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One-Sentence Summary: 

PhenomeXcan is a gene-based resource of gene-trait associations with biological context that supports translational 

research. 
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Abstract 

Large-scale genomic and transcriptomic initiatives offer unprecedented ability to study the biology of complex traits and 

identify target genes for precision prevention or therapy. Translation to clinical contexts, however, has been slow and 

challenging due to lack of biological context for identified variant-level associations. Moreover, many translational 

researchers lack the computational or analytic infrastructures required to fully use these resources. We integrate genome-

wide association study (GWAS) summary statistics from multiple publicly available sources and data from Genotype-

Tissue Expression (GTEx) v8 using PrediXcan and provide a user-friendly platform for translational researchers based on 

state-of-the-art algorithms. We develop a novel Bayesian colocalization method, fastENLOC, to prioritize the most likely 

causal gene-trait associations. Our resource, PhenomeXcan, synthesizes 8.87 million variants from GWAS on 4,091 traits 

with transcriptome regulation data from 49 tissues in GTEx v8 into an innovative, gene-based resource including 22,255 

genes. Across the entire genome/phenome space, we find 65,603 significant associations (Bonferroni-corrected p-value of 

5.5 x 10-10), where 19,579 (29.8 percent) were colocalized (locus regional colocalization probability > 0.1). We 

successfully replicate associations from PheWAS Catalog (AUC=0.61) and OMIM (AUC=0.64). We provide examples of 

(a) finding novel and underreported genome-to-phenome associations, (b) exploring complex gene-trait clusters within 

PhenomeXcan, (c) studying phenome-to-phenome relationships between common and rare diseases via further integration 

of PhenomeXcan with ClinVar, and (d) evaluating potential therapeutic targets. PhenomeXcan (phenomexcan.org) 

broadens access to complex genomic and transcriptomic data and empowers translational researchers. 
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Introduction 

Unprecedented advances in genetic technologies over the past decade have identified over tens of thousands of variants 

associated with complex traits (1). Translating these variants into actionable targets for precision medicine or drug 

development, however, remains slow and difficult (2). Existing catalogs largely organize associations between genetic 

variants and complex traits at the variant level rather than by genes, and often are confined to a narrow set of genes or 

traits (3). This has greatly limited development and application of large-scale assessments that account for spurious 

associations between variants and traits. As a result, only 10 percent of genes are under active translational research, with 

a strong bias towards monogenic traits (4,5). 

 

Complex diseases are generally polygenic, with many genes contributing to their variation. Concurrently, many genes are 

pleiotropic, affecting multiple independent traits (6). Phenome-wide association studies (PheWAS) aim to complement 

genome-wide association studies (GWAS) by studying pleiotropic effects of a genetic variant on a broad range of traits. 

Many PheWAS databases aggregate individual associations between a genetic variant  and a trait, including GeneATLAS 

(778 traits from the UK Biobank (http://geneatlas.roslin.ed.ac.uk/trait/)) (7), GWAS Atlas (4,155 GWAS examined over 

2,965 traits (https://atlas.ctglab.nl/)) (8), and PhenoScanner (over 5,000 datasets examined over 100 traits 

(http://www.phenoscanner.medschl.cam.ac.uk/)) (9). Other PheWAS databases are constructed based on polygenic scores 

estimated from multiple variants per GWAS locus (10), latent factors underlying groups of variants (11) or variants 

overlapping between GWAS and PheWAS catalogs (12). By building associations directly from variants (most of which 

are non-coding), most PheWAS results lack mechanistic insight that can support proposals for translational experiments. 

Genes are primarily assigned to PheWAS results by genomic proximity to significant variants, which can be misleading 

(13). Some studies have attempted to improve translation of PheWAS results using gene sets and pathways (14) or 

networks of PheWAS variants and diseases (15, 16). However, these studies rely on the same variant-trait associations on 

which PheWAS are built and fall short of prioritizing likely actionable targets. 

 

Integration of genomic, transcriptomic and other regulatory and functional information offers crucial justification for 

therapeutic target identification efforts, such as drug development (17). Translational researchers also need access to this 

integrated information in a comprehensive platform that allows convenient investigation of complex relationships across 
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multiple genes and traits. To meet this need, we present PhenomeXcan, a massive integrated resource of gene-trait 

associations to facilitate and support translational hypotheses. Predicted transcriptome association methods test the 

mediating role of gene expression variation in complex traits and organize variant-trait associations into gene-trait 

associations supported by functional information (18-20). These methods can describe direction of gene effects on traits, 

supporting how up- or down-regulation may link to clinical presentations or therapeutic effects. We trained transcriptome-

wide gene expression models for 49 tissues using the latest Genotype-Tissue Expression data (GTEx; v8) (21) and tested 

the predicted effects of 8.87 million variants across 22,255 genes and 4,091 traits using an adaptation of the PrediXcan 

method (18), Summary-MultiXcan, that uses summary statistics and aggregates results across tissues (22). We then 

prioritized genes with likely causal contributions to traits using colocalization analysis (23). To make computation 

feasible given the large scale of data in this study, we developed fastENLOC, a novel Bayesian hierarchical colocalization 

method (see Methods). PhenomeXcan is the first massive gene-based (rather than variant-based) trait association resource. 

Our approach not only employs state-of-the-art techniques available to biologically prioritize genes with possible 

contributions to traits, but also presents information regarding pleiotropy and polygenicity across all human genes in an 

accessible way for researchers. Below, we provide several examples that showcase the translational relevance and 

discovery potential that PhenomeXcan offers. 
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Results 

PhenomeXcan design and overall findings 

We built a massive gene-to-phenome association resource that integrates GWAS results with gene expression and 

regulation data. We ran a version of PrediXcan (18), Summary-MultiXcan, designed to use summary statistics and 

aggregate effects across tissues (22) on publicly available GWAS. In total, we tested the predicted effects of 8.87 million 

variants across 22,255 genes and 4,091 traits. Traits incorporate binary, categorical or continuous data types and range 

from basic anthropometric measurements to clinical traits and biochemical markers. We inferred association statistics (p-

values and Z-scores) between predicted gene-expression variation and traits using optimal prediction models trained using 

49 tissues from GTEx v8 (21, 24, 25). Non-causal, spurious gene-trait associations may be caused by linkage 

disequilibrium (LD) contamination and weighting of expression quantitative trait loci (eQTLs) (21, 26). We therefore first 

performed Bayesian fine-mapping using the DAP-1/fgwas algorithm in TORUS (27, 28). We then calculated the posterior 

probability of colocalization between GWAS loci and cis-eQTLs to prioritize possible causal genes via fastENLOC, a 

newly developed Bayesian hierarchical method that uses pre-computed signal clusters constructed from fine-mapping of 

eQTL and GWAS data to speed up colocalization calculations. The result is a matrix of 4,091 traits and 22,255 genes in 

which each intersection contains a PrediXcan p-value aggregated across 49 tissues and refined by a locus regional 

colocalization probability (locus RCP) (Figure 1). While a given colocalization threshold may be arbitrary, to minimize 

false negatives given the conservative nature of colocalization approaches (26), we defined putative causal gene 

contributors as those genes with locus RCP > 0.1. 

 

We found 65,603 significant associations (Bonferroni-corrected p-value < 5.5 x 10-10) across the entire genome/phenome 

space, where 19,579 (29.8 percent) had locus RCP > 0.1 (Supplementary Table S1). We constructed a quantile-quantile 

plot of all associations, which did not show evidence of systematic inflation (Supplementary Figure S1). These 

associations represent numerous potential targets for translational studies with biological support. 
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Fig. 1: Schematic for the development of PhenomeXcan, a massive gene-based resource of gene-trait associations 

that can be used for translational hypothesis generation. Blue areas highlight methods we performed for this project, 

with fastENLOC being a novel colocalization method developed in the context of PhenomeXcan development. We 

developed PhenomeXcan by integrating genome-wide association study (GWAS) summary statistics with Genotype-

Tissue Expression data (GTEx; v8) using PrediXcan methodology, then performing fine mapping and colocalization to 

identify the most likely causal genes for a given trait.  PhenomeXcan is a massive resource containing PrediXcan p-values 

across 4,091 traits and 22,255 genes, aggregated across 49 tissues and refined by locus regional colocalization probability. 

(We thank Mariya Khan for the human illustration from the GTEx consortium.) 

Replicating known gene-trait associations 

We evaluated PhenomeXcan’s performance using two different, independent validation approaches. For the first 

validation, we compared significant results from PhenomeXcan to significant results from the PheWAS Catalog, which 

combines the NHGRI-EBI GWAS catalog (as of 4/17/2012) and Vanderbilt University’s electronic health record to 
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establish unique associations between 3,144 variants and 1,358 traits (https://phewascatalog.org/phewas) (12, 29). We 

mapped traits from PhenomeXcan to those in the PheWAS Catalog using the Human Phenotype Ontology (30). After 

filtering for genes included in both PhenomeXcan and the PheWAS Catalog, we tested 2,204 gene-trait associations. At a 

nominal p-value (p-value < 0.01), 1,005 PhenomeXcan gene-trait associations replicated with matched traits in the 

PheWAS catalog (AUC = 0.61; Figure 2A). Considering different methods of gene assignments for each GWAS locus 

(PheWAS: proximity, PhenomeXcan: Bayesian colocalization), we further evaluated our replication rate using random 

classifiers in a precision-recall curve (Figure 2B) and found considerable replicability between PhenomeXcan and 

PheWAS approaches compared to the null of no replication (α = 0.01, p-value < 1 x 10-30). 

 

For the second validation, we identified a set of high-confidence gene-trait associations using the Online Mendelian 

Inheritance in Man (OMIM) catalog (31).  We previously demonstrated that integrated analysis using PrediXcan (18) and 

colocalization (23) successfully predicts OMIM genes for matched traits (26). We mapped 107 traits from PhenomeXcan 

to those in OMIM using the Human Phenotype Ontology (30) and curated a list of 7,809 gene-trait associations with 

support for causality. We compared gene-trait associations from this standard near GWAS loci (Supplementary Table S2) 

and found that PhenomeXcan successfully predicts OMIM genes (AUC = 0.64; Figure 2C). The limited precision seen 

here is expected in the setting of genes, such as those in OMIM, with large effects and rare variants (Figure 2D).  

 

Of note, we did not filter any results by fastENLOC for either validation approach. The conservative nature of 

colocalization analysis can lead to increased false negatives (26), which may contribute to decreased performance of 

fastENLOC in these scenarios.  
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Fig. 2: PhenomeXcan validation across the PheWAS Catalog and OMIM data sets using receiver-operating curves 

(ROC) and precision-recall (PR) curves. MultiXcan refers to the version of PrediXcan designed to take GWAS 

summary statistics and aggregate results across tissues (22). (A, B) ROC curve and PR curve of PrediXcan significance 

scores (blue) and fastENLOC (orange) to predict PheWAS catalog gene-trait associations. (C, D) ROC curve and PR 

curve of PrediXcan significance scores (blue) and fastENLOC (orange) to predict OMIM catalog gene-trait associations. 

AUC refers to the area under the curve, AP refers to average precision. The predictive ability of both PrediXcan and 
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fastENLOC demonstrate the statistical validity of PhenomeXcan associations.  

 

Identifying novel and underreported gene-trait associations 

PhenomeXcan provides a resource for hypothesis generation using gene-trait associations, with over 19,000 potentially 

causal associations (p-value < 5.5 x 10-10, locus RCP > 0.1; Supplementary Table S1). As case studies, we discuss 

associations identified based on trait (“Morning/evening person (chronotype)”) and gene (TPO).  

 

We reviewed the 15 most significant genes associated with “Morning/evening person (chronotype)” (a UK Biobank trait) 

based on PrediXcan p-values across the 49 tissues and locus RCP > 0.1 (Supplementary Table S3). Three of 15 genes had 

not been previously reported in any GWAS involving UK Biobank subjects related to sleep or chronotype: VIP, RP11-

220I1.5 and RASL10B. Notably, a variant associated with VIP (p-value=1.812 x 10-17, locus RCP=0.30) is discussed in a 

GWAS of 89,283 individuals from the 23andMe cohort who self-report as “a morning person” (rs9479402 near VIP, 

23andMe GWAS p-value=3.9 × 10-11) (32). VIP produces vasoactive intestinal peptide, a neurotransmitter in the 

suprachiasmatic nucleus associated with synchronization of circadian rhythms to light cycles (33). The long noncoding 

RNA RP11-220I1.5 (p-value=6.427 x 10-11, locus RCP=0.22) and the gene RASL10B (p-value=1.098 x 10-10, locus 

RCP=0.17) have not been previously reported in any GWAS or functional/clinical studies associated with this trait. 

RASL10B produces a 23 kiloDalton GTPase protein that demonstrates overexpression in the basal ganglia in GTEx (21), 

potentially representing a novel association. Besides VIP,  three other genes in this set had clinical/functional studies 

associated with sleep or chronotype in PubMed: RAS4B, CLN5 and FBXL3. RAS4B (p-value=1.660 x 10-19, locus 

RCP=0.64) was linked to a transcriptional network regulated by LHX1 involved in circadian control (34). CLN5 (p-

value=5.248 x 10-18, locus RCP=0.37) mutations are associated with neuronal ceroid lipofuscinosis, which can manifest 

with sleep-specific dysfunction (35). FBXL3 (p-value=1.54 x 10-16, locus RCP=0.41) assists with turnover of the CRY 

protein through direct interaction to regulate circadian rhythms (36). Our results also note VAMP3 (p-value=7.317 x 10-18, 

locus RCP=0.67), a gene with little research in chronotype or sleep, which lies adjacent to PER3. PER3 is one of the 

Period genes characterized as part of the circadian clock and described in numerous functional studies, animal models and 

human polymorphism association studies (37). Both VAMP3 and PER3 (p-value=1.65 × 10−17) are significant in 

PhenomeXcan, with PER3 showing a lower level of colocalization with locus RCP=0.1. PhenomeXcan, to our 
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knowledge, is one of the first hypothesis-generating tools to provide unbiased links between a trait and associated genes 

for the researcher’s evaluation. In conjunction to rich knowledge obtained from functional studies, PhenomeXcan can be 

used to generate or support subsequent translational efforts. 

 

We next evaluate PhenomeXcan as a platform to study novel and underreported gene-trait associations. Thyroid 

peroxidase (TPO) encodes a membrane-bound glycoprotein that plays a crucial role in thyroid gland function (38). The 

strongest associations in PhenomeXcan support the known role of TPO in thyroid hormone production: “Self-reported 

hypothyroidism or myxedema” (p-value=1.40x 10-14, locus RCP=0.99) and “Treatment with levothyroxine” (p-

value=1.54x 10-10, locus RCP=0.99). Hypothyroidism has been clinically linked to increased respiratory symptoms. 

Although the mechanism for this is not well understood (39), our results suggest that these could be explained by common 

genetic factors; “Treatment with salmeterol” (a medication used to treat lung disease such as asthma or chronic 

obstructive pulmonary disease) showed moderate associations with TPO in PhenomeXcan (p-value=7.45x 10-5, locus RCP 

< 0.1). TPO is also contained in the NIH Biosystems Pathways for the development of pulmonary dendritic cells (40). 

“Time to complete round” (drawing as a measure of cognitive function) showed another moderate association in 

PhenomeXcan (p-value=1.19x 10-4, locus RCP < 0.1). Thyroid function has been clinically linked to time to draw a clock 

as a form of cognitive measurement (41). Other trait associations identified in PhenomeXcan with TPO include “Single 

major depression episode” (p-value=2.48x 10-4, locus RCP < 0.1) and “Treatment with doxazosin” (a medication used in 

the UK for hypertension) (p-value=8.80 x 10-4, locus RCP=0.12), both of which have demonstrated clinical association 

with thyroid abnormalities (42,43). To our knowledge, none of these traits have been deeply investigated with TPO 

previously, highlighting how PhenomeXcan may be useful in expanding gene-trait association studies and functional 

studies through consideration of independent traits associated with a given gene. 

Revealing complex clusters of pleiotropy and polygenicity for translational 

hypotheses 

PhenomeXcan allows more complex exploration of associated genes and traits beyond individual queries. As an example, 

to study genes associated with white blood cell count, we can cluster related genes and traits. Starting from the trait 

“Lymphocyte percentage,” the top associated genes include PSMD3, CD69, KLF2, CXCL2, CREB5, CXCL3, ZFP36L2, 
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JAZF1, NCOR1, and TET2. These genes represent pathways associated with chemokine and interleukin signaling as well 

as peptide ligand binding, but are not specific to one particular pathway or genomic location (44). We can assess these 

genes’ associations with white blood cell traits (neutrophil count/percentage, lymphocyte count/percentage, eosinophil 

count/percentage, monocyte and basophil percentages) and infer some understanding of their causal mechanism. PSMD3, 

for instance, demonstrates stronger associations with neutrophil and lymphocyte traits (mean p-value < 1x 10-30, mean 

locus RCP=0.43), whereas ZFP36L2 demonstrates consistent associations across white blood cell, platelets and red blood 

cell traits (mean p-value < 1.54 x 10-24, mean locus RCP=0.27) (Figure 3). Disruption of ZFP36L2 results in defective 

hematopoiesis in mice (45), whereas PSMD3 has been identified in genome-wide association studies related to white 

blood cell count and inflammatory states (46). Clusters of associated genes and traits can support more robust translational 

hypotheses through similarities in associations and generate more nuanced experimental designs through differences 

between associations. 
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Fig. 3: Visual heatmap cluster of gene-trait associations for white blood cell traits identified in PhenomeXcan. Z-

scores are derived from PrediXcan p-values, with the ceiling of association (dark blue) > or equal to 7. In this heatmap, 

we demonstrate the associations between the genes PSMD3, CD69, KLF2, CXCL2, CREB5, CXCL3, ZFP36L2, JAZF1, 

NCOR1, and TET2 and the white blood cell traits “Neutrophil count” and “Neutrophil percentage”, “Lymphocyte 

count” and “Lymphocyte percentage”, “Eosinophil count” and “Eosinophil percentage”, “Monocyte percentage” and 

“Basophil percentage.” “Platelet count” and “mean corpuscular volume” (for red blood cells) serve as alternate blood 

traits. TZFP36L2 has consistent associations across platelets and red blood cells relative to other genes. Accordingly, 

functional studies demonstrate ZFP36L2 plays a role in hematopoiesis, whereas studies support the others genes’ 

involvement in inflammation-related pathways or diseases. These types of clusters can support hypotheses and 

experimental designs regarding the mechanisms through which genes contribute to traits.  
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Discovering links between common traits and rare diseases 

PhenomeXcan can also be integrated with any gene-trait databases to explore pleiotropically linked traits and shared 

associated genes. We integrated PhenomeXcan with ClinVar, a publicly available archive of rare human diseases and 

associated genes (including OMIM) and one of the most widely used gene-trait databases in the clinical setting (47). We 

examined the associations between the 4,091 GWAS-derived traits in PhenomeXcan and 5,094 ClinVar diseases by (a) 

calculating PrediXcan Z-scores for every gene-trait association in PhenomeXcan and (b) for each PhenomeXcan/ClinVar 

trait pair, we computed the average squared PrediXcan Z-score considering the genes reported in the ClinVar trait (see 

Methods). We then created a matrix of PhenomeXcan traits by ClinVar traits with mean squared Z-scores (Figure 4A, 

Figure 4B), where peaks represent shared genes. We defined significant associations between traits as those with Z-score 

> 6; this represents the equivalent of a Bonferroni-adjusted p-value of 0.05 based on our map of the distribution of Z-

scores (Supplementary Figure S2).   

 

As an example, we found links between the ClinVar trait “Parkinson disease 15” and the following traits: mean 

corpuscular volume, mean reticulocyte volume and mean spherical red cell volume (Figure 4C).  The driving gene for 

these blood traits linked to “Parkinson disease 15” was FBX07 (mean Z-score across all traits=20.4. mean locus 

RCP=0.968). FBX07 plays a role in the ubiquitin system linked to Parkinson’s disease (48). Two GWAS (the HaemGen 

consortium and eMERGE) link FBX07 with mean corpuscular volume (49,50). Through PhenomeXcan, we discover a 

pleiotropic relationship between Parkinson’s disease and red blood cell traits mediated through FBX07 that has not been 

studied in humans. Validating this finding, a mouse model has been designed specifically to study this pleiotropic effect 

(51). This case study demonstrates how this powerful variation on PhenomeXcan can significantly improve translational 

hypothesis generation by supporting genetic links between associated rare diseases and common traits across research 

platforms. 
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Fig. 4: Schematic and visualization of PhenomeXcan x ClinVar. (A) Schematic depicting the development of 

PhenomeXcan x ClinVar. For each PhenomeXcan/ClinVar trait pair, we computed the average squared PrediXcan Z-

score considering the genes reported in the ClinVar trait. (B) Heatmap visualizing associations in PhenomeXcan x 

ClinVar. Darker blue represents stronger association. Again, complex clusters of inter-trait associations can be identified 

to link common traits and rare diseases. (C) Heatmap demonstrating linked traits in PhenomeXcan (rows) and ClinVar 

(columns) for the example association between Parkinson’s disease and red blood cell traits. We see the strongest 

associations between mean corpuscular volume, mean reticulocyte volume and mean spherical red cell volume and 

“Parkinson disease 15.” In ClinVar, each variant of Parkinson’s disease linked to a different gene is listed under a 

different number, making it unsurprising that associations to other forms of Parkinson’s disease are not as strong. 
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Identification of potential therapeutic drug targets and related adverse effects 

PhenomeXcan offers direct translational applicability, providing genomic evidence to support therapeutic targets and 

associated side effects. As an example, PCSK9 is a genetically supported, clinically validated target for cardiac prevention 

through inhibition of its binding to the LDL receptor and reduction of blood LDL cholesterol levels (52). We can study 

the cluster of genes and traits produced by PCSK9 in PhenomeXcan for relevant information about this target. Most of the 

traits with strongest associations to PCSK9 relate to diagnosis and treatment of elevated cholesterol or atherosclerosis, 

including familial heart disease. Because inherited PCSK9 variation is associated with increased likelihood of type 2 

diabetes, there was concern that PCSK9 therapies could elevate risk to type 2 diabetes. The inhibiting drugs therefore 

required large substudies from clinical trials to confirm no association with worse diabetes (53,54). While not at genome-

wide significance, PCSK9 associates with type I diabetes in PhenomeXcan (p-value=3.88 x 10-4, locus RCP<0.1). We 

recognize that type I and type 2 diabetes have different clinical etiologies. For the purpose of drug development, though, 

assessing PCSK9 in PhenomeXcan produces both its primary target (blood cholesterol levels as related to atherosclerosis) 

and, through independently identified traits, potential adverse effects via diabetes. The most commonly represented genes 

associated with the strongest traits for PCSK9 include APOE, LDLR, APOB, PSRC1, CELSR2, SORT1, ABCG8, ABCG5, 

and HMGCOR. Unsurprisingly, all of these genes have all been implicated in genetic susceptibility to 

hypercholesterolemia (some, such as SORT1, may be the primary causative gene in their pathway) (55). Examining 

potential targets in PhenomeXcan could not only help anticipate side effects via independent traits, but also identify 

related gene networks / alternative targets with therapeutic relevance.   
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Discussion 

In this paper, we introduce PhenomeXcan, an innovative, powerful resource that makes comprehensive gene-trait 

associations easily accessible for hypothesis generation. Using PrediXcan allows us to derive gene-based associations 

with traits in context by integrating GWAS summary statistics with transcriptome-wide predicted expression and 

regulatory / functional information. We previously demonstrated that integrated analysis using PrediXcan and 

colocalization improves precision and power for target gene identification (26). To build PhenomeXcan, we also develop 

a novel, rapid colocalization method, fastENLOC, that could handle data at this scale (4,091 traits x 22,255 genes x 49 

tissues) (see Methods). PhenomeXcan implements the best practices derived from applying GTEx v8 (21, 25) to 

biologically prioritize genes with possible causal contribution to a given trait.  

 

PhenomeXcan’s flexible structure and adaptability allow translational researchers to easily explore clinically relevant 

questions. The resource can be queried by gene or trait and allows identification of novel and underrepresented 

associations. It offers exploration of polygenicity and pleiotropy dimensions by allowing for queries across multiple genes 

and traits. It can also be integrated with other gene-trait datasets to explore linked traits and report common associated 

genes. We offer ClinVar as an example, but any deeply annotated database of genes and traits may be integrated in this 

manner. Other possible translational uses of PhenomeXcan include biomarker exploration, identification of clinically 

relevant disease modifiers, and polygenic score building (using genes associated with queried traits), as well as novel 

directions for basic science collaborations and clinical study of linked traits (using traits associated with queried genes). 

 

We note some caveats. Diseases with variability not related to changes in gene expression (e.g. epigenetic regulation or 

traits with important environmental contributions) are not expected to be captured well by this method. Our model also 

better captures common overall genetic contributors rather than genes identified from rare variants. We do note that our 

ClinVar validation standard tends to favor larger-effect genes with monogenic etiology, while the PhenomeXcan 

association method itself is less biased. Regulatory pleiotropy is widespread across the genome (21). In our chronotype 

example, VAMP3 and PER3 demonstrate regulatory pleiotropy. With that degree of proximity, large-scale tools are not 

able to distinguish causal genes well (21). We provide this example to acknowledge how PhenomeXcan encounters this 

phenomenon and show the benefit of performing these associations across all human genes. We offer colocalization as a 
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possible means of prioritizing causal variants, but both significance of association and colocalization must be taken into 

account in our results. Work from large-scale statistical genetics tools, such as PhenomeXcan, and Mendelian genetics / 

functional studies must then be combined in order to best understand the breadth of genetic contributors to complex traits. 

We have favored a locus RCP threshold of 0.1 to limit false negatives related to colocalization. Poor regional 

colocalization probability (locus RCP~0) may reflect a lack of sufficient evidence with available data, particularly for 

understudied genes, rather than true lack of causality. We therefore reported traits in this paper that had a locus RCP < 0.1, 

but had functional support for potential association. Similarly, the genome-wide threshold of significance is conservative, 

and we discuss associations with functional support even with less significant p-values. Importantly, GWAS summary 

statistics used in this project were for subjects and patients of European ancestry. Improving the applicability of this type 

of work to global populations remains of paramount importance throughout genetic medicine, and we will continue to 

integrate more GWAS summary statistics from broader consortia. 

 

Resources that translate biologically relevant genomic and transcriptomic information into gene-trait associations are 

already critical for hypothesis generation and clinically relevant research (56). We offer PhenomeXcan, an integrated 

mapping for the function of every human gene, as a publicly available resource to advance the investigation of complex 

human diseases by improving the accessibility of relevant links between the  entire genome and the phenome.  
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Materials and Methods 

Trait selection and preprocessing/quality control of variants 

We developed PhenomeXcan with 4,091 traits from publicly available GWAS summary statistics. Summary statistics 

from GWAS performed for 4,049 traits from the UK Biobank (on 361,194 samples) were obtained from the publicly 

available dataset compiled by the Neale Lab at the Broad Institute (57); we did not use individual-level data. The UK 

Biobank is a prospective cohort of approximately 500,000 subjects between 40 and 69 years of age, recruited from 2006-

2010 in the United Kingdom (58). Traits characterized by the Neale lab include 2,891 auto-curated traits using PHESANT 

(59), of which 274 are continuous, 271 ordinal and 2,346 binary. 633 binary traits were extracted from hospital-level data 

(ICD-10 codes). 559 traits were manually curated in collaboration with the FinnGen Consortium. Traits available cover a 

range of categories, from lifestyle traits and socio-demographic questions to clinical biomarkers and diagnoses. Separate 

sex-specific summary statistics and sex chromosome analyses were not included in this project. More details on the 

GWAS derivations and quality control is provided in the website of the project: http://www.nealelab.is/uk-biobank. We 

do note that for these GWAS, 361,194 individuals were selected for inclusion based on quality of genotypes, white British 

ancestry (based on both self-report and principal components analysis). Only those variants with an imputation quality 

score (INFO) > 80%, a minor allele frequency (MAF) > 0.1%, call rate > 95% and a Hardy-Weinberg equilibrium p-value 

> 1 x 10-10 were selected.  

 

We also compiled 42 additional traits from summary statistics from publicly available GWAS and GWAS-meta analyses 

external to the UK Biobank study both to validate synthesis of additional GWAS data and to overcome limitations related 

to poor sample sizes in the UK Biobank for specific diseases (e.g. breast cancer). These GWAS and traits represent a 

broad array of disease-related categories, including immunological response, psychiatric and neurologic traits, 

cardiometabolic diseases and syndromes and cancer. We have previously described the harmonization and imputation 

process (26) (Supplementary Table S4).  

  

ClinVar is a publicly available archive of clinically reported human genetic variants and associations with disease 

maintained by the National Institutes of Health (https://www.ncbi.nlm.nih.gov/clinvar/). Variant associations with disease 
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are identified by manual review of submitted interpretations from “clinical testing laboratories, research laboratories, 

locus-specific databases, Online Mendelian Inheritance of Man (OMIM), GeneReviews, UniProt, expert panels and 

practice guidelines” (31, 47). Traits can be reported to ClinVar as a single concept or set of clinical features. When 

possible, traits are mapped manually to standardized terms from databases including OMIM and the Human Phenotype 

Ontology (HPO) (30). All gene-trait associations published by ClinVar for 7/2019 were used for integration with 

PhenomeXcan. 

PrediXcan and Summary-MultiXcan (S-MultiXcan) 

S-MultiXcan is a method in the PrediXcan family (18) that associates genes and traits by testing the mediating role of 

gene expression variation in complex traits, but (a) requires only GWAS summary statistics and (b) uses multivariate 

regression to combine expression information across tissues (22). First, linear prediction models of genotype in the 

vicinity of the gene to expression are trained in reference transcriptome datasets such as the Genotype-Tissue Expression 

project (GTEx) (21). Second, predicted expression based on actual genetic variation is correlated to the trait of interest to 

produce a gene-level association result for each tissue. In S-MultiXcan, the predicted expression is a multivariate 

regression of expression across multiple tissues. In order to avoid collinearity issues and numerical instability, the model 

decomposes the predicted expression matrix into principal components and keeps only the eigenvectors of non-negligible 

variance. We considered a PCA regularization threshold of 30 to be a conservative choice. This approach improves 

detection of associations relative to use of one tissue type alone and offers a reduced false negative rate relative to a 

Bonferroni correction. We used optimal prediction models based on the number and proportion of colocalized gene level 

associations (26). These models select features based on fine-mapping (24) and weights using expression quantitative trait 

loci (eQTL) effect sizes smoothed across tissues using mashr (25). The result of this approach is a genome-wide gene-trait 

association list for a given trait and GWAS summary statistic set. 

Colocalization of GWAS and eQTL signals 

Bayesian fine-mapping was performed using TORUS (28). We estimated probabilities of colocalization between GWAS 

and cis-eQTL signals using Bayesian regional colocalization probability, as performed in the ENLOC methodology (23). 

For this particular study, given the large scale of the data, we developed a novel implementation, entitled fastENLOC. 
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fastENLOC 

fastENLOC is a novel method we developed that combines the speed of eCAVIAR (60) and the biological factors 

incorporated into ENLOC (23). eCAVIAR assumes that the probability of a variant being causal for a trait is independent 

of the probability of the variant causally affecting gene expression, which results in rapid processing but can be too 

conservative. ENLOC, by contrast, requires significant processing time but estimates biological dependence and 

colocalization priors using eQTL enrichments among GWAS signals.  

 

fastENLOC takes advantage of Bayesian signal clusters (or credible sets) constructed from fine-mapping analysis of 

eQTL and GWAS data and provides improved precision for colocalization analysis. Signal clusters consist of variants in 

linkage disequilibrium (LD) and serve as natural analytic units for colocalization analysis, representing the same 

underlying independent association signals. fastENLOC automatically assesses a locus-specific regional colocalization 

probability (locus RCP) for each signal cluster inferred from eQTL analysis. As with eCAVIAR, fastENLOC also allows 

direct input of posterior inclusion probabilities from GWAS analysis, enabling colocalization of  multiple potential 

association signals from a single GWAS locus. 

 

fastENLOC is implemented in a self-contained C++ program and runs magnitude faster than ENLOC. Despite their 

different approaches to colocalization analyses, fastENLOC and ENLOC agree with locus RCP reporting (Supplementary 

Figure S3). 

 

The software and its source code are freely available on Github at http://github.com/xqwen/fastenloc/.  

 

We provide a brief derivation of its approach: Let  denote the association data from GWAS and eQTL analyses, 

respectively. Let  denote the point estimate of the enrichment vector. We consider a signal cluster inferred 

from the fine-mapping analysis of either eQTLs or GWAS and use latent binary indicator 𝑝-vectors  to represent the 

causal association status of its 𝑝 member single-nucleotide polymorphisms (SNPs) with the complex trait and the gene 

expression level of interest, respectively. 

A signal cluster, by definition, contains a set of SNPs in LD and represent the same underlying genetic association signal. 
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Furthermore, we use  to denote the configuration of no causal eQTLs in the cluster and  to denote the 𝑖th SNP is the 

true causal eQTL SNP (i.e., the 𝑖th entry is set to 1 and 0 for the remaining SNPs). 

Assuming GWAS data are originally analyzed using an exchangeable prior , i.e., 

 

and 

 

By the nature of a signal cluster, it follows from the Bayes rule that 

 

where  denotes the marginal likelihood ratio, 

 

Note that in case that the GWAS posterior probability is derived from a multi-SNP analysis,  may not be well-

approximated by single SNP testing statistics. Nevertheless, given  and note that  coincides with the 

posterior inclusion probability (PIP) of the 𝑖th SNP in the signal cluster, 's can be straightforwardly computed from 

equation (1). Additionally,  can be obtained by averaging the PIPs from all interrogated SNPs. 

Given the enrichment information, the GWAS prior differs for eQTL and non-eQTL SNPs. Specifically, for eQTL SNP, 

 

 and for non-eQTL SNP, 

 

Using the eQTL-informed priors, the GWAS posterior probability can be updated analytically, i.e., 

 

Subsequently, the colocalization probability at the 𝑖th SNP is computed by 
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where we approximate  with the eQTL PIP for the 𝑖th SNP. The regional colocalization probability, 

RCP, for the signal cluster of interest is given by 

 

because events  and  for  are mutually exclusive within a signal cluster. 

Validation of PhenomeXcan using PheWAS and ClinVar 

We evaluated the accuracy of gene-trait associations in PhenomeXcan by using two different gene-trait association 

datasets and deriving the receiver-operator (ROC) and precision-recall (PR) curves for each. We mapped traits from 

PhenomeXcan to those in either PheWAS Catalog (29) or OMIM (31) by using the Human Phenotype Ontology (30) and 

the GWAS Catalog as intermediates. For traits in the PheWAS Catalog, we tested 2,204 gene-trait associations that could 

be mapped in both PhenomeXcan and the PheWAS Catalog, from a total 21,323 gene-traits associations consisting of all 

genes present in an LD block with GWAS signal. For the OMIM traits, we developed a standard (Supplementary Table 

S2) of 7,809 high-confidence gene-trait associations that could be used to measure the performance of PhenomeXcan, of 

which 125 could be mapped to GWAS loci. This standard was obtained from a curated set of trait-gene pairs from the 

OMIM database by mapping traits in PhenomeXcan to those in OMIM (31). Briefly, traits in PhenomeXcan were mapped 

to the closest phecode using the GWAS catalog-to-phecode. Then we created a map from phecodes to terms in the Human 

Phenotype Ontology (HPO), which allowed us to link our GWAS traits to OMIM disease description by utilizing 

phecodes and HPO terms as intermediate steps. For each gene-trait pair considered causal in this standard, we determined 

if PhenomeXcan identified that association as significant based on the resulting p-value. We did not filter results based on 

locus RCP in these validations to avoid worsened performance due to false negatives. 

Supporting evidence for PhenomeXcan results 

PhenomeXcan results for case studies were included based on their p-values and locus RCP. We defined putative causal 

gene contributors as those genes with p-values less than 5.5 x 10-10 and locus RCP > 0.1. Given these conservative 

measures, however, we did discuss associations that were less significant or had a lower locus RCP with functional 
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evidence. We used the NHGRI-EBI GWAS Catalog (10/21/2019) to identify GWAS results both using the UK Biobank 

(given the predominance of this dataset in PhenomeXcan) and other datasets. We performed systematic literature searches 

on PubMed using the gene name alone, with the specific trait category and trait name to identify functional studies 

relevant to a trait of interest. 

Building PhenomeXcan x ClinVar 

We examined links between 4,091 PhenomeXcan traits and 5,094 ClinVar traits and associated genes. ClinVar traits were 

excluded if they did not have known associated genes in PhenomeXcan. To compare a PhenomeXcan trait t and a ClinVar 

trait d, we calculated the mean squared Z-score:  

𝑎𝑣𝑔 𝜒𝑡,𝑑
2  =  

1

𝑘
∑ 𝑍𝑡,𝑖

2𝑘
𝑖=1   

where k is the number of genes reported in ClinVar for trait d, and Z is the Z-score of gene i obtained with S-MultiXcan 

for trait t. We then created a matrix of PhenomeXcan traits by ClinVar traits with mean squared Z-scores. We defined 

significant associations between traits as those with Z-score > 6; this represents the equivalent of a Bonferroni-adjusted p-

value of 0.05 based on our map of the distribution of Z-scores (Supplementary Figure S2).  
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File name: suppl_table_S1-significant_gene_trait_associations.xlsx 

Supplementary Table S1: Gene-trait associations in PhenomeXcan that were significant by Bonferroni correction 

p-value and with locus RCP > 0.1. 

This table contains all 19,579 gene-trait associations with p-value < 5.5 x 10-10 and locus RCP > 0.1. 

 

File name: suppl_table_S2-UKBiobank_to_OMIM-standard.xlsx 

Supplementary Table S2: Standard of OMIM gene-trait associations used to validate PhenomeXcan 

This table contains 7,809 high-confidence gene-trait associations from OMIM that were used to evaluate the performance 

of PhenomeXcan.  
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Gene Chromosome p-value Locus 

RCP 

Number of UK 

Biobank GWAS 

Number of non-

UK Biobank 

GWAS 

Number of 

clinical or 

functional 

studies 

focused on 

sleep or 

chronotype 

mechanisms 

TRAF3IP1 
2q37.3 

1.724e-20 0.43 
4 1 0 

RASA4B 
7q22.1 

1.660e-19 0.64 
1 0 1 

CPNE8 
12q12 

3.231e-18 0.12 
2 1 0 

CLN5 
13q22.3 

5.248e-18 0.37 
4 1 3 

VAMP3 
1p36.23 

7.317e-18 0.67 
0 1 0 

VIP 
6q25.2 

1.812e-17 0.30 
0 1 7 

FBXL3 
13q22.3 

1.545e-16 0.41 
4 1 29 

TNRC6B 
22q13.1 

8.441e-14 0.19 
6 1 0 

RASD1 17p11.2 1.246e-12 0.23 
4 1 0 

ZCCHC7 9p13.2 4.282e-11 0.29 
2 0 0 
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RP11-220I1.5 9 6.427e-11 0.22 
0 0 0 

EBLN3P 9p13.2 6.853e-11 0.95 
2 0 0 

RASL10B 17q12 1.098e-10 0.17 
0 0 0 

PMFBP1 16q22.2 1.413e-10 0.86 
4 0 0 

DDI2 1p36.21 2.156e-10 0.30 
4 0 0 

 

Supplementary Table S3: Summary of genes and evidence associated with UK Biobank trait “Morning/evening 

person (chronotype)”. Genes are sorted by PrediXcan p-value for the best tissue expression, with locus regional 

colocalization probability (locus RCP) higher than 0.1. Higher p-values and locus RCP scores suggest greater likelihood 

of causal association to the trait. Evidence is organized by gene reports in GWAS using UK Biobank subjects, GWAS not 

using UK Biobank subjects, and clinical/functional studies. GWAS were identified using the NHGRI-EBI GWAS catalog 

(10/21/2019), and functional/clinical studies were identified from PubMed using searches for the gene name as well as the 

gene name/trait category and gene name/trait.  

 

Category Trait 

Abbreviation in 

PhenomeXcan Sample Size 

Psychiatric-neurologic CNCR Insomnia all INSOMN 113006 

Psychiatric-neurologic IGAP Alzheimer AD 54162 

Psychiatric-neurologic Jones et al 2016 Chronotype CHRONO 128266 

Psychiatric-neurologic Jones et al 2016 SleepDuration SLEEP 128266 

Psychiatric-neurologic PGC ADHD EUR 2017 ADHD 53293 
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Psychiatric-neurologic pgc.scz2 SCZ 150064 

Psychiatric-neurologic SSGAC Depressive Symptoms DEPR 180866 

Psychiatric-neurologic SSGAC Education Years Pooled EDU 293723 

Anthropometric EGG BW3 EUR BW 143677 

Anthropometric ENIGMA Intracraneal Volume ICV 30717 

Anthropometric GEFOS Forearm BMD 49988 

Anthropometric GIANT HEIGHT HEIGHT 253288 

Cardiometabolic CARDIoGRAM C4D CAD ADDITIVE CAD 184305 

Cardiometabolic MAGIC FastingGlucose FG 46186 

Cardiometabolic MAGIC ln FastingInsulin INSUL 38238 

Cardiometabolic MAGNETIC CH2.DB.ratio CH2 24154 

Cardiometabolic MAGNETIC HDL.C HDLC 19270 

Cardiometabolic MAGNETIC IDL.TG IDL 21559 

Cardiometabolic MAGNETIC LDL.C LDLC 13527 

Blood Astle et al 2016 Eosinophil counts EC 173480 

Blood Astle et al 2016 Granulocyte count GC 173480 

Blood 

Astle et al 2016 High light scatter reticulocyte 

count HRET 173480 

Blood Astle et al 2016 Lymphocyte counts LC 173480 
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Blood Astle et al 2016 Monocyte count MC 173480 

Blood Astle et al 2016 Myeloid white cell count MWBC 173480 

Blood Astle et al 2016 Neutrophil count NC 173480 

Blood Astle et al 2016 Platelet count PLT 173480 

Blood Astle et al 2016 Red blood cell count RBC 173480 

Blood Astle et al 2016 Reticulocyte count RET 173480 

Blood 

Astle et al 2016 Sum basophil neutrophil 

counts BNC 173480 

Blood 

Astle et al 2016 Sum eosinophil basophil 

counts EBC 173480 

Blood 

Astle et al 2016 Sum neutrophil eosinophil 

counts NEC 173480 

Blood Astle et al 2016 White blood cell count WBC 173480 

Cancer BCAC ER negative BreastCancer EUR ERNBC 120000 

Cancer BCAC ER positive BreastCancer EUR ERPBC 120000 

Cancer BCAC Overall BreastCancer EUR BC 120000 

Allergy EAGLE Eczema ECZ 116863 

Immune IBD.EUR.Crohns Disease CD 20833 

Immune IBD.EUR.Inflammatory Bowel Disease IBD 34652 

Immune IBD.EUR.Ulcerative Colitis UC 27432 
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Immune 

IMMUNOBASE Systemic lupus 

erythematosus hg19 SLE 23210 

Immune RA OKADA TRANS ETHNIC RA 80799 

 

Supplementary Table S4: 42 additional traits taken from GWAS studies for the development of PhenomeXcan. 

Traits are organized by trait category, data source, abbreviation in PhenomeXcan and number of subjects in the dataset. 

 

 

Supplementary Fig. S1: Quantile-quantile (QQ) plot of all associations in PhenomeXcan. The expected null 

distribution is plotted along the black diagonal, and the entire distribution of observed p-values is plotted in blue. We do 

not see evidence of systematic inflation given the initial consistency in expected and observed p-values. (To improve 

visualization, p-values are thresholded at -log10(p-value)=30.) The increase in the QQ plot for observed p-values can be 

seen with the extremely large number of associations tested. 
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Supplementary Fig. S2: Quantile-quantile (QQ) plot of all associations in PhenomeXcan and ClinVar traits. The 

expected 𝜒2null distribution is plotted along the black diagonal, and the entire distribution of observed 𝑍2is plotted in 

blue. We do not see evidence of systematic inflation given the initial consistency in expected and observed p-values. (To 

improve visualization, 𝑍2 are thresholded at 30.) The increase in the QQ plot for observed p-values can be seen with the 

extremely large number of associations tested (20.6 million) as well as the pleiotropy we identify with trait-trait 

associations in which multiple genes are involved. Z2 correspondence to percentiles were as follows: 95th percentile: 

Z2=4.45, 99th percentile: Z2=9.07, 99.9th percentile: Z2=214.45. A Z2 of 6 represents a Bonferroni-adjusted p-value of 

0.05.  
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Supplementary Fig. S3: Joint histograms using hexagonal bins for the regional colocalization probability (RCP) 

agreement between fastENLOC and ENLOC. We analyzed the regional colocalization probabilities across traits 

between fastENLOC and ENLOC to assess their agreement. We found largely strong correlation between these methods, 

with the Spearman correlation coefficient for (A) “Standing height” = 0.61, (B) “Sleep duration” = 0.50 , (C), “Hayfever, 

allergic rhinitis or eczema” = 0.56 and (D) “Fluid intelligence score” = 0.65.   
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