chase 2018), but it is clear that there is much more conceptual space to explore. To 

place the archetypes within this space, we outline the assumptions (both explicit and implicit) 

that each makes about the three core processes emphasized here. 

 

Neutral dynamics 

The neutral archetype assumes that species have equal density-independent responses to 

abiotic heterogeneity, that density-dependent competition between species is equal, and that 

dispersal limitation is acting (i.e. dispersal is not high enough to homogenize the 

metacommunity) (Figure 2). Equal density-independent responses can be the result of 

indifference to environmental heterogeneity (i.e. flat abiotic niches) (e.g. Hubbell 2001) or of 

species having identical responses to abiotic heterogeneity (e.g. Gravel et al. 2006). Critically, 

this archetype implicitly assumes that competition between species is equal. Because of these 
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particularly limiting assumptions, neutral dynamics occur only in a very confined region of our 

metacommunity parameter space.  

 

Species sorting and mass effects 

The species sorting archetype assumes that density-independent responses to abiotic 

heterogeneity are strong and that they differ amongst species (Figure 2). It makes no explicit 

assumptions about density-dependent biotic interactions, although many models assume equal 

inter and intraspecific competition (but see Chase & Leibold 2003; Thompson & Gonzalez 2017). 

Finally, the archetype implicitly assumes that dispersal is sufficient so that species can access 

favourable habitat patches, but that dispersal is not so high as to homogenize the 

metacommunity. The mass effects archetype makes these same assumptions, but in this case, 

dispersal rates are higher, allowing populations to persist in habitats that are otherwise 

unsuitable for growth (Figure 2).  

 

Patch dynamics 

The patch dynamics archetype has more complicated assumptions, including interspecific 

variation in competitive ability (e.g., stronger competitors exclude weaker competitors when 

they are both present in the same habitat patch). Classic models were agnostic to whether 

these competitive differences were due to density-dependent or density-independent 

processes (Levins & Culver 1971; Hastings 1980; but see Tilman 1994) . More recently, models 

have included the assumption of competitive differences in density-independent responses to 

the abiotic environment (i.e. competitively dominant species have higher density-independent 

growth), while assuming that density-dependent biotic interactions are equal (e.g. Shoemaker 

& Melbourne 2016; Fournier et al. 2017). Nevertheless, it is equally possible that such 

competitive exclusion can arise from unbalanced density-dependent competition (i.e. 

 and ), with equal density-independent abiotic responses. This is how we 

have modelled the competition-colonization trade-off here (see Figure 2). For species to coexist 

in the patch dynamics archetype, we must also assume that there is a competition-colonization 

trade-off; species persist regionally because competitively weaker species have a higher 
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probability of dispersing. Patch dynamics also implicitly assumes the occurrence of periodic 

disturbances, be they stochastic extinctions or environmental perturbations that cause local 

extirpations. 

 

Beyond the archetypes 

Our focus on model parameters highlights how the classical archetypes only encompass a small 

subset of this three-dimensional range of metacommunity dynamics (Figure 2). A number of 

dynamics that may occur in natural metacommunities do not fit neatly within the existing 

archetypes. Some of these dynamics have been modelled by combining aspects of the existing 

archetypes (reviewed in Leibold & Chase 2018)(e.g. patch dynamics with species sorting), or by 

including dispersal limitation, local resource partitioning, and priority effects (Fukami et al. 

2016). Other combinations of parameters are likely but have not been modelled explicitly; our 

framework allows us to acknowledge and explore this undefined space.  

 

Model description 

The framework we discussed above is quite general and can accommodate a number of 

different formalizations. For our purposes here, we formalized these assumptions into a 

simulation model using Beverton-Holt discrete time logistic population growth with Lotka-

Volterra competition and spatially explicit dispersal. The model simulates abundance-based 

population dynamics of S interacting species in M habitat patches, coupled by dispersal (Figure 

1d, e). Thus, after accounting for density-independent responses to the abiotic environment, 

density-dependent competition (following Beverton & Holt 1957), and dispersal,  is 

the expected population size of species i in patch x at time :  

 

1) , 

 

where  is the population size at time t.  
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Proposition 1, the density-independent growth rate of a population  depends on the 

abiotic conditions at that location and time. We have assumed that the abiotic environment is 

defined by a single variable that varies across space and time, and that  is a Gaussian 

function of this environmental gradient such that 

 

2) , 

 

where  is the maximum density independent growth rate,  is the environmental 

optimum of species i,  is the environmental conditions in patch x at time t, and  is the 

abiotic niche breadth, which determines the rate at which growth is reduced by a mismatch 

between  and . We manipulate the strength of density-independent responses to 

abiotic heterogeneity through the parameter . When  is small, the abiotic niche is narrow 

and so performance drops quickly when species are present in suboptimal environmental 

conditions. In contrast, when  is large, the abiotic niche is broad. As  becomes larger relative 

to the range of environmental conditions in the landscape, the abiotic niche effectively 

becomes flat, so that species growth is unaffected by environmental heterogeneity. This follows 

the common assumption of Gaussian abiotic niches, but other abiotic response shapes could be 

used (e.g. skewed unimodal curves, saturating, or monotonic). Furthermore, multiple response 

curves could be combined to incorporate multiple abiotic gradients.  

 

Proposition 2, the realized growth rate of a population depends on the density-dependent 

interactions between members of that population as well as with individuals of other species. 

This is represented by the per capita interaction coefficient . When  (i.e. ), it 

represents the per capita rate of intraspecific competition for species i, and when , it 

represents the per capita effect of interspecific competition of species j on species i. We 

generate different competitive scenarios by manipulating the relative strength of inter  and 

intraspecific  competition. We assume that these interaction coefficients are fixed across 

time and space—in effect assuming that resource supply is constant and equal across all 
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patches (Tilman 1982). Relaxing this assumption would complicate the model and is beyond the 

scope of this paper but would explore how spatial variation in biotic interactions alters 

metacommunity dynamics. 

 

Proposition 3, the size of a population depends on dispersal, which is incorporated via the 

emigration terms  and immigration  terms.  is the number of individuals of 

species i dispersing from patch x at time t. This is determined by a random draw from a Poisson 

distribution with an expected value of , where  is the dispersal probability for 

individuals of species i. Here, we assume that  is equal across all species. Relaxing this 

assumption would be a worthwhile next step, but in general we expect that interspecific 

variation in dispersal should lead to fitness differences, which would erode the potential for 

coexistence unless additional trade-offs are assumed (e.g. competition-colonization trade-off). 

 is the number of individuals of species i that arrive via immigration to patch x at time t 

from other patches. We assume that the probability of an individual arriving from another 

patch decreases exponentially with the geographic distance between patches:  

 

3) , 

 

where  is the expected value of ,  is the geographic distance between patches x 

and y, and  is the strength of the exponential decrease in dispersal with distance.  is 

determined by a random draw from a Poisson distribution with an expected value of . 

Note that , so total expected immigration and realized emigration for 

each species are equal, and that realized immigration and realized emigration are equal on 

average.  
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Proposition 4, births, deaths, immigration, and emigration are stochastic processes that prevent 

metacommunity dynamics from being purely deterministic. Stochasticity is incorporated in two 

ways. First, through the stochastic component of immigration and emigration as noted above. 

Second, because we determine the realized population size in the next time step  by 

drawing from a Poisson distribution with an expected value of   (following 

Shoemaker & Melbourne 2016). The Poisson draw also ensures that integer population sizes.  

 

Simulation details 

The results presented are based on model simulations of  patch metacommunities 

with a starting total species richness of  species and an  of 5 for all species .  

 

Metacommunity spatial structure 

We assume that habitat patches are distributed randomly in geographic space with their 

coordinates drawn from uniform distributions with the range [1, 100] (following Fournier et al. 

2017; Thompson et al. 2017)(Figure S1). We convert these coordinates into a torus to avoid 

edge effects. Although we chose to restrict our simulations to this one metacommunity size and 

structure, the model can be run using any number of patches and any spatial structure. Our 

qualitative results appear robust to variation in species number and metacommunity size, 

based on initial sensitivity analyses (results not shown) and the fact that portions of our results 

are qualitatively consistent with other models (e.g. Hubbell 2001; Loreau et al. 2003; Mouquet 

& Loreau 2003; Gravel et al. 2006).  

 

Environmental heterogeneity 

We assume that the abiotic environment in a given patch varies continuously between 0 and 1 

and is both spatially and temporally autocorrelated (Figure S1, S2). We generate this 

environmental heterogeneity with an exponential covariance model, using the RMexp function 

in the RandomFields R package (Schlather et al. 2015). We assume a mean environmental value 

across time and space of 0.5, an environmental variance of 0.5, and spatial and temporal scales 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2019. ; https://doi.org/10.1101/832170doi: bioRxiv preprint 

https://doi.org/10.1101/832170
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

of environmental autocorrelation of 50 and 500, respectively. The model can be easily modified 

to incorporate other patterns of changes of environmental conditions in time and space. 

 

Initialization 

We initialize the simulation by seeding each habitat patch with populations of each species 

drawn from a Poisson distribution where . Thus, species start in a random subset of 

patches and at different abundances. We repeat this seeding procedure every 10-time steps 

over the first 100-time steps, giving each species the opportunity to establish if they can 

increase from low abundance. Their ability to do so will depend on whether they are suited to 

the local environmental conditions and their interactions with other species. By seeding the 

metacommunity randomly, we allow for the possibility of priority effects (but only if the 

structure of local competition allows for this, otherwise communities will converge in the same 

environmental conditions). To allow communities to reach equilibrium initially, we hold the 

environmental conditions in each patch constant for the first 200-time steps, while allowing for 

spatial variation in conditions. 

 

Simulation runs 

We ran each simulation for a total of 2200-time steps. This included the 200-time step 

initialization and an additional 500-time step burn in period. This duration contained sufficient 

temporal variation in environmental conditions and community composition to capture 

dynamics that were representative of particular parameters in the simulation. For each 

randomly generated landscape structure, we contrasted a range of dispersal rates , crossed 

factorially with a range of abiotic niche breadths , crossed factorially with four different 

structures of competitive effects. To cover the full range from effectively disconnected to highly 

connected metacommunities, we varied 15 rates of dispersal, equally distributed in log space 

from 0.0001 to 0.464. We varied 13 values of niche breadth, equally distributed in log space 

from 0.001 to 10. These values were chosen to cover the range from so narrow as to preclude 

species persistence in variable environments to so broad that they are effectively neutral over 

the range of conditions experienced in the metacommunity. For simplicity, and to make fitness 
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differences solely dependent on fundamental niche match, we assume that all species have the 

same strength of intraspecific competition . This is, however, not a necessary condition 

for generating the dynamics in our model, with the exception of the purely neutral case. The 

four different structures of competitive effects were:  

1) equal competition; ,  

2) local coexistence;  and  is drawn from a uniform distribution in the range 

[0, 0.5],  

3) multiple local equilibria; values of  are drawn from a uniform distribution in the 

range [0, 1.5]. This results in a combination of species pairs that can stably coexist, 

where one will exclude the other, or for which priority effects are possible.  

4) competition-colonization trade-off; values of  are drawn from a uniform distribution 

in the range [0, 1], except for 30% of species, which are considered dominant species. 

For the dominant species, , and these values are drawn from a uniform 

distribution in the range [1, 1.5]. Thus, local coexistence is possible for subdominant 

species, but not between subdominant and dominant species. Coexistence between 

dominants and subdominants occurs at the regional scale, via the classic competition-

colonization trade-off (Hastings 1980). For this, we assume that dispersal rates  are 

an order of magnitude lower for the competitive dominant species compared to the 

value used for all other species in the community. We also assume that each 

population has a probability of 0.002 of stochastic extirpation. In this way, this 

competitive scenario differs from the consistent and continuous assumptions from all 

other scenarios. Nevertheless, because the competition-colonization trade-off has an 

integral place in metacommunity theory, we include it here for two reasons. First, to 

demonstrate how such a trade-off can be incorporated in our framework and model 

(note that other implementations of such a tradeoff are also possible; e.g. Tilman 

1994; Shoemaker & Melbourne 2016; Fournier et al. 2017). Second, to explore the 

dynamics that emerge from this trade-off across a range of assumptions about abiotic 

niche responses and dispersal rates.  
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For each of the 15 replicate landscapes, we ran all dispersal rates and abiotic niche breadth 

scenarios on the same four sets of randomly generated competitive competition coefficients.  

 

Response variables 

All response variables were based on the dynamics in the simulated metacommunities (e.g. 

Figure S3, S4) after excluding the first 700-time steps to avoid initial transient dynamics. Table 1 

provides an overview of the metacommunity properties that we calculated in each simulation 

run, which include multiple richness and abundance metrics and their temporal stability. 

Simulations were performed in Julia (Bezanson et al. 2017) and figures were produced using 

ggplot2 in R (R Development Core Team 2017). Example dynamics based under different 

combinations of parameters can be explored in this Shiny app - 

https://shiney.zoology.ubc.ca/pthompson/meta_com_shiny/ 

 

Results and Discussion 

Our overarching message, both with the broader conceptual framework and more specific 

simulations, is that metacommunity dynamics exist along a continuum of processes rather than 

as discrete archetypes based on disparate assumptions. This continuum can be defined by three 

processes—1) density-independent responses to abiotic heterogeneity, 2) density-dependent 

competition, and 3) dispersal—as well as stochasticity in how they impact community 

dynamics. The framework generates the dynamics that define the four classic archetypes, but 

also a wide range of dynamics that do not fit within the archetypes, particularly when we relax 

the assumption of equal competition. We find that the structure of density-dependent 

competition has as large an effect on the dynamics of metacommunities as does dispersal and 

density independent responses to abiotic conditions, which have been the focus of most 

metacommunity theory to date. Fully exploring the wide range of dynamics in our model is 

beyond the scope of a single paper. Instead, we will structure our presentation by discussing 

the dynamics that result from the three processes, and the patterns of diversity, abundance, 

and stability that they produce. We also highlight key insights from previous metacommunity 
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theory, illustrating how these results correspond to specific assumptions about the three 

processes of our framework.  

 

The relationship between α, β, and γ-diversity 

One classic result regarding how dispersal rates influence local (α-) and regional (γ-) diversity, as 

well as the turnover of species from site to site ( β-diversity) comes from Mouquet and Loreau 

(2003) and Loreau et al. (2003). We can reproduce those predictions (Figure 3a), when we 

match their assumptions that species have differential and strong responses to abiotic 

conditions (i.e. narrow abiotic niches), but compete equally for a common resource (i.e. equal 

inter and intraspecific competition; e.g.  = 0.5 and equal competition). With low dispersal, 

communities are effectively isolated and so different species establish in each patch (low α-, 

high spatial β-, high γ-diversity) and persist through time (low temporal β-diversity). Because 

competition is equal, local coexistence is not possible in the absence of dispersal. As dispersal 

increases, spatial β- and γ-diversity erode, communities have higher turnover through time 

(temporal β-diversity), and α-diversity increases. At higher dispersal rates, the metacommunity 

homogenizes due to mass effects, spatial and temporal β-diversity erodes, and further loss of γ-

diversity results in losses in α-diversity. A key difference between our model and those of 

Mouquet and Loreau (2003) and Loreau et al. (2003) is that the spatially explicit nature of our 

model makes dispersal less effective at homogenizing the metacommunity and reducing γ-

diversity because we assume that environmental conditions are spatially autocorrelated. Thus, 

mass effects tend to only allow individual species to dominate subregions of the 

metacommunity. Because real metacommunities are spatially explicit, we suggest that it is 

unlikely that dispersal can lead to full homogenization, except in metacommunities composed 

of a small number of very well-connected patches.  

 

A broadly similar pattern emerges when species abiotic niches are so broad as to be effectively 

neutral (e.g. . = 10; Figure 3b). Here, low dispersal rates again result in low α-diversity, but 

high spatial β- and γ-diversity, in this case, as a result of ecological drift rather than by the 

match with the abiotic conditions. Just as when abiotic responses are strong, increased 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2019. ; https://doi.org/10.1101/832170doi: bioRxiv preprint 

https://doi.org/10.1101/832170
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

dispersal erodes spatial β- and γ-diversity but increases α-diversity. Temporal β-diversity also 

increases as a result of stochastic colonization and extinction. Of course, just like in Hubbell’s 

(2001) model, this diversity will very slowly decline without speciation or dispersal from outside 

of the metacommunity. 

 

Relaxing the assumption of equal competition 

Competition in real metacommunities is rarely, if ever, equal and this can result in a wide range 

of competitive outcomes (Dorschner et al. 1987; Ke & Letten 2018). If we assume that 

interspecific competition is weaker than intraspecific competition, we see that multiple species 

can coexist locally, even without dispersal (Figure 3c-d). This increased potential for coexistence 

means that higher rates of dispersal increase α-diversity, but do not erode γ-diversity as much 

as when competition is equal. 

 

If we instead assume that interspecific competition can be either weaker or stronger than 

intraspecific competition, we also get species pairs that cannot coexist locally in the absence of 

mass effects (Ke & Letten 2018). In this competitive scenario, multiple different community 

compositions can be present in the same abiotic conditions, reflecting priority effects (Fukami 

et al. 2016). Priority effects are absent from the traditional archetypes but have been found to 

influence metacommunity structure (e.g. Shurin et al. 2004; Urban & De Meester 2009; Vass & 

Langenheder 2017; Toju et al. 2018). Notably, with this structure of competition, priority effects 

lead to spatial β-diversity, but these are eroded as dispersal homogenizes the metacommunity.  

 

Finally, if we assume that there is a competition-colonization trade-off, subdominant species 

can only persist by colonizing newly disturbed patches before dominant species arrive. Because 

of the transient nature of these communities, all scales of diversity are lower and less 

predictable than in the other scenarios, but follow the same general pattern (Figure 3g,h). Here, 

we see dynamics that correspond to the classic patch dynamics archetype (Levins & Culver 

1971) when we assume intermediate rates of dispersal and flat abiotic niche responses, which 
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corresponds to the common assumption in patch dynamics models that the environment is 

homogeneous. 

 

A more general α, β, and γ-diversity relationship 

A more comprehensive view can be gained by viewing the relationship with abiotic niche 

breadth and dispersal at the same time (Figure 4). Here, we see that α-diversity is generally 

highest when dispersal rates are high, abiotic niches are wide, and interspecific competition is 

weaker than intraspecific competition. Spatial β-diversity is less sensitive to abiotic niche 

breadth but is greatest when dispersal is low and competition is strong (e.g. equal competition 

or multiple local equilibria). Temporal β-diversity is greatest when dispersal rates are 

intermediate, regardless of the structure of competition. But, the effect of abiotic niche 

breadth on these patterns does depend on the structure of competition. Finally, γ-diversity 

tends to peak under low dispersal rates, regardless of the abiotic niche breadth or the structure 

of competition, except for in the competition-colonization trade-off scenario.  

 

The emergent properties of metacommunities as structured by the underlying processes 

Contrasting all emergent metacommunity properties (e.g. diversity, abundance, and stability) 

listed in Table 1 together in multivariate space allows us to see how they are jointly structured 

by the three processes (Figure 5). The first three principal component axes together capture 

89% of variation in the metacommunity properties. These axes broadly reflect variation in local 

scale community properties and stability (PC1 - 52%; linked to gradients in α-diversity, total 

community abundance, temporal-γ diversity, abundance invariability), spatial variation in 

community composition (PC2 - 23%; spatial β and γ-diversity), and temporal variation in 

community composition (PC3 - 14%; temporal β and γ-diversity).  

 

The structure of competition is the principal driver of variation in simulated metacommunity 

dynamics captured by the three PCA axes, with each competition scenario falling out in a 

different region of multivariate space. The equal competition scenario is characterized by 

relatively low loadings and variation on the local properties axis (PC1; Figure 5a), but the 
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highest variation and loadings on the spatial and temporal axes (PC2-3; Figure 5b). The local 

coexistence scenario is characterized by the largest variation and highest loading on the local 

properties axis (PC1), but relatively little variation and loading on the spatial and temporal axes 

(PC2-3). The multiple local equilibria scenario has moderate variation and loading on all axes. 

The competition-colonization trade-off scenario shows the lowest loading and variation on any 

of the axes, reflecting the low overall diversity that is maintained in these metacommunities. 

This sensitivity of metacommunity dynamics to the structure of local scale competition 

emphasizes the importance of this process in our metacommunity framework.  

 

Whereas the structure of competition determines the general domain of metacommunity 

dynamics, dispersal and abiotic niche breadth can modify these dynamics. These modifications 

have, within the context of communities with equal competition, been the focus of most 

metacommunity theory to date. The principal effect of dispersal is to drive variation on the 

spatial and temporal axes (PC2-3; Figure 5b), although higher dispersal causes 

metacommunities to load slightly higher on the local properties axis (PC1; Figure 5a). Abiotic 

niche breadth has more moderate effects. Broader (more neutral) abiotic niches result in higher 

loadings on the local properties axis (PC1; Figure 5a) because they reduce fitness differences 

and so promote local coexistence. Abiotic niche breadth has no consistent impact on spatial β-

diversity (PC2; Figure 5a,b), since high spatial β can be due to environmental heterogeneity 

(when abiotic niches are narrow) or stochasticity (when abiotic niches are broad). Broader 

abiotic niche breadth does seem to be linked to lower temporal β-diversity (PC3; Figure 5b). 

The exception is when competition is equal, in which case abiotic niche breadth has relatively 

little effect on temporal β-diversity. Together, this multivariate view illustrates how the three 

processes of our framework jointly generate a continuum of metacommunity dynamics.  

  

Spatial insurance 

The spatial insurance hypothesis predicts that intermediate rates of dispersal should reduce 

temporal variability in community abundance by allowing species to sort into their preferred 

habitats as the environment changes (Loreau et al. 2003). We find that this effect is strong 
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under the assumptions of Loreau et al. (2003)(Figure 6; equal competition and relatively narrow 

niche breadth; e.g.  = 0.5), but that it is eroded, lost, or even reversed with other 

combinations of abiotic niche breadths and biotic interactions. A more general result is that 

metacommunity abundance becomes more stable with increasing dispersal and with increasing 

niche breadth (Figure 6). A notable exception is that we see a U-shaped relationship between 

metacommunity stability and dispersal when multiple equilibria are possible and when abiotic 

niche breadths are nearly flat. This occurs because the strong interspecific interactions result in 

local compositional states that are relatively unstable and can change dramatically if dispersal 

introduces a new species that is incompatible with members of the local community.  

 

The biodiversity-ecosystem functioning relationship 

Understanding how dispersal influences the relationship between biodiversity and ecosystem 

functioning (BEF) is a key extension of metacommunity theory (Bond & Chase 2002; Loreau et 

al. 2003; Thompson & Gonzalez 2016; Leibold et al. 2017). A classic result is that α-diversity and 

community productivity are both maximized by intermediate rates of dispersal (Loreau:2003iz; 

see also Gonzalez et al. 2009; Shanafelt et al. 2015; Thompson & Gonzalez 2016). The same set 

of assumptions reproduce this result in our model when we use community abundance as a 

proxy for productivity (Figure 7; hump-shaped trajectory with equal competition and relatively 

narrow niche breadth; e.g.  = 0.5). This result, however, depends on abiotic niche breadth and 

the structure of competition. The BEF relationship at local scales is relatively weak when 

competition is equal. This is because there is no complementarity in resource use, only 

complementarity in abiotic niche responses across time and space. Yet, when there is resource 

complementarity (Figure. 7; local coexistence), we see the positive and saturating BEF 

relationships that are common in empirical communities (Cardinale et al. 2011; Tilman et al. 

2014). These BEF relationships remain present, but more variable when multiple equilibria are 

possible, and disappear entirely under a competition-colonization trade-off (Figure 7). 

Together, these findings provide a more comprehensive view of BEF relationships in 

metacommunities, showing that the strength of these effects can vary dramatically depending 
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on the underlying mechanisms, and that they are particularly sensitive to how species compete 

for resources.  

 

Caveats and future directions 

Most metacommunity models and theory rely on the assumption that species are equivalent in 

all or most of their traits (Leibold & Chase 2018). This is most extreme in the neutral archetype 

(Hubbell 2001), but even niche-based models tend to assume that all species have the same 

dispersal rate, the same shape of the abiotic niche, and usually that competition is equal. Our 

model breaks one of these assumptions by exploring a range of competitive structures. 

However, with the exception of the competition-colonization trade-off scenario, we still assume 

equal dispersal rates and abiotic niche shape within an individual simulation. We did this to 

demonstrate how changes in dispersal and abiotic niche breadth alter metacommunity 

dynamics. In nature, however, there is high inter- and intraspecific trait variation, and this can 

greatly influence community dynamics (Bolnick et al. 2011; Violle et al. 2012; Roches et al. 

2017). Exploring the outcome of this variation is an important next step that could easily be 

incorporated in our model and would allow for the identification of additional trade-offs that 

may be important for maintaining diversity when species differ in the way they respond to the 

environment, each other, and space. We did not allow for speciation in our model because it 

would not have greatly impacted dynamics over the timescales considered. However, it would 

be important over longer timescales, in particular in parameter combinations that would result 

in the gradual loss of regional diversity through ecological drift (e.g. Hubbell 2001).  

 

While we have chosen to formalize our framework using Beverton-Holt dynamics with Lotka-

Volterra competition, other modelling choices would be equally valid (e.g. Ricker model, 

resource competition model) provided they are consistent with the assumptions of our 

framework. In particular, our assumptions about the spatially explicit nature of dispersal could 

be modified to incorporate other dispersal patterns and processes, depending on the system of 

interest (Gibbs et al. 2010).  

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2019. ; https://doi.org/10.1101/832170doi: bioRxiv preprint 

https://doi.org/10.1101/832170
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

Our focus has been on the ecological dynamics of competitive metacommunities but extending 

this framework to include trophic dynamics would be a valuable next step. As outlined above, 

this could be done by including positive and negative per-capita interaction coefficients (Laska 

& Wootton 1998; Ives & Cardinale 2004) and different functional responses (Holling 1959). This 

extension will be critical to connect and synthesize trophic metacommunity ecology (e.g. Holt 

2002; Gravel et al. 2011; Guzman et al. 2019) with the competitive theory that we have focused 

on here. In addition, a number of eco-evolutionary metacommunity models have been 

developed that have focused on the evolution of the density-independent responses of species 

to abiotic conditions (e.g. de Mazancourt et al. 2008; Loeuille & Leibold 2008; Vanoverbeke et 

al. 2015; Leibold et al. 2019; Thompson & Fronhofer 2019) or dispersal (e.g. Fronhofer et al. 

2017). An important next step would be to examine how evolution of density-dependent biotic 

interactions affects the dynamics of metacommunities.  

 

A critical measure of the value of our framework will be in its ability to provide insight into the 

dynamics of natural metacommunities. We see two ways how this can be achieved. First, our 

framework and model provide new hypotheses about how basic ecological processes influence 

metacommunity dynamics. These can be tested with observations and experiments to guide 

data analysis of empirical systems. Second, our model can be used to develop approaches that 

are informative for identifying the underlying structure of real metacommunities. For example, 

in a subsequent paper, we will use the model with a priori specified processes and then sample 

the resulting metacommunity time series as a ‘virtual ecologist’ to discern which analytical 

approaches and metrics are best for distinguishing the underlying processes in natural 

metacommunities.  

 

Conclusions 

Here, we have built on the rich history of the metacommunity concept for understanding 

patterns and processes of species co-occurrence, diversity, and a number of other responses. At 

the same time, our framework takes a fundamentally new perspective on the problem by 

focusing on the underlying processes, modelling the responses to three continuously varying 
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processes—abiotic niche breadth, density-dependent biotic interactions, and dispersal—as well 

stochasticity in those processes. By defining our framework on processes, we not only can 

recreate results from each of the separate archetypes that have been central to 

metacommunity ecology, but can more transparently connect metacommunity theory with 

other dimensions of community ecology (e.g. coexistence theory, BEF research), and stimulate 

further advancement of our understanding of natural communities in a dynamic and changing 

world.  
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Table 1. Metacommunity properties calculated from simulated dynamics. S, M, and T are the 
number of species, patches, and time points in the simulations, respectively.  is the 
number of species present in patch x at time t.  is the number of species present across all 
patches at time t.  is the total number of species present in patch x across all time points.  

Property Symbol Equation Description 

α-richness  α 

 

Number of species in each 
patch at a given time 

γ-richness γ 

 

Total number of species in 
the metacommunity at a 
given time 

temporal-γ richness γ-time 

 

Total number of species 
present locally across all 
time points 

spatial β-richness  β-space  Spatial variation in 
community composition 

temporal β-richness  β-time  Temporal variation in 
community composition 

total community 
abundance 

N 

 

Average number of 
individuals in a community 
at a given time. Note, 
metacommunity 
community abundance is 
N*M and so only differs in 
magnitude. 

temporal α-
abundance 
invariability 

α-invar. 

 

Temporal stability of 
community abundance 

temporal γ-
abundance 
invariability 

γ-invar. 

 

Temporal stability of 
metacommunity 
abundance 
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Figures 

 
Figure 1. A schematic representation of our metacommunity framework and how we formalize 
each aspect of it in our mathematical model. a) Density-independent abiotic niches of three 
zooplankton species are represented graphically, where  follows a Gaussian response curve 
over the gradient of abiotic environmental conditions in the metacommunity, but each species i 
has a different environmental optimum. b) Dynamics also depend on interactions within and 
among species. This is included as per capita intraspecific  interspecific  interaction 
coefficients, and their realized impact on population dynamics increases with population size 

. c) Dispersal alters population sizes via immigration and emigration and depends on the 
physical arrangement of habitat patches in the landscape. d) Each of these processes is 
expressed as separate expressions in our mathematical model. In this model,  is the 
abundance of species i in patch x at time t,  is its density-independent growth rate,  is 
the per capita effect of species j on species i,  is the number of individuals that arrive from 
elsewhere in the metacommunity via immigration, and  is the number of individuals that 
leave via emigration. e) Simulated dynamics of a three zooplankton species, five lake 
metacommunity. The abiotic conditions vary across time and space and species respond to this 
heterogeneity via the Gaussian response curves in panel a. The species also compete so that 
the realized dynamics differ from those that would occur in the absence of interspecific 
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competition (thick solid vs. thin dashed lines). Dispersal connects populations via immigration 
and emigration, with more individuals being exchanged between lakes that are in close 
proximity. Although stochasticity in population growth and dispersal is integral to our 
framework and is included in all other simulations presented in this paper, we have omitted 
stochasticity from these dynamics to increase clarity. Figure design by Sylvia Heredia. 
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Figure 2. Illustration of the three dimensions of possible metacommunity dynamics. Three key 
dimensions of our framework define this space: 1) density-independent abiotic responses that 
range from a flat abiotic niche to narrow abiotic niches with interspecific variation in optima, 2) 
density-dependent biotic interactions that range depending on the relative strength of 
interspecific and intraspecific interactions, and 3) dispersal that ranges from very low dispersal 
rates to very high dispersal rates. The approximate location of each of the four original 
metacommunity archetypes: ND - neutral dynamics, PD - patch dynamics, SS - species sorting, 
and ME - mass effects, is indicated to illustrate how our framework links to previous theory. The 
lines below each label indicate their position in x,z space. PDi indicates the position for 
competitively dominant species with lower dispersal, PDj indicates the position for 
competitively weaker species with higher dispersal. Importantly, much of this space is 
undefined by the four archetypes but represents potential dynamics that can emerge from 
different combinations of the three processes of our framework.  
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Figure 3. The relationship between dispersal  and α, β (spatial and temporal) and γ richness 
under narrow (column -  = 0.5) and flat (column -  = 10) abiotic niches across the four 
competitive scenarios (rows). The corresponding parameter space for each of the original 
metacommunity archetypes: ND - neutral dynamics, PD - patch dynamics, SS - species sorting, 
and ME - mass effects, is indicated with the shaded boxes. The interquartile range (bands) and 
median (solid lines) from 15 replicate simulations are shown.  
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Figure 4. α, β (spatial and temporal), and γ richness (columns) across the full range of dispersal 
rates  (x-axis), abiotic niche breadth  (y-axis), and competitive scenarios (rows). Each pixel 
represents the median value across 15 replicate simulation runs. Colours hues are spaced on a 
log10 scale (see legend). White space represents combinations of parameters where no species 
were able to persist. To see the dynamics that produce these patterns check out our interactive 
shiny app - https://shiney.zoology.ubc.ca/pthompson/meta_com_shiny/. 
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Figure 5. PCA (a; axes 1 and 2, b; axes 2 and 3) of metacommunity response variables, 
illustrating how dispersal  (colour of circles), the abiotic niche breadth  (size of circles), and 
the structure of competition (the four panels) jointly result in variation in metacommunity 
properties. Each circle shows the median value across 5 replicate simulations of the response 
variables from a different set of parameters. The grey shading shows the full range of 
multivariate space occupied across all parameter combinations.  
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Figure 6. The spatial insurance relationship between dispersal and metacommunity scale 
stability in total biomass (invariability). Lines connect different dispersal rates  with the same 
abiotic niche breadth  (color of lines and points). Values are medians from 15 replicate 
simulations. Legend shows the grey scale using a subset of  values.  
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Figure 7. The biodiversity functioning relationship between α-diversity and community 
abundance N. Lines connect different dispersal rates  (color of point) with the same abiotic 
niche breadth  (shade of line). Values are medians from 15 replicate simulations. Legend 
shows the grey scale using a subset of  values and the colour scale using a subset of  values.  
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