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Abstract  

Development of plant vascular tissues involves tissue specification, growth, pattern 

formation and cell type differentiation. While later steps are understood in some detail, it 

is still largely unknown how the tissue is initially specified. We have used the early 

Arabidopsis embryo as a simple model to study this process. Using a large collection of 

marker genes, we find that vascular identity is established in the 16-cell embryo. After a 

transient precursor state however, there is no persistent uniform tissue identity. Auxin is 

intimately connected to vascular tissue development. We find that while AUXIN 

RESPONSE FACTOR5/MONOPTEROS/ (ARF5/MP)-dependent auxin response is 

required, it is not sufficient for tissue establishment. We therefore used a large-scale 

enhanced Yeast One Hybrid assay to identify potential regulators of vascular identity. 

Network and functional analysis of suggest that vascular identity is under robust, 

complex control. We found that one candidate regulator, the G-class bZIP transcription 

factor GBF2, modulates vascular gene expression, along with its homolog GBF1. 

Furthermore, GBFs bind to MP and modulate its activity. Our work uncovers components 

of a gene regulatory network that controls the initiation of vascular tissue identity, one of 

which involves the interaction of MP and GBF2 proteins.  
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Introduction  

Vascular tissues play a central role in plant growth and development by providing plants 

with both transport capabilities and structural support. Steps in development of vascular 

tissues have been studied in detail, mainly in the Arabidopsis leaf (Donner et al., 2009; 

Gardiner et al., 2011; Krogan et al., 2012), shoot (Etchells et al., 2013; Hirakawa et al., 

2010; Smetana et al., 2019; � McConnell et al., 2001; Han et al., 2018) and root (Scheres 

et al., 1995; Miyashima et al., 2019; De Rybel et al., 2014)�. From this wealth of studies, 

a picture emerges where dedicated regulatory modules function to create a properly sized 

and patterned transport bundle. Several steps can be recognized in this process: 

specification of vascular tissue identity, cell proliferation to generate a bundle of cells, 

patterning into xylem, phloem and cambium cell types and finally differentiation into 

functional transport cells. The regulators and effectors of all but the first step have been 

dissected in some detail.   

The rate of proliferation by periclinal cell divisions determines the width of a 

vascular bundle. Periclinal cell divisions in the vascular cells are controlled by several 

pathways: one directed by the xylem expressed TARGET OF MONOPTEROS 5 (TMO5) 

- LONESOME HIGHWAY (LHW) dimer (De Rybel et al., 2013, 2014; Ohashi-Ito et al., 

2014, 2013)�, another regulated by the phloem-expressed PHLOEM EARLY DOFs 

(PEARs) (Miyashima et al., 2019)�, and a third depending on the activity of 

WUSCHEL-LIKE HOMEOBOX 4 and 14 in the cambium (WOX4/14) (Etchells et al., 

2013; Fisher and Turner, 2007; Hirakawa et al., 2010)�.  In concert with proliferation, 

cells in the vascular bundle develop a pattern of distinct sub-identities. Xylem 

development is associated with high auxin signaling, and further specification of  proto- 

or metaxylem identity depends on a combination of cytokinin response and the activity of 

HD-ZIP III transcription factors (Baima et al., 2001; Bishopp et al., 2011; Carlsbecker et 

al., 2010; Mähönen et al., 2006; McConnell et al., 2001)�. Conversely, determination of 

phloem identity is associated with high cytokinin activity and the presence of, among 

others, ALTERED PHLOEM DEVELOPMENT (APL) (Bonke et al., 2003)�. Located 

between the phloem and xylem, the meristem-like (pro)cambium was shown to contribute 

to both the xylem and the phloem cell populations (Smetana et al., 2019)�. Finally, 

several vascular cell types undergo irreversible, terminal differentiation. The 

differentiation of xylem vessel elements can be triggered when a gene regulatory network 

under control of VASCULAR-RELATED NAC-DOMAIN6 (VND6) and VND7 is 
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initiated (Kubo et al., 2005; Yamaguchi et al., 2010; McCarthy et al., 2009)�. While no 

differentiation-inducing factor has yet been found to trigger phloem-like differentiation 

(Blob et al., 2018)�, several factors necessary for phloem differentiation have been 

identified (Ruiz Sola et al., 2017; RodriguezVillalon et al., 2014; Wallner et al., 2017)�.     

Most of the studied regulators of vascular development are expressed only or 

preferentially in vascular cells, which suggests the existence of a robust genetic identity.  

However, it has so far remained elusive how this vascular tissue identity is triggered or 

established. De novo vascular identity specification occurs repeatedly during the life 

cycle as new organs develop or when tissues are wounded (León et al., 2001; Melnyk et 

al., 2015; Yin et al., 2012)�. Specification of tissue identities involves the local 

accumulation of a signaling molecule (small molecule, peptide or protein) that will either 

promote or suppress the activation of a cell type-specific gene regulatory network. Such 

mechanisms have been described in nonhair versus hair cells in the root (Lee and 

Schiefelbein, 1999; Bernhardt et al., 2005)�, meristemoids versus stomatal-lineage 

ground cells in the stomatal lineage (Zhang et al., 2016; Yang et al., 2015; Lau et al., 

2014)� and xylem versus phloem cells in the vascular bundle (Smetana et al., 2019; 

Mähönen et al., 2000; Baima et al., 2001)�.   

A signaling molecule that is strongly correlated with vascular development is 

auxin. Vascular tissue can be initiated by a source of auxin in cut stems (Sachs, 1969), 

and as a result, auxin maxima are often associated with vascular development 

(Brackmann et al., 2018, Miyashima et al., 2019; Scarpella et al., 2006; Wabnik et al., 

2013).� Conversely, lack of the AUXIN RESPONSE FACTOR5/MONOPTEROS (MP) 

transcription factor causes impaired vascular development in the Arabidopsis embryo, 

seedling, leaf and stem (Berleth and Jürgens, 1993; Hamann et al., 1999; Hardtke and 

Berleth, 1998; Mayer et al., 1991). Indeed, � MP controls a variety of vascular-specific 

genes and pathways (De Rybel et al., 2013; Donner et al., 2009; Möller et al., 2017; 

Schlereth et al., 2010; Yoshida et al., 2019). However, all reported perturbations of auxin 

activity (synthesis, transport, response) that affect vascular development also affect a 

range of other processes (Bennett et al., 1996; Cheng et al., 2006; Marchant, 1999; van 

den Berg and ten Tusscher, 2017)�. It is therefore difficult to separate a role for auxin in 

the initiation of vascular identity from its many other functions, which warrants the use of 

an simple developmental model system for studying vascular tissue initiation in the 

absence of e.g. differentiation. The early embryo is an attractive model given that it lacks 
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confounding wound response or extensive proliferation. Its simplicity and predictable 

division pattern allows detection of early developmental defects (Scheres et al., 1994)� 

and available transcriptome resources (Palovaara et al., 2017; Belmonte et al., 2013; 

Schon and Nodine, 2017; Slane et al., 2014)� enables in-depth investigations of vascular 

identity establishment.   

Here we first use a suite of established and novel transcriptional reporters to track 

the stepwise establishment of vascular tissue identity in the embryo. We find that the 

identity initially established is unique to the embryo, transitioning to a mature and robust 

identity in the root. We show that auxin response is necessary but not sufficient to 

establish vascular identity. Via large-scale enhanced Yeast One Hybrid assays we identify 

common regulators of vascular genes  and we find that one of these, the bZIP 

transcription factor GBF2, can interact with ARFs and modifies MP activity in the 

regulation of vascular-specific genes.  
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Results  

Establishment of vascular tissue identity is a multi-step process   

As cell type identity is often instructed at the level of gene activity, it can be inferred by 

gene expression markers that are uniquely present in said cell type. Here, we used a large 

and diverse set of established cell type markers to ask when vascular tissue specification 

occurs during embryogenesis, and to determine the ontogeny of the tissue. We selected 

SHR and ATHB8 as early vascular markers in root and leaf development (Baima et al., 

2001; Gardiner et al., 2011; Nakajima et al., 2001)�. ZLL shows vascular-specific 

expression in the root and embryo (Radoeva et al., 2016; Tucker et al., 2008; Haseloff, 

1999)�. WOL, PEAR1 and DOF6 are all associated with cytokinin-responsive growth in 

the vascular bundle of the root (Mähönen et al., 2000; Miyashima et al., 2019)�. In 

contrast, expression of TMO5, T5L1, TMO6, IQD15, SOK1 and WRKY17 was shown to 

depend on MP (Schlereth et al., 2010; Möller et al., 2017)�.   

Lineage tracing has suggested that the first vascular cells are specified in the early 

globular stage embryo (Scheres et al., 1994)(Figure 1B), when the embryo first contains 

three distinct cell layers. Indeed, we found almost all vascular reporters to be expressed at 

this stage, with the exception of TMO6 and T5L1 (Figure 1A). However, at this stage, 

most reporters were expressed in both the central cell layer, and in the surrounding 

ground tissue cells: ATHB8, DOF6, PEAR1, WOL and ZLL are expressed at apparently 

equal levels in both tissue types. In contrast, IQD15 and SOK1 show only low levels of 

ground tissue expression (Figure 1A). The only markers that were restricted to the 

innermost cell layer are TMO5 and SHR, whose expression could not be detected in the 

ground tissue (Figure 1A). The broad expression of these vascular marker genes is only 

transient: within several cell division rounds, all vascular markers are restricted to the 

innermost cells, a pattern that is maintained in the postembryonic root (Figure 1A). This 

suggests that, rather than being immediately restricted to a small number of innermost 

cells, vascular identity starts as a broad trait that is limited to the inner cells over time. 

While all 12 marker genes eventually become restricted to the vascular cells, it appears 

that there are multiple trajectories to their vascular-specific expression pattern.  

The route to a vascular-specific expression pattern starts in the 16-cell stage 

embryo rather than at early globular stage as previous reports have suggested. In previous 

work, inner lower tier cells at 16-cell stage were shown to resemble their vascular 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2019. ; https://doi.org/10.1101/832501doi: bioRxiv preprint 

https://doi.org/10.1101/832501
http://creativecommons.org/licenses/by-nc/4.0/


  7  

daughter cells at the globular stage using GO term enrichment in transcriptomes 

(Palovaara et al., 2017)�. Indeed, we find that many vascular marker genes start 

expression at 16-cell stage, where they are exclusively expressed in the inner cells: 

DOF6, IQD15, PEAR1, SOK1, WOL and ZLL (Figure 1A). Thus, as the 8-cell embryo 

divides to generate outer and inner cell layers in the 16-cell stage, inner cells activate 

vascular markers. Their ground tissue daughters initially retain the expression of some 

vascular markers, and switch these off later. 

Many of the vascular marker genes were originally identified as targets of auxin 

signaling, often regulated by MP (Schlereth et al., 2010; Möller et al., 2017)�. As a 

result, there is a bias towards auxin-regulated genes among the well-studied vascular 

marker genes. We therefore searched for novel marker genes in an unbiased manner. 

Vascular-enriched genes were selected based on their expression in the early vascular 

cells, using a cell-type specific embryo transcriptome atlas (Palovaara et al., 2017)� and 

additional publicly available vascular-specific transcriptome datasets (Figure 2A)(Brady 

et al., 2007; Belmonte et al., 2013; Kondo et al., 2015; Melnyk et al., 2018). 

Transcriptional reporter lines were constructed to test the expression pattern of 36 

potential marker genes and eventually 5 qualified as markers of vascular identity during 

embryogenesis. Expression of the remaining 31 genes could either not be detected during 

embryogenesis, or was not limited to vascular cells in the embryo, whilst being specific to 

vascular tissue in the root (Figure S1). Of the 5 selected reporters, GATA20 and AP2B3 

expression starts at 16-cell stage, and at the early globular stage, both are enriched in 

vascular cells (Figure 2B). AP2B3 expression peaks in vascular cells but can also be 

detected in surrounding cell layers (Figure 2B), while GATA20 expression shows vascular 

specificity (Figure 2B). In the root tip, GATA20 has been shown to be expressed in the 

phloem (Lee et al., 2006)� and we find that this expression is broader in the vascular 

cells close to the QC (Figure S1B). The other 3 selected reporters: MEE45, MIR171B and 

MSS3, are expressed at the dermatogen stage in all cells, but at lower levels in the 

vascular cells within the embryo, thus negatively marking vascular cells. Therefore, we 

will refer to these three as “inverse” markers of vascular identity in the embryo. This 

pattern is similar to that of WRKY17, a target of MP (Möller et al., 2017)� (Figure 1A). 

However, while WRKY17 is expressed broadly in the root meristem, MEE45, MIR171B 

and MSS3 show tissue-specific expression in the root (Figure 2B).  
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Beyond resolving the ontogeny of vascular tissue initiation in the embryo, our 

detailed analysis of vascular-specific markers also shows that there are significant 

differences in gene expression within the vascular tissue between embryo and root. 

Hence, initiation and maintenance of tissue identity seem to be associated with different 

gene sets.   

  

Auxin signaling through MP is necessary, but not sufficient for initiation of vascular 

identity   

Auxin signaling plays many key roles in plant development and one of the clearest is its 

contribution to vascular development. We sought to investigate the role of auxin 

signaling in the initiation of vascular identity in the early embryo. To this end we 

expressed the non-degradable bdl protein to block MP activity (Hamann et al. 1999, 

Weijers et al. 2006a), while examining markers of vascular identity (Figure 3A). Since 

bdl expression in the entire embryo results in early developmental defects (Rademacher et 

al. 2011, Yoshida et al. 2014), we employed twocomponent gene activation and 

selectively expressed bdl in vascular cells using the Q0990-GAL4; UAS-erGFP driver 

line (Haseloff, 1999). The GAL4 driver in the Q0990 line is inserted near the ZLL gene 

(Radoeva et al., 2016) and erGFP thus reports ZLL expression. Vascular markers were 

introduced into the Q0990 background and crossed with a line containing GAL4-

dependent UAS-bdl (Weijers et al., 2006). The domain of bdl expression is marked by 

ER-localized GFP, whereas the vascular markers are reported by nuclear GFP 

fluorescence (Figure 3A).   

Embryos where bdl was expressed in the vascular cells often showed altered 

ground tissue division orientation as previously reported (Möller et al., 2017)�(Figure 

3A, green asterisks), indicating that auxin signaling was successfully inhibited. However, 

erGFP expression was not affected in bdl-expressing embryos (Figure 3A), indicating that 

maintenance of ZLL expression in presumptive vascular cells does not depend on auxin 

response. Crosses of the Q0990-GAL4 line with Col-0 wild-type resulted in no such 

changes in division orientation. bdl expression led to 96% (n=24) of the observed 

embryos lacking nuclear SOK1 expression whereas wild-type crossed embryos nearly all 

showed normal SOK1 expression. As SOK1 is regulated by MP (Möller et al., 2017; 

Yoshida et al., 2019), this further confirms the repression of MP activity. However, not 
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all vascular characteristics are gone from the inner cells. In Q0990>>bdl embryos, 

GATA20 expression is absent in about half (54%, n=13) of the embryos, but remains 

present in the other half, indicating that in many embryos, repression of vascular identity 

is incomplete, as is supported by normal ZLL expression. In addition, expression of the 

inverse marker MIR171B was mostly unchanged in Q0990>>bdl embryos (Figure 3A). 

These findings indicate that when auxin signaling is blocked in inner cells, vascular 

identity is compromised, but not abolished. The remaining vascular program is 

insufficient for further proliferation and development, thus we conclude that auxin 

signaling through MP is essential for functional vascular tissue specification.  

After confirming that auxin signaling is required for vascular initiation, we next 

asked whether it is also sufficient. While differences in auxin activity across cell layers in 

the early embryo, as measured by the R2D2 and DR5v2 reporters (Liao et al., 2015), are 

small, there is a clearly defined gradient with high levels in central and lower levels in 

peripheral cells (Möller et al., 2017)�(Figure S2). We asked if this small difference in 

auxin signaling between central and peripheral cells in the embryo is sufficient to restrict 

(vascular) identity to inner cells. We therefore expressed a version of MP that cannot be 

inhibited by auxin-dependent Aux/IAA proteins, and that is hyperactive 

(MPΔPB1)(Krogan et al., 2012) from the ubiquitous RPS5A promoter (Weijers et al., 

2001)� using the GAL4-UAS system. Embryos with ubiquitous MPΔPB1 expression 

often showed altered division planes in epidermal cells and occasionally in the 

hypophysis (Figure 3B, green stars), indicating effectiveness of transgene expression. 

However, ectopic MPΔPB1 expression did not induce ectopic vascular marker 

expression. Expression of vascular genes (GATA20, SHR, SOK1) remained restricted to 

the vascular cells and likewise, inverse markers of identity (MIR171B, MSS3, WRKY17) 

were still expressed exclusively in surrounding cells (Figure 3B). These results show that 

ectopic auxin response can induce changes in cell division orientation, but is insufficient 

for inducing vascular tissue specification in the early embryo. This suggests that 

unknown additional factors limit the domain of vascular identity.  

  

Identification of transcriptional regulators of vascular gene expression  

Given the co-expression of vascular marker genes in the embryo and in the post-

embryonic vasculature, it is likely that there are common regulators. To identify 
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transcription factors that bind multiple vascular gene promoters, we performed an 

enhanced Yeast One Hybrid (eY1H) assay (Gaudinier et al., 2011; Reece-Hoyes et al., 

2011)�. Promoters from 14 of the aforementioned vascular reporter genes were screened 

against a custom collection of 2037 transcription factors and other DNA-binding proteins 

in an all-by-all setup (Table S1). Among the 32,592 interactions tested, 1,111 were 

positive. Combining all interactions resulted in a network comprising 14 promoters and 

382 transcription factors (Figure S3, Table 1). This network contained a large number of 

transcription factors that could bind to many of the vascular promoters. For in-depth 

analysis, we therefore selected the 6 vascular promoters that each had more than 25 

interactors and which showed the most prominent vascular specificity in the early embryo 

(Figure 4). These 6 consist of: 3 vascular specific marker genes (GATA20, SOK1, ZLL); 

and 3 vascular inverse marker genes (MIR171B, MSS3, WRKY17). The network that 

contains these promoters and their interactors comprises 221 transcription factors and 521 

interactions (Figure 4A). If there is a common vascular transcriptional program, it is 

likely that multiple vascular genes are regulated by a common set of transcription factors. 

We therefore parsed the interaction network to identify such common transcription 

factors as potential regulators of vascular identity.  

A large number of transcription factors were identified to interact with the 

majority of these promoter sequences. And the majority of these transcription factors bind 

to both sets of promoters (vascular specific and inverse), only a few can bind to only one 

set. CUC2 and IDD12 can bind to 3 or more vascular specific markers, but no inverse 

markers. JAG, DRN and ARR1 bind to 2 or more vascular inverse markers, but no 

vascular specific markers (Figure 4A). However, these transcription factors are a small 

minority: in general, the vascular-specific and -inverse promoters have highly similar sets 

of transcription factors binding to their promoters despite having very different 

expression patterns. When we perform clustering on the promoters based on their 

interactor set we find that vascular-specific and vascular-inverse markers do not have 

distinct sets of interactors (Figure 4D). These findings suggest a large set of transcription 

factors that could act in complex GRN controlling vascular identity. It should be noted 

though that both sets of promoters show differential expression between vascular and 

non-vascular cells, and it is well possible that the same transcription factors (or related 

proteins) could act as vascular-specific activator or repressor.  
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To identify candidate regulators of vascular identity, we selected 20 transcription 

factors from the network. This selection was performed in two steps. First, transcription 

factors were discarded that (i) bound to few vascular promoters; (ii) were expected to be 

false positives based on their promiscuous binding profiles in previous screens (Gaudinier 

et al., 2018; TaylorTeeples et al., 2015); or (iii) were most likely not expressed during 

embryogenesis based on transcriptomics data (Belmonte et al., 2013; Schlereth et al., 

2010). This approach resulted in a list of 50 transcription factors. Next, each transcription 

factor was scored on: (i) expression during vascular development and early 

embryogenesis; (ii) number of vascular promoters bound; (iii) diversity of expression 

patterns bound; and (iv) vascular promoter binding in published DAPseq data (O’Malley 

et al., 2016). For further analysis we selected the top 20 transcription factors ranked by 

cumulative score (Table S3).   

A candidate regulator can only contribute to vascular identity if that candidate is 

present at the time and place that identity specification takes place. To ascertain the 

presence of candidate regulators during embryogenesis, translational fusions of genomic 

fragments to YFP were created and observed for 17 of these 20 transcription factors 

(Figure 5A). These revealed that 10 candidate regulators were indeed present at 16-cell 

stage in the pro-embryo (Figure 5A). The remaining 7 were either not detected during 

embryogenesis or not at the correct time or location (Figure S4). The majority of the 10 

candidate regulators expressed in 16-cell embryos are present uniformly in the nucleus, 

except for members of the GeBP family, which accumulate in foci within the nucleus, 

similar to previous reports (Figure 5A)(Curaba et al., 2003). No conspicuous differences 

between cell types could be found in the early embryo, neither in protein quantity nor 

localization. This indicates that if these candidates contribute to specifying vascular 

identity, their cell-specific action is not the result of protein level or location. Instead an 

unknown mechanism might contribute to cell-specific activity.   

  

GBF1 and GBF2 can interact with MP  

To determine whether any of the candidate regulators could induce or repress gene 

activity during vascular specification, each was expressed in meristematic cells with the 

RPS5A promoter (Weijers et al., 2001), either as native cDNA or as a fusion with a 

dominant SRDX repressor motif. Misexpression of several resulted in either lethal or 
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mild developmental phenotypes, but none of the identified candidate regulators 

suppressed or ectopically induced vascular tissue formation or differentiation (Figure S5). 

Therefore it is unlikely that any of these candidates acts in isolation to control vascular 

tissue initiation. More likely is the control of identity by a complex Gene Regulatory 

Network (GRN), in which the unique interactions between individual regulators provide 

cell-type specificity. 

In our efforts to understand the mechanisms of gene regulation by MP, we had 

immunoprecipitated MP-containing protein complexes from root tips in an MP-GFP 

transgenic line whose functionality had been validated (Schlereth et al, 2010). In this 

experiment, we identified GBF2 as a potential interactor of MP-GFP (Table S2). As both 

are candidate regulators of vascular identity, we decided to follow up on this interaction. 

Immunoprecipitation of GBF2-YFP and its homolog GBF1-YFP, followed by mass 

spectrometry did not recover MP, presumably due to the very low abundance of MP, but 

did confirm previous observations that G-class bZIP proteins can heterodimerize 

extensively (Figure S6). To test MP-GBF interactions more directly, we performed split-

YFP assays (BiFC) (Hu et al., 2002; Walter et al., 2004)� in Nicotiana benthamiana. 

Both GBF2 and GBF1 could interact with MP (Figure 5B-C, Figure S7). Interestingly, 

this interaction was not restricted to MP: ARFs of all three major classes (A/B/C: 

(Okushima, 2005; Finet et al., 2013))� could interact with both GBF2 and GBF1 (Figure 

5B, Figure S7), and the interaction domain was mapped to the ARF DNA-binding 

domain (Figure 5B-C, Figure S7).   

GBF proteins were reported to be involved in the responses to blue light and in 

leaf senescence (Singh et al., 2012; Smykowski et al., 2010; Mallappa et al., 2006; Giri et 

al., 2017). However, gbf1, gbf2 and gbf3 single and double mutants show no 

developmental phenotypes (Figure S7B). This is likely a result of genetic redundancy: the 

bZIP G-class contains 5 members and double mutants show increased expression of close 

homologs (Jakoby et al., 2002; Dröge-Laser et al., 2018)(Figure S7B-C). A triple mutant 

could not be recovered from plants homozygous for gbf1 and gbf3, and segregating gbf2, 

suggesting that lack of all three proteins may result in lethality. Indeed, disruption of a 

GRN underlying vascular identity establishment would likely result in early 

developmental arrest. Overexpression using RPS5A or 35S promoters caused pleiotropic 

developmental defects. pRPS5A>>GBF2-SRDX plants were often sterile, while 

35S::GBF1/2 plants had round leaves and showed delayed flowering (Figure S5, S8D). 
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However, no ectopic vascular development was observed. These findings indicate that 

GBF1/2 protein quantity alone does not specifically limit vascular development.  

  

GBFs bind to Gboxes close to AuxREs to modulate auxin responsive expression  

GBF2 and GBF1 physically with the DNA-binding domain of ARFs, and thus have the 

potential to co-regulate auxin-responsive genes. Interactions among transcription factors 

can lead to cooperative DNA binding if both transcription factors can bind to cognate 

DNA elements in close proximity. Indeed, Gbox motifs were found to be enriched in 

close proximity to AuxREs (Weiste et al., 2014;Ulmasov et al., 1995) and they are 

overrepresented in auxin-responsive and ARF-binding regions (Berendzen et al., 2012; 

Cherenkov et al., 2018). To test the co-occurrence of ARFs and G-class bZIPs motifs we 

applied the MCOT package (Levitsky et al., 2019) to ARF5 and ARF2 peaks taken from 

genome-wide DAP-seq profiles (O’Malley et al., 2016)�.  We analyzed all possible 

combinations of AuxREs (ARF2/5 motifs) and Gboxes (GBF3, bZIP16/68 motifs) with 

any overlap or spacer lengths below 30 nucleotides, and found that bZIP68 and ARF5 

motifs overlap (p-value < 5E-6) (Figure 5D)(Cherenkov et al., 2018).  

To investigate the function of these linked motifs, we selected three vascular 

promoters that contained clear AuxRE and Gbox motifs in close proximity: with an 

overlap (WRKY17), a short spacer (TMO5) and a long spacer (GATA20) (Figure 6A). 

Transcriptional reporters with mutated promoters were generated to determine the 

contribution of the AuxRE-Gbox motif to vascular gene expression domain and level. 

Removing the complete AuxRE-Gbox motif from the promoters of GATA20, TMO5 and 

WRKY17 resulted in a strong and significant reduction of fluorescence in transgenic roots 

(Figure 6C-E). For the WRKY17 reporter, this reduction was more significant in the 

vascular bundle compared to the rest of the root meristem, resulting in a changed 

vascular/non-vascular signal ratio (Figure 6E-H). This suggests that for this promoter, the 

overlapping AuxRE-Gbox motif controls expression levels specifically in vascular cells. 

Removing only the Gbox had a smaller effect (Fig 6C-E). Mutated GATA20 and TMO5 

promoters in which the adjoining Gbox had been removed did not show a significant 

decrease in fluorescence but instead resulted in increased variation in expression level 

among transgenic lines (Figure 6C-D). Thus the Gboxes in these promoters appear to be 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2019. ; https://doi.org/10.1101/832501doi: bioRxiv preprint 

https://doi.org/10.1101/832501
http://creativecommons.org/licenses/by-nc/4.0/


  14  

contributing to the expression stability instead of absolute vascular expression levels. 

Since members of several transcription factor families can bind to Gboxes (Schindler et 

al., 1992; Lian et al., 2017; O’Malley et al., 2016) it is unclear whether GBF2 is the factor 

contributing to vascular expression stability.  

Next, we tested if GBF2 alone can bind to the Gboxes present in vascular 

promoters. ChIP-qPCR on suspension cell cultures overexpressing GBF2-YFP confirmed 

that GBF2 can bind to the Gbox motif in the WRKY17 promoter, but could not confirm 

the same for the GATA20 and TMO5 promoters (Figure 6B). Instead it is likely that that 

GBF2 and MP both need to be present to interact with the promoters of these two genes.  

If GBF2 can bind to vascular promoters and co-regulate vascular gene expression, 

its overexpression should affect the regulation of vascular genes. To test this directly, we 

generated protoplasts from vascular reporter lines pVASC::n3GFP, and transfected these 

with a combination of 35S::GBF2-mTurquoise, 35S::MPΔPB1-mScarlet-I and 

corresponding empty vectors to determine their effects on target promoter activity (Figure 

7D-F). MPΔPB1 was used to overcome any auxin-dependent inhibition. Overexpression 

of only GBF2-mTurqouise had no effect on the promoter activity of GATA20, TMO5 and 

WRKY17. In contrast, expression of MPΔPB1-mScarlet-I resulted in increased TMO5 

promoter activity and decreased WRKY17 promoter activity (Figure 7B-C). This effect 

disappeared when GBF2 was co-expressed with MPΔPB1, suggesting that GBF2 acts by 

restricting MP activity, probably via competitive binding with the overlapping AuxRE-

Gbox motif. This was not the case for the GATA20 promoter, whose activity was 

increased by both MPΔPB1-mScarlet-I and by MPΔPB1-mScarletI combined with 

GBF2-mTurqouise (Figure 7A). These findings suggest that the interaction between 

GBF2 and MP depends on promoter context, yet reflects a functional interaction that 

contributes to the regulation of vascular genes.  
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Discussion  

Vascular tissues play a central role in plant development. Anatomical, physiological and 

genetic studies contribute to our understanding of vascular development and key aspects 

of its regulation. While significant insight has been gained into the regulation of cell 

identity specification, pattern formation, growth and differentiation within the vascular 

tissue, a key unresolved question is how this tissue is initially specified from non-vascular 

precursor cells. From lineage tracing in Arabidopsis, it is clear that the vascular lineage 

has its origins in the early embryo (Scheres et al., 1995), but the origin of embryonic 

vascular tissue has thus far not been characterized molecularly. Here we have used a 

panel of vascular marker genes to map the ontogeny of vascular identity from the embryo 

to post-embryonic tissues. Firstly, we trace its initiation to the 16-cell stage embryo. At 

this stage the outer cells acquire protoderm identity (Abe et al., 2003) and we find that the 

inner cells express multiple vascular marker genes, identifying these cells as the first with 

vascular attributes. These findings are in line with results of a recent transcriptome study 

which found that the transcriptome of these (inner) cells is similar to that of the later 

vascular cells (Palovaara et al., 2017). No ground tissue markers have so far been found 

to be present in the inner lower tier cells (unpublished). This suggests that instead of 

vascular and ground tissue identities emerging simultaneously, the first ground tissue 

cells are the daughters of the first vascular cells. 

We found that the transcriptional dynamics and progression are vastly different 

among genes that later mark the vascular domain. This suggests that vascular identity is 

not a uniform trait that exists across developmental stages, forcing us to reconsider how 

we view the development of cell type identity over time. Features that distinguish 

embryonic vs. post-embryonic vascular cells are the co-expression of xylem- and phloem-

specific marker genes, and the lack of expression from vascular inverse markers. This 

suggests that vascular identity initiation as established in the embryo is a temporary state 

that does not persist. Indeed, in the post-embryonic vascular cells different vascular cell 

types are highly divergent, a trait which is emphasized by recent advances single-cell 

(sc)RNAseq. In single-cell RNA sequencing experiments performed on roots, xylem and 

phloem cells form distinct clusters, but vascular tissues as a whole do not form a cluster 

that is separated from the two other ‘major’ tissue identities: ground tissue and epidermis 

(Ryu 2019, Shulse 2019, Denyer 2019). It is questionable if cells in the post-embryonic 
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vascular bundle have or need a common identity. Instead, the brief existence of a 

“general” primordial, multipotent vascular identity may only be needed when new 

vascular bundles are initiated: to ensure proper placement of the vascular bundle as a 

whole and to establish the cambial cells. Future scRNAseq experiments on the embryo, 

and for example on wounded stems or graft junctions (Melnyk et al., 2018), could help 

address this question.  

There is a strong connection between de novo vascular tissue formation and auxin 

activity. Lack of auxin signaling results in impaired vascular tissue development, while 

application of exogenous auxin can induce the formation of new vascular bundles (Sachs, 

1969; Krogan et al., 2012; Donner et al., 2009; Jacobs, 1952). Auxin and its key 

transcriptional effector MP are therefore often regarded as master regulators of vascular 

development (Brackmann et al., 2018). Here we asked if this prominent role also pertains 

to the earliest steps in vascular tissue specification in the embryo. We find that auxin 

signaling in the central cells of the embryo is indeed required for the complete 

establishment of the vascular transcription program. This conclusion is supported by an 

earlier transcriptome analysis, where many vascular genes were downregulated in 

embryos where the auxin response inhibitor bdl was expressed in the inner cells marked 

by the Q0990 driver (Radoeva 2016). Interestingly though, several vascular marker 

genes, including the ZLL gene, persist even upon auxin response inhibition. This suggests 

that for part of the vascular program, auxin response is not required after the initial 

specification event. Conversely, we find that auxin signaling through MP is not sufficient 

to induce vascular identity outside of the normal vascular domain. It should however be 

noted that a dominantactive version of MP lacking its C-terminal PB1 domains was used. 

It is possible that interactions with the PB1 other than Aux/IAA inhibition – such as for 

example homooligomerization (Nanao et al. 2014) – are required for MP’s activity in 

vascular development. Nonetheless, this result suggests that in addition to auxin response, 

there must be additional, yet undiscovered factors that determine which cells acquire 

vascular identity. Given the small size of the embryo, a system built on a set of regulators 

would also provide a more robust mechanism for the regulation of identity than a single 

master regulator of identity.   

Using an enhanced Yeast One Hybrid (eY1H) assay we identify 10 transcription 

factors that can bind to a large number of vascular promoter sequences and which are also 

present at the moment of vascular identity specification. While the exact roles and 
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relations of these transcription factors remain unclear, they could be part of the GRN 

controlling vascular initiation and provide a new entry point into studying vascular tissue 

specification. A complex GRN would provide a robust system for the initiation of 

identity. And while it is clear that auxin signaling through MP is necessary, other 

candidate regulators of identity have not yet been untangled. As single perturbations of 

other components had little effect we decided to explore the link between MP and a new 

candidate regulator: GBF2 and its close homolog GBF1. 

GBF1 and GBF2 not only bind multiple vascular gene promoters, but they also 

interact with the DNA-binding domains (DBDs) of ARF proteins of all three major 

classes (A,B,C; (Okushima, 2005; Finet et al., 2013)). Other previously identified ARF-

interacting proteins were shown to interact with the PB1 domain (Ripoll et al. 2015, Shin 

et al. 2007, Varaud et al. 2011) or middle region (Wu et al., 2015), which would likely 

modulate transcription activity. Instead, interaction of GBFs with the DBD could modify 

DNA-binding properties, by exclusion or cooperativity. GBF binding motifs, Gboxes, 

were often found in close proximity to AuxREs (Berendzen et al., 2012; Cherenkov et al., 

2018; Ulmasov et al., 1995), suggesting that GBFs and ARFs could regulate gene 

expression together. We show that the Gboxes in several vascular promoters affect the 

stability of expression levels in the vascular bundles and that GBF2 was able to prevent 

the effect of MPΔPB1 on several target genes. Thus GBF1/2 was able to modulate and/or 

stabilize auxin-dependent regulation of vascular gene expression.  

GBF1/2 is a strong candidate for being part of the GRN that controls the initiation 

of vascular identity. A gfb1 gbf2 gbf3 triple mutant could not be recovered, and its 

lethality highlights a common theme in investigating the regulation of basic cell 

identities. Further genetic analysis, for example using conditional mutant alleles, could 

help to define the role of these transcription factors in vascular tissue initiation. The broad 

expression of GBFs could suggest that, similar to MP (Möller et al., 2017), their predicted 

cell-specific activity is influenced by local signals, such as redox potential and 

phosphorylation (Shaikhali et al., 2012; Klimczak, 1992; Smykowski et al., 2016). In a 

larger GRN controlling vascular identity, GBF1/2 could contribute to limiting vascular 

identity to the innermost cells of the early embryo, future research into these candidate 

regulators is needed to confirm such a role for GBF1/2.   
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In conclusion, our work identifies embryonic vascular tissue identity as a 

primordial state from which vascular cell types evolve in diverse patterns. We find that 

auxin response is necessary, but not sufficient for specifying this initial vascular identity. 

We identify a range of potential regulators of vascular identity and suggest a complex 

GRN being in control of vascular identity. One potential regulator, GBF1/2, can interact 

with MP to modulate vascular gene expression. We expect that further analysis of these 

and other candidate regulators will help identify the elusive mechanism that directs 

vascular tissue identity.  
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Material and methods  

Plant material and growth conditions   

All Arabidopsis plants used in this study were of the Col-0 ecotype, except for the cell 

cultures, which were Ler. Reporter lines for DOF6, PEAR1 and TMO6 were previously 

published in Miyashima et al. (2019)�. Transcriptional reporters for targets of MP: 

IQD15, SOK1, T5L1, TMO5 and WRKY17 were previously published in De Rybel et al. 

(2013), Möller et al. (2017) and Schlereth et al. (2010)�. The reporters for ATHB8 and 

SHR were previously published (Donner et al. 2009, Nakajima et al. 2001)�. New 

reporters were generated for WOL and ZLL using primers documented in Table S5, and 

these reproduce previously described expression patterns (Mähönen et al., 2000; Radoeva 

et al., 2016)�. All newly generated transcriptional and translational reporter constructs 

(see below) were transformed into the Arabidopsis Col-0 accession.  Misexpression lines 

were generated by introducing UAS-gene contructs into a background containing the 

pRPS5A-GAL4 driver or by introducing 35S-driven constructs into the Col-0 background. 

T-DNA insertion lines gbf1 (SALK_027691), gbf2-1 (SALK_206654), gbf2-2 

(SALK_205706), gbf3 (SALK_067963) were obtained from the Arabidopsis stock 

centers (NASC and ABRC). Plants were genotyped using the primers listed in Table S5. 

Arabidopsis seeds were surface-sterilized, plated on half-strength Murashige and Skoog 

(MS) medium with the appropriate antibiotic (50 mg/l kanamycin or 15 mg/l 

phosphinothricin) and underwent 2 days of stratification at 4 ºC before being placed in 

the growth chamber. Plants were grown at 22 ºC under standard long-day (16 h light 110 

µE m−2 s−1 [Philips Master TL-D HF 50W/840] and 8 h dark) conditions.   

  

Plant growth methods  

Wild type Arabidopsis Landsberg erecta and transgenic PSB-D cell suspension cultures 

were maintained in MSMO medium in the dark at 25°C gently shaking at 130rpm. Cells 

were sub cultured every 7 days in a 1:10 dilution with fresh medium. Transformations 

were conducted without callus selection as described by (Van Leene et al., 2007)�.   

Bimolecular Fluorescence Complementation (BiFC) was performed by infiltrating 

Nicotiana benthamiana leaves with Agrobacterium tumefaciens strains carrying the 
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appropriate plasmids (see below). Two days after infiltration, leaf sections were cut and 

imaged by confocal microscopy.  

Protoplasts were harvested with a tape sandwich (Wu et al., 2009)� and 

transfection was performed as described in (Russinova et al., 2004)�. Protoplasts were 

prepared from plants containing a stable vascular transcriptional reporter. Green 

fluorescence levels were measured in protoplasts with both red (mScarlet-I) and blue 

(mTurquoise) fluorescence two days after transfection using confocal microscopy.  

  

Vector construction for plant transformation  

All constructs for plant transformation were cloned using SliCE cloning into previously 

published LIC vectors (Wendrich et al., 2015; Zhang et al., 2014)�. All primers used for 

cloning can be found in Table S5. Promoters for transcriptional reporters were introduced 

into the pPLV04_v2 backbone (De Rybel et al., 2011)�. Translational fusion constructs 

were generated by amplifying up to 3 kb of the promoter and the gene up to but not 

including the stop codon and introducing this sequence into pPLV16_v2. UAS-gene-

SRDX overexpression constructs were cloned by introducing the amplified cDNA 

sequence without stop codon into a modified pPLV32_v2 backbone containing a SRDX 

peptide using SLICE cloning (Wendrich et al., 2015; Zhang et al., 2014)�. 35S 

overexpression constructs were generated by introducing the cDNA sequence into a 

modified pPLV26 containing a C-terminal YFP. All constructs were introduced using the 

simplified floral dip method as described in De Rybel et al., (2011)�. BiFC constructs 

were generated by introducing amplified cDNA sequences into modified pPLV26 vectors 

containing NtYFP or CtYFP either before or after the insertion site. Binary vectors for 

misexpression in protoplasts were generated by introducing the cDNA of GBF2 or 

MPΔPB1 (first 766 amino acids) into pMON99 containing C-terminal mTurquoise or 

mScarlet-I. All primers used for cloning are listed in Table S5.  
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Microscopy  

Confocal imaging was performed on a Leica SP5 II system equipped with Hybrid 

Detectors. Confocal microscopy was performed as described previously (Llavata-Peris et 

al., 2013)�. Cell walls were visualized by staining with propidium iodide (PI, for roots) 

or SCRI Renaissance Stain 2200 (Renaissance Chemicals R2200, for embryos) 

respectively.   

Yeast One Hybrid  

Enhanced Yeast One Hybrid assays were performed as described (Gaudinier et al., 

2017)�. The promoter used for the yeast reporter constructs (pMW2 and pMW3) was the 

same as the promoter used for reporting localization in Arabidopsis. The prey collection 

used was the complete Arabidopsis transcription factor collection available at the Brady 

lab in July 2016 (Table S1). Network analysis was performed in Cytoscape (Shannon et 

al., 2003)�.   

Affinity purification mass spectometry sample preparation   

For affinity purification, either 4 g root material or 50 ml of 3 day old transgenic PSB-D 

cell suspension cultures was used, and protein extraction, pull-down and sample 

preparation was performed as described (Wendrich et al., 2017).� Peptides were applied 

to online nano LCMS/MS (Thermo Scientific) using a 60 minute acetonitrile gradient 

from 5-50%. Spectra were recorded on a LTQ-XL mass spectrometer (Thermo Scientific) 

and analysed according to (Wendrich et al., 2017)�. Maxquant output Proteingroups.txt 

was filtered in Perseus v1.6.2.3.. Volcano plots were generated in R and further 

visualized in Adobe Illustrator.  

 

Motif analysis  

Analysis of potential binding sites presence was performed with position weight matrices 

taken from Plant TFDB database (Jin et al., 2017)� for GBF3 (MP00318), bZip16 

(MP00291) and bZip68 (MP00173). Colocalization of binding sites with ARF binding 

sites were analyzed with the MCOT package (Levitsky et al., 2019) using data on ARF2 
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(GSM1925138, GSM1925826) and ARF5 (GSM1925827) binding regions from Dap-Seq 

analysis (O’Malley et al., 2016).  

  

ChIP-qPCR  

ChIP-qPCR was performed on Arabidopsis cell cultures using a protocol adapted from 

(Gendrel et al., 2005)�. 3-4 grams of filtered cell culture material was used as input 

material. After crosslinking and DNA fragmentation, the sample was split and GFP-Trap 

beads (Chromotek) were used to pull down GBF-YFP complexes while Myc-Trap beads 

(Chromotek) were used for the negative control sample. qRT-PCR was performed using 

primers listed in Table S5. Ct values were then used to calculate fold enrichment and 

relative fold enrichment compared to the control regions.  
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Table 1: Number of interactions recorded per promoter screened.  

Locus  Promoter  # 

Interactors  

AT1G05577  SOK1  69  

AT1G11735  MIR171B  94  

AT1G68810  T5L1  125  

AT2G01830  WOL  11  

AT2G18380  GATA20  82  

AT2G24570  WRKY17  79  

AT2G43290  MSS3  74  

AT3G15210  ERF4  90  

AT3G25710  TMO5  110  

AT3G49380  IQD15  8  

AT4G32880  ATHB8  78  

AT4G37650  SHR  94  

AT5G43810  ZLL  123  

AT5G60200  TMO6  77  
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Figure legends 

 

Figure 1: Expression patterns of previously described vascular reporters. (A) Expression 

patterns of previously published vascular reporters in root and early embryo. Insets shows 

5 stages of embryogenesis. All reporters are transcriptional reporters except those for 

SHR and TMO6, which are translational fusions. Fluorescent protein signals are 

displayed in green, cell wall staining in magenta. Roots are stained with PI, embryos with 

Renaissance. Scale bars represent 50 µm (root) or 10 µm (embryo). (B) Overview of 

stages of early embryogenesis. Cells previously discussed as vascular are marked in 

green. 

 

Figure 2 Identification of novel vascular reporters. (A) Overview of transcriptomics 

datasets used for the selection of new vascular reporters. (B) Expression patterns of new 

vascular reporters for the embryo. Fluorescent protein signals are displayed in green, cell 

wall staining in magenta. Roots are stained with PI, embryos with Renaissance. Scale 

bars represent 50 µm (root) or 10 µm (embryo). 

 

Figure 3: The role of auxin response in embryonic vascular gene expression. (A) 

Embryos resulting from crosses between a line containing Q0990::GAL4, UAS::erGFP, 

and a vascular reporter; and either Col-0 or a line containing UAS::bdl. Numbers in top 

left corner of each panel indicate the fraction of embryos observed with the pattern 

displayed. (B) Embryos resulting from crosses between a line containing pRPS5A::GAL4 

and a vascular reporter: and either Col-0 or a line containing UAS::MPΔPB1. Fluorescent 

protein signals are visualized using the Fire LUT (see inset), embryos are stained with 

Renaissance (white). Scale bars represent 10 µm. □ Indicates images result from a stack. 

Note that in (A), vascular reporters are represented by nuclear signal, while the 

expression domain of the Q0990 reporter (UAS-erGFP) is marked by ER-localized GFP. 

 

Figure 4: Partial Yeast One Network and selection and candidate regulators of vascular 

identity. (A) Yeast One Hybrid network showing all interactors of 6 out of 14 vascular 
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promoters screened. Nodes representing transcription factors are colored according to 

their transcription factor family (see inset) and are grouped by outdegree. Nodes 

representing promoters are colored light (vascular specific) or dark (vascular inverse) 

grey. (B) Network overview of the 20 candidate regulators of vascular identity with all 16 

vascular promoters screened. Colors as in A. (C) Dendrogram resulting from hierarchical 

clustering of promoters by interactor set. Branch length indicates distance/similarity in 

interactor set. Two promoters from an unrelated screen (TCA1/2) were included as an 

outgroup. 

 

Figure 5: Protein localization and interactions of candidate regulators of vascular 

identity. (A) Translational reporter lines of 10 candidate regulators in the root tip and 

early pro-embryo. Fluorescent protein signals are displayed in green, cell wall staining in 

magenta. Roots are stained with PI, embryos with Renaissance. Scale bars represent 50 

µm (root) or 10 µm (embryo). (B) Selected images of split-YFP (BiFC) assays showing 

the interaction between the DBD of ARF5/MP and GBF2. (C) Overview of split-YFP 

(BiFC) results indicating that GBF2 can interact with the full-length protein and DBD of 

6 different ARFs. (D) Distribution of potential ARF5/bZIP68 composite elements within 

ARF5 binding regions taken from Dap-Seq. X axis numbers reflect number of 

nucleotides, F - full overlap, P - partial overlap, S - spacer. Left: ARF5/bZip68 everted 

composite element distribution. Right: ARF5/bZIP68 direct composite element 

distribution. 

 

Figure 6: G-boxes can be bound by GBF2 and are needed for stable vascular 

expression.. (A) Schematic overview of the promoter sequences of GATA20, TMO5 and 

WRKY17. X1 and X2 indicate regions containing TF-binding sites. Blue and red lines 

indicate control regions and Gbox regions used for ChIP-qPCR. (B) ChIP-qPCR 

performed on Arabidopsis cell cultures expressing either GBF1-YFP or GBF2-YFP. 

Relative enrichment of the BOX regions compared to CONTROL regions. Scale bars 

represent standard error. (C-E) Boxplots displaying fluorescence intensity of 

transcriptional reporter lines. Each plot compares the mean fluorescence in the measured 

cells for T1 roots containing full length or truncated promoters of GATA20 (C), TMO5 
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(D) and WKRY17 (E). Each point is the mean fluorescence in the early vascular cells 

measured from 1 independent T1 root. For the WRKY17 promoter two areas were 

measured, the vascular bundle (white) and adjacent non-vascular cells (blue). (F) Ratio of 

WRKY17 driven GFP signal in the vascular cells compared to signal in the non-vascular 

cells. (G-H) Expression patterns in representative WRKY17 T1 roots, boxes indicate the 

region in which fluorescent signal was measured. Scale bars represent 50 μm.  

 

Figure 7: GBF2 modulates MPΔ induced vascular gene expression. (A-C) Boxplots 

displaying intensity of green fluorescence in nuclei of protoplasts transformed with two 

misexpression constructs, either empty or containing GBF2 or MPΔPB1. Protoplasts 

were generated from leaves that expressed pGATA20::n3GFP (A), pTMO5::n3GFP (B), 

or pWRKY17::n3GFP (C). * indicates p<0.05, ** indicates p<0.001 as calculated by a 

two-sided Student’s ttest. One-way analysis of variance (ANOVA) followed by Tukey’s 

honest significant difference (HSD) test was performed to compare either changes in 

fluorescence intensity, samples were classified into up to 3 categories per experiment 

(a/ab/b). Results from the Tukey’s HSD test are listed in Table S4. Each assay was 

performed twice with similar results (data not shown). (D-F) Fluorescence signals 

detected in protoplast assays. Chloroplasts in pink, GFP in green, mTurquoise in cyan, 

mScarlet-I in red. Scale bars represent 75 μm. 

 

Figure S1: Diverging expression patterns between root and embryo. (A) Activity of 

transcriptional reporters in the root tip and embryo. Fluorescent protein signals are 

displayed in green, cell wall staining in magenta. Roots are stained with PI, embryos with 

Renaissance. (B) Expression of S32 in phloem cells and vascular stem cells in the root 

tip. Scale bars represent 50 µm (root) or 10 µm (embryo). 

 

Figure S2: Auxin accumulation and signaling output in the early embryo. 16-cell (A,C) 

and early globular (B,D) stage embryos reporting the relative amount of auxin or auxin 

signaling per cell. (A,B) Relative amount of auxin signaling per cell output as reported by 

pDR5-n3GFP (left) or pDR5v2-ntdTomato (right). (C,D) Relative accumulation of auxin 
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per cell as reported by R2D2. Left: overlay of signals from undegradable pRPS5A-mDII-

tdTomato (red), degradable pRPS5A-DII-3xVenus (green) and Renaissance (white). 

Right: difference between DII signal and mDII signal per pixel. All images are stacks and 

all scale bars represent 10 μm. □ Indicates images result from a stack. 

 

Figure S3: Vascular Yeast One Hybrid network. Network containing all interactors of the 

16 vascular promoters screened. Nodes corresponding to promoters are larger and colored 

grey (dark grey for inverse markers), nodes corresponding to transcription factors (TFs) 

are placed together based on their outdegree. TF nodes with an outdegree of 1 are placed 

on the periphery near their target, TF nodes with an outdegree of 2 or higher are placed in 

the center and are grouped based on their outdegree, nodes with a higher outdegree are 

located further to the right. Network overview with TF nodes colored according to TF 

family. Each TF family is represented by a color and number (see insert table). 

 

Figure S4: Protein localization of the candidate regulators in root and embryo. In each 

panel, YFP fusion protein localization in the root is shown at the top, followed by 

localization in dermatogen stage, early globular stage and one later stage.Scale bar 

indicates 50 μm in roots or 10 μm in embryos. 

 

Figure S5: Misexpression phenotypes of SRDX-tagged candidate regulators. Adult plants 

expressing SRDX-tagged candidate regulators under the RPS5A promoter show altered 

leaf morphology or decreased fertility. 

 

Figure S6: IP-MS/MS experiments confirm that GBF1 and GBF2 can heterodimerize 

with G-class bZIPs. Results of immunoprecipitation followed by tandem MS (IP-

MS/MS) on Arabidopsis cell cultures expressing GBF1-YFP (left) or GBF2-YFP (right) 

under the 35S promoter compared to wildtype (PSB-D) cell cultures. Volcano plots show 

fold change (FC, x-axis) and significance (FDR, y-axis) of each detected protein. Proteins 

with a p-value below 0.05 (-log(FDR)>1.301) and a fold change above 5 are marked and 

have their name displayed. 
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Figure S7: Split-YFP experiments performed using tobacco leaves to confirm GBF-ARF 

interactions. (A) Interactions GBF1/2-CtYFP and ARF-NtYFP. TMO5 was used as a 

negative control, homodimerization was used as a positive control for GBF and IAA33 

was used as a positive control for ARFs. (B) Interactions GBF1/2-CtYFP and 

ARFxDBD-NtYFP. TMO5 was used as a negative control and homodimerization was 

used as a positive control for GBF and for ARFs. LHW was used as a positive control for 

TMO5. 

 

Figure S8: Genetic analysis of GBF function (A) Insert locations of the T-DNA lines 

used. (B) 24-day old plants of 3 sets of GBF double mutants, single mutants and 

background plants. (C) Relative expression levels of GBF1, GBF2 and GBF3 in the 

gbf1gbf3 double mutant and single mutants. (D) 35S-GBF1/2 and Col-0 plants 38 DAG. 

GBF1/2 overexpression lines have early leaves with an increased width/length ratio, late 

leaves with increased serration and more pronounced veins, and slower development 

resulting in delayed flowering. No obvious changes in venation pattern were observed.  

 

Table 1: Number of interactions recorded per promoter screened. 

 

Table S1: List of the full TF collection used for yeast 1-hybrid screening. 

 

Table S2: IP-MS/MS performed on MP-GFP indicates MP interacts with GBF2. 

 

Table S3: Ranking of and scores awarded to the 50 initially selected transcription 

factors. Left to right: (grey) Final results of the 4 scoring totals and average total ranking. 

(yellow/pink) Scores awarded based on binding pattern. Includes data on outdegree and 

binding pattern from the network and DAPseq data from O’Mally. (grey/blue) Scores 

awarded based on embryo expression. Includes expression percentile data on embryo 

expression levels of whole WT embryos (Weijers lab) and fold changes from the embryo 

expression atlas (Palovaara). (green) Scores awarded based on vascular expression. 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2019. ; https://doi.org/10.1101/832501doi: bioRxiv preprint 

https://doi.org/10.1101/832501
http://creativecommons.org/licenses/by-nc/4.0/


  41  

Includes expression fold changes from leaf disk (Kondo) and expression percentile data 

from root transcriptome atlas (Brady)(Phloem, Stele, Xylem). * HTA2 and ESE3 were 

excluded. 

 

Table S4: P-values resulting from Tukey’s tests performed on promoter deletion and 

protoplast assays. 

 

Table S5: Primers used in this study. 
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