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Abstract 

Large-scale genomic and transcriptomic initiatives offer unprecedented insight into complex traits, but clinical translation 

remains limited by variant-level associations without biological context and lack of analytic resources. Our resource, 

PhenomeXcan, synthesizes 8.87 million variants from genome-wide association study (GWAS) summary statistics on 4,091 

traits with transcriptomic data from 49 tissues in Genotype-Tissue Expression (GTEx) v8 into a gene-based, queryable 

platform including 22,515 genes. We developed a novel Bayesian colocalization method, fastENLOC, to prioritize likely 

causal gene-trait associations. We successfully replicate associations from PheWAS Catalog (AUC=0.62), OMIM 

(AUC=0.64), and an evidence-based curated gene list (AUC=0.67). Using PhenomeXcan results, we provide examples of 

novel and underreported genome-to-phenome associations, complex gene-trait clusters, shared causal genes between 

common and rare diseases via further integration of PhenomeXcan with ClinVar, and potential therapeutic targets. 

PhenomeXcan (phenomexcan.org) provides broad, user-friendly access to complex data for translational researchers.  
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Introduction 

Unprecedented advances in genetic technologies over the past decade have identified over tens of thousands of variants 

associated with complex traits (1). Translating these variants into actionable targets for precision medicine or drug 

development, however, remains slow and difficult (2). Existing catalogs largely organize associations between genetic 

variants and complex traits at the variant level rather than by genes, and often are confined to a narrow set of genes or traits 

(3). This has greatly limited development and application of large-scale assessments that account for spurious associations 

between variants and traits. As a result, only 10 percent of genes are under active translational research, with a strong bias 

towards monogenic traits (4, 5). 

 

Complex diseases are generally polygenic, with many genes contributing to their variation. Concurrently, many genes are 

pleiotropic, affecting multiple independent traits (6). Phenome-wide association studies (PheWAS) aim to complement 

genome-wide association studies (GWAS) by studying pleiotropic effects of a genetic variant on a broad range of traits. 

Many PheWAS databases aggregate individual associations between a genetic variant  and a trait, including GeneATLAS 

(778 traits from the UK Biobank (http://geneatlas.roslin.ed.ac.uk/trait/)) (7), GWAS Atlas (4,155 GWAS examined over 

2,965 traits (https://atlas.ctglab.nl/)) (8), and PhenoScanner (over 5,000 datasets examined over 100 traits 

(http://www.phenoscanner.medschl.cam.ac.uk/)) (9). Other PheWAS databases are constructed based on polygenic scores 

estimated from multiple variants per GWAS locus (10), latent factors underlying groups of variants (11) or variants 

overlapping between GWAS and PheWAS catalogs (12). By building associations directly from variants (most of which 

are non-coding), most PheWAS results lack mechanistic insight that can support proposals for translational experiments. 

Genes are primarily assigned to PheWAS results by genomic proximity to significant variants, which can be misleading 

(13). Some studies have attempted to improve translation of PheWAS results using gene sets and pathways (14) or networks 

of PheWAS variants and diseases (15, 16). However, these studies rely on the same variant-trait associations on which 

PheWAS are built and fall short of prioritizing likely actionable targets. 

 

Integration of genomic, transcriptomic and other regulatory and functional information offers crucial justification for 

therapeutic target identification efforts, such as drug development (17). Translational researchers also need access to this 
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integrated information in a comprehensive platform that allows convenient investigation of complex relationships across 

multiple genes and traits.  

 

To meet this need, we present PhenomeXcan, a massive integrated resource of gene-trait associations to facilitate and 

support translational hypotheses. Predicted transcriptome association methods test the mediating role of gene expression 

variation in complex traits and organize variant-trait associations into gene-trait associations supported by functional 

information (18–20). These methods can describe direction of gene effects on traits, supporting how up- or down-regulation 

may link to clinical presentations or therapeutic effects. We trained transcriptome-wide gene expression models for 49 

tissues using the latest Genotype-Tissue Expression data (GTEx; v8) (21) and tested the predicted effects of 8.87 million 

variants across 22,515 genes and 4,091 traits using an adaptation of the PrediXcan method (18), Summary-MultiXcan, that 

uses summary statistics and aggregates results across tissues (22). We then prioritized genes with likely causal contributions 

to traits using colocalization analysis (23). To make computation feasible given the large scale of data in this study, we 

developed fastENLOC, a novel Bayesian hierarchical colocalization method (see Methods). We showed separately that this 

approach of combining an association and a colocalization method performs better than each method individually at 

prioritizing causal genes and is comparable to baselines such as the nearest gene while incorporating greater biological 

context (24). We demonstrate results from integrating this tool with a deeply annotated gene-trait dataset to identify 

associations; this integration can be performed in any deeply annotated database of genes and traits, including molecular or 

biological traits rather than disease traits. PhenomeXcan is the first massive gene-based (rather than variant-based) trait 

association resource. Our approach not only employs state-of-the-art techniques available to biologically prioritize genes 

with possible contributions to traits, but also presents information regarding pleiotropy and polygenicity across all human 

genes in an accessible way for researchers. Below, we provide several examples that showcase the translational relevance 

and discovery potential that PhenomeXcan offers. 
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Results 

PhenomeXcan design and overall findings 

We built a massive gene-to-phenome association resource that integrates GWAS results with gene expression and 

regulation data. We ran a version of PrediXcan (18), Summary-MultiXcan (S-MultiXcan), designed to use summary 

statistics and aggregate effects across tissues (22) on publicly available GWAS. In total, we tested the predicted effects of 

8.87 million variants across 22,515 genes and 4,091 traits. Traits incorporate binary, categorical or continuous data types 

and range from basic anthropometric measurements to clinical traits and biochemical markers. We inferred association 

statistics (p-values and Z-scores) between predicted gene-expression variation and traits using optimal prediction models 

trained using 49 tissues from GTEx v8 (21, 25). LD contamination due to proximity between expression quantitative trait 

loci (eQTLs) and causal variants can produce non-causal, spurious gene-trait associations (21, 24). We therefore first 

performed Bayesian fine-mapping using the DAP-1/fgwas algorithm in TORUS (26, 27). We then calculated the posterior 

probability of colocalization between GWAS loci and cis-eQTLs to prioritize possible causal genes via fastENLOC, a 

newly developed Bayesian hierarchical method that uses pre-computed signal clusters constructed from fine-mapping of 

eQTL and GWAS data to speed up colocalization calculations. The result is a matrix of 4,091 traits and 22,515 genes in 

which each intersection contains a PrediXcan p-value aggregated across 49 tissues and refined by a locus regional 

colocalization probability (locus RCP) (Figure 1). While a given colocalization threshold may be arbitrary, to minimize 

false negatives given the conservative nature of colocalization approaches (24), we defined putative causal gene 

contributors as those genes with locus RCP > 0.1. 

 

We found 72,994 significant associations (Bonferroni-corrected p-value < 5.49 x 10-10) across the entire genome/phenome 

space, where 22,219 (30.5 percent) had locus RCP > 0.1 (Supplementary Table S1). We constructed a quantile-quantile 

plot of all associations, which did not show evidence of systematic inflation (Supplementary Figure S1). These 

associations represent numerous potential targets for translational studies with biological support. 
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Fig. 1: Schematic for the development of PhenomeXcan, a massive gene-based resource of gene-trait associations 

that can be used for translational hypothesis generation. Blue areas highlight methods we performed for this project, 

with fastENLOC being a novel colocalization method developed in the context of PhenomeXcan development. We 

developed PhenomeXcan by integrating genome-wide association study (GWAS) summary statistics with Genotype-

Tissue Expression data (GTEx; v8) using PrediXcan methodology, then performing fine mapping and colocalization to 

identify the most likely causal genes for a given trait.  PhenomeXcan is a massive resource containing PrediXcan p-values 

across 4,091 traits and 22,515 genes, aggregated across 49 tissues and refined by locus regional colocalization probability. 

Replicating known gene-trait associations 

We evaluated PhenomeXcan’s performance using three different, independent validation approaches. For the first 

validation, we compared significant results from PhenomeXcan to significant results from the PheWAS Catalog, which 

combines the NHGRI-EBI GWAS catalog (as of 4/17/2012) and Vanderbilt University’s electronic health record to 

establish unique associations between 3,144 variants and 1,358 traits (https://phewascatalog.org/phewas) (12, 28). These 

gene-trait pairs, mapped to GWAS loci mostly by proximity, are likely enriched in but do not necessarily represent causal 

genes. We mapped traits from PhenomeXcan to those in the PheWAS Catalog using the Human Phenotype Ontology (29). 
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After filtering for genes included in both PhenomeXcan and the PheWAS Catalog, we tested 2,202 gene-trait associations. 

At a nominal threshold (p-value < 0.01), 1,005 PhenomeXcan gene-trait associations replicated with matched traits in the 

PheWAS catalog (AUC = 0.62; Figure 2A). Considering different methods of gene assignments for each GWAS locus 

(PheWAS: proximity, PhenomeXcan: PrediXcan and Bayesian colocalization), we further evaluated our replication rate 

using random classifiers in a precision-recall curve (Figure 2B) and found significant replicability between PhenomeXcan 

and PheWAS results (empirical p-value < 0.01). 

 

For the second validation, we identified a set of high-confidence gene-trait associations using the Online Mendelian 

Inheritance in Man (OMIM) catalog (30).  We previously demonstrated that integrated analysis using PrediXcan (18) and 

colocalization (23) successfully predicts OMIM genes for matched traits (24). We mapped 107 traits from PhenomeXcan 

to those in OMIM using the Human Phenotype Ontology (29) and curated a list of 7,809 gene-trait associations with 

support for causality. We compared gene-trait associations from this standard near GWAS loci (Supplementary Table S2) 

and found that both PrediXcan and fastENLOC in PhenomeXcan successfully predict OMIM genes (AUC = 0.64; Figure 

2C). The combination of PrediXcan and fastENLOC improves precision in this dataset (Supplementary Figure S2). The 

limited precision seen here is expected in the setting of genes, such as those in OMIM, with large effects and rare variants 

(Figure 2D).  

 

The conservative nature of colocalization analysis can lead to increased false negatives (24), which may contribute to 

decreased performance of fastENLOC. 
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Fig. 2: PhenomeXcan validation across the PheWAS Catalog and OMIM data sets using receiver-operating curves 

(ROC) and precision-recall (PR) curves. MultiXcan refers to the version of PrediXcan designed to take GWAS 

summary statistics and aggregate results across tissues (22). (A, B) ROC curve and PR curve of PrediXcan significance 

scores (blue) and fastENLOC (orange) to predict PheWAS catalog gene-trait associations. (C, D) ROC curve and PR 

curve of PrediXcan significance scores (blue) and fastENLOC (orange) to predict OMIM catalog gene-trait associations. 

AUC refers to the area under the curve, AP refers to average precision. The predictive ability of both PrediXcan and 

fastENLOC demonstrate the statistical validity of PhenomeXcan associations. The maximum fastENLOC colocalization 

probability across tissues was used for all figures. 
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For the third validation approach, we applied a “medium-throughput” approach to examine a disease trait with multiple 

functionally established gene-trait associations. The Accelerating Medicines Partnership: Type 2 Diabetes Knowledge 

Portal (AMP T2D) curates a list of genes with causal, strong, moderate, possible and weak associations to type 2 diabetes 

based on functional data (31) (Supplementary Table S3). We tested the ability of both PrediXcan and fastENLOC in 

PhenomeXcan to successfully predict the causal, strong and moderate genes curated by AMP T2D paired with 7 UK 

Biobank traits: “Type 2 diabetes,” “Type 2 diabetes without complications,” “Type 2 diabetes with ophthalmic 

complications,” “Type 2 diabetes with peripheral circulatory complications,” “Self-reported type 2 diabetes,” “Non-

insulin dependent diabetes mellitus” and “Unspecified diabetes mellitus.” PhenomeXcan successfully predicted the causal 

gene list for type 2 diabetes (AUC = 0.67; Figure 3A and B). 

 

 
Fig. 3: PhenomeXcan validation using a curated list of causal genes in type 2 diabetes. MultiXcan refers to the 

version of PrediXcan designed to take GWAS summary statistics and aggregate results across tissues (22). (A, B) ROC 

curve and PR curve of PrediXcan significance scores (blue) and fastENLOC (orange) to predict significant associations 

between a curated gene list from the Accelerating Medicines Partnership: Type 2 Diabetes Knowledge Portal and type 2 

diabetes traits. AUC refers to the area under the curve, AP refers to average precision. PrediXcan and fastENLOC, 

particularly PrediXcan, demonstrate predictive ability in the setting of a disease trait with 20 genes with causal, strong and 

moderate evidence and present in LD blocks with GWAS signal. The maximum fastENLOC colocalization probability 

across tissues was used for all figures. 
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Identifying novel and underreported gene-trait associations 

PhenomeXcan provides a resource for hypothesis generation using gene-trait associations, with over 22,000 potentially 

causal associations (p-value < 5.49 x 10-10, locus RCP > 0.1; Supplementary Table S1). As case studies, we discuss 

associations identified based on trait (“Morning/evening person (chronotype)”) and gene (TPO).  

 

We reviewed the 15 most significant genes associated with “Morning/evening person (chronotype)” (a UK Biobank trait) 

based on PrediXcan p-values across the 49 tissues and locus RCP > 0.1 (Supplementary Table S4). Three of 15 genes had 

not been previously reported in any GWAS involving UK Biobank subjects related to sleep or chronotype: VIP, RP11-

220I1.5 and RASL10B. Notably, a variant associated with VIP (p-value=1.812 x 10-17, locus RCP=0.26) is discussed in a 

GWAS of 89,283 individuals from the 23andMe cohort who self-report as “a morning person” (rs9479402 near VIP, 

23andMe GWAS p-value=3.9 × 10-11) (32). VIP produces vasoactive intestinal peptide, a neurotransmitter in the 

suprachiasmatic nucleus associated with synchronization of circadian rhythms to light cycles (33). The long noncoding 

RNA RP11-220I1.5 (p-value=6.427 x 10-11, locus RCP=0.20) and the gene RASL10B (p-value=1.098 x 10-10, locus 

RCP=0.15) have not been previously reported in any GWAS or functional/clinical studies associated with this trait. 

RASL10B produces a 23 kiloDalton GTPase protein that demonstrates overexpression in the basal ganglia in GTEx (21), 

potentially representing a novel association. Besides VIP,  three other genes in this set had clinical/functional studies 

associated with sleep or chronotype in PubMed: RAS4B, CLN5 and FBXL3. RAS4B (p-value=1.660 x 10-19, locus 

RCP=0.63) was linked to a transcriptional network regulated by LHX1 involved in circadian control (34). CLN5 (p-

value=5.248 x 10-18, locus RCP=0.34) mutations are associated with neuronal ceroid lipofuscinosis, which can manifest 

with sleep-specific dysfunction (35). FBXL3 (p-value=1.54 x 10-16, locus RCP=0.35) assists with turnover of the CRY 

protein through direct interaction to regulate circadian rhythms (36). Our results were also significant for the overlapping 

genes PER3 (p-value=1.65 x 10-17, locus RCP=0.08) and VAMP3 (p-value=7.317 x 10-18, locus RCP=0.63). PER3 is one 

of the Period genes characterized as part of the circadian clock and described in numerous functional studies, animal 

models and human polymorphism association studies (37), whereas VAMP3 has little research in chronotype or sleep. 

VAMP3, in this instance, is likely to be a false positive in the setting of the overlapping gene structure and co-regulation.  
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We also reviewed PhenomeXcan’s performance in associating chronotype traits with well-established circadian rhythm 

genes that have been identified through functional approaches. In mammals, the transcription factors CLOCK and 

BMAL1 influence the expression of the Period genes (PER1, PER2) and the Cryptochrome genes (CRY1 and CRY2). 

PER3 stabilizes PER1 and PER2 (38). NPAS2 acts as a paralog to CLOCK. All genes demonstrated nominal significance 

(p-value < 0.01) with at least one chronotype trait in PhenomeXcan except CRY2 (strongest association p-value=0.11) and 

CLOCK (strongest association p-value=0.08). Except for PER1 (locus RCP=0.24) and NPAS2 (locus RCP=0.12), all 

genes showed locus RCP<0.1. 

 

PhenomeXcan, to our knowledge, is one of the first hypothesis-generating tools to provide unbiased links between a trait 

and associated genes for the researcher’s evaluation. In conjunction with rich knowledge obtained from functional studies, 

PhenomeXcan can be used to generate or support subsequent translational efforts. 

 

We next evaluate PhenomeXcan as a platform to study novel and underreported gene-trait associations. Thyroid 

peroxidase (TPO) encodes a membrane-bound glycoprotein that plays a crucial role in thyroid gland function (39). The 

strongest associations in PhenomeXcan support the known role of TPO in thyroid hormone production: “Self-reported 

hypothyroidism or myxedema” (p-value=1.40x 10-14, locus RCP=0.99) and “Treatment with levothyroxine” (p-

value=1.54x 10-10, locus RCP=0.99). Hypothyroidism has been clinically linked to increased respiratory symptoms. 

Although the mechanism for this is not well understood (40), our results suggest that these could be explained by common 

genetic factors; “Treatment with salmeterol” (a medication used to treat lung disease such as asthma or chronic 

obstructive pulmonary disease) showed moderate associations with TPO in PhenomeXcan (p-value=7.45x 10-5, locus RCP 

< 0.1). TPO is also contained in the NIH Biosystems Pathways for the development of pulmonary dendritic cells (41). 

“Time to complete round” (drawing as a measure of cognitive function) showed another moderate association in 

PhenomeXcan (p-value=1.19x 10-4, locus RCP < 0.1). Thyroid function has been clinically linked to time to draw a clock 

as a form of cognitive measurement (42). Other trait associations identified in PhenomeXcan with TPO include “Single 

major depression episode” (p-value=2.48x 10-4, locus RCP < 0.1) and “Treatment with doxazosin” (a medication used in 

the UK for hypertension) (p-value=8.80 x 10-4, locus RCP<0.1), both of which have demonstrated clinical association 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2020. ; https://doi.org/10.1101/833210doi: bioRxiv preprint 

https://paperpile.com/c/WmL5xv/P37w
https://paperpile.com/c/WmL5xv/JaG5
https://paperpile.com/c/WmL5xv/JaG5
https://paperpile.com/c/WmL5xv/JaG5
https://paperpile.com/c/WmL5xv/R7ZH
https://paperpile.com/c/WmL5xv/R7ZH
https://paperpile.com/c/WmL5xv/R7ZH
https://paperpile.com/c/WmL5xv/v9g4
https://paperpile.com/c/WmL5xv/v9g4
https://paperpile.com/c/WmL5xv/v9g4
https://paperpile.com/c/WmL5xv/43vR
https://paperpile.com/c/WmL5xv/43vR
https://paperpile.com/c/WmL5xv/43vR
https://doi.org/10.1101/833210
http://creativecommons.org/licenses/by/4.0/


 

12 

with thyroid abnormalities (43, 44). When reviewing thyroid dysfunction traits in PhenomeXcan, TPO is among the 35 

most significantly associated genes, with the others primarily involved in immune regulation or the hypothalamic-

pituitary-thyroid axis. 

 

To our knowledge, depression and doxazosin use have not been deeply investigated with TPO previously, highlighting 

how PhenomeXcan may be useful in expanding gene-trait association studies and functional studies through consideration 

of independent traits associated with a given gene. 

Revealing complex clusters of pleiotropy and polygenicity for translational 

hypotheses 

PhenomeXcan allows more complex investigation of associated genes and traits beyond individual queries. As an 

example, to study genes associated with white blood cell count, we can cluster related genes and traits. Starting from the 

trait “Lymphocyte percentage,” the top associated genes include PSMD3, CD69, KLF2, CXCL2, CREB5, CXCL3, 

ZFP36L2, JAZF1, NCOR1, and TET2. These genes represent pathways associated with chemokine and interleukin 

signaling as well as peptide ligand binding, but are not specific to one particular pathway or genomic location (45). We 

can assess these genes’ associations with white blood cell traits (neutrophil count/percentage, lymphocyte 

count/percentage, eosinophil count/percentage, monocyte and basophil percentages) and infer some understanding of their 

causal mechanism. PSMD3, for instance, demonstrates stronger associations with neutrophil and lymphocyte traits (mean 

p-value < 1x 10-30, mean locus RCP=0.50), whereas ZFP36L2 demonstrates consistent associations across white blood 

cell, platelets and red blood cell traits (mean p-value < 1.54 x 10-24, mean locus RCP=0.36) (Figure 4). Disruption of 

ZFP36L2 results in defective hematopoiesis in mice (46), whereas PSMD3 has been identified in genome-wide 

association studies related to white blood cell count and inflammatory states (47). Clusters of associated genes and traits 

can support more robust translational hypotheses through similarities in associations and generate more nuanced 

experimental designs through differences between associations. 
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Fig. 4: Visual heatmap cluster of gene-trait associations for white blood cell traits identified in PhenomeXcan. Z-

scores are derived from PrediXcan p-values, with the ceiling of association (dark blue) > or equal to 7. In this heatmap, 

we demonstrate the associations between the genes PSMD3, CD69, KLF2, CXCL2, CREB5, CXCL3, ZFP36L2, JAZF1, 

NCOR1, and TET2 and the white blood cell traits “Neutrophil count” and “Neutrophil percentage”, “Lymphocyte 

count” and “Lymphocyte percentage”, “Eosinophil count” and “Eosinophil percentage”, “Monocyte percentage” and 

“Basophil percentage.” “Platelet count” and “mean corpuscular volume” (for red blood cells) serve as alternate blood 

traits. ZFP36L2 has consistent associations across platelets and red blood cells relative to other genes. Accordingly, 

functional studies demonstrate ZFP36L2 plays a role in hematopoiesis, whereas studies support the others genes’ 

involvement in inflammation-related pathways or diseases. These types of clusters can support hypotheses and 

experimental designs regarding the mechanisms through which genes contribute to traits.  

 

Discovering links between common traits and rare diseases 

PhenomeXcan can also be integrated with any gene-trait databases to study pleiotropically linked traits and shared 

associated genes. We integrated PhenomeXcan with ClinVar, a publicly available archive of rare human diseases and 
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associated genes (including OMIM) and one of the most widely used gene-trait databases in the clinical setting (48). We 

examined the associations between the 4,091 GWAS-derived traits in PhenomeXcan and 5,094 ClinVar diseases by (a) 

calculating PrediXcan Z-scores for every gene-trait association in PhenomeXcan and (b) for each PhenomeXcan/ClinVar 

trait pair, we computed the average squared PrediXcan Z-score considering the genes reported in the ClinVar trait (see 

Methods). We then created a matrix of PhenomeXcan traits by ClinVar traits with mean squared Z-scores (Figure 5A, 

Figure 5B), where peaks represent shared genes. We defined significant associations between traits as those with Z-score 

> 6; this represents the equivalent of a Bonferroni-adjusted p-value of 0.05 based on our map of the distribution of Z-

scores (Supplementary Figure S3).   

 

As an example, we found links between the ClinVar trait “Parkinson disease 15” and the following traits: mean 

corpuscular volume, mean reticulocyte volume and mean spherical red cell volume (Figure 5C).  The gene linked to 

“Parkinson disease 15” in ClinVar is FBXO7. The mean Z-score across eight red blood cell traits was 21.14; the mean 

locus RCP was 0.84 with p-values all < 1 x 10-30). FBXO7 plays a role in the ubiquitin system; its entry in ClinVar is 

associated with an autosomal recessive, juvenile-onset form of Parkinson’s disease (49). Three GWAS (the HaemGen 

consortium, eMERGE, and van der Harst et al) link FBXO7 with red blood cell attributes including mean corpuscular 

volume and mean cell hemoglobin (50–52). At least one mouse model describes defective erythropoesis and red blood 

cell changes due to induced mutations in FBXO7 (53). Through PhenomeXcan, we discover a pleiotropic relationship 

between Parkinson’s disease and red blood cell traits mediated through FBXO7 that has not been studied in humans. The 

nearest adjacent genes, SYN3 and BPIFC, are unlikely to be separately affecting red blood cells; they have no published 

association to red blood cells and demonstrate mean locus RCPs with red blood cell traits in PhenomeXcan of 0.55 and 0 

respectively. Validating this finding, one mouse model specifically studies the pleiotropy of FBXO7 on both Parkinsonism 

and red blood cell traits (54). This case study demonstrates how this powerful variation on PhenomeXcan can 

significantly improve translational hypothesis generation by supporting genetic links between associated rare diseases and 

common traits across research platforms. 
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Fig. 5: Schematic and visualization of PhenomeXcan x ClinVar. (A) Schematic depicting the development of 

PhenomeXcan x ClinVar. For each PhenomeXcan/ClinVar trait pair, we computed the average squared PrediXcan Z-

score considering the genes reported in the ClinVar trait. (B) Heatmap visualizing the overall structure of associations in 

PhenomeXcan x ClinVar. Darker blue represents stronger association. Again, complex clusters of inter-trait associations 

can be identified to link common traits and rare diseases. Queries for traits or genes of interest can be submitted through a 

web application at phenomexcan.org. (C) Heatmap demonstrating an example linked traits in PhenomeXcan (rows) and 

ClinVar (columns) using the association between Parkinson’s disease and red blood cell traits. We see the strongest 

associations between mean corpuscular volume, mean reticulocyte volume and mean spherical red cell volume and 

“Parkinson disease 15.” In ClinVar, each variant of Parkinson’s disease linked to a different gene is listed under a 

different number, making it unsurprising that associations to other forms of Parkinson’s disease are not as strong.  
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Identification of potential therapeutic drug targets and related adverse effects 

PhenomeXcan offers direct translational applicability, providing genomic evidence to support therapeutic targets and 

associated side effects. As an example, PCSK9 is a genetically supported, clinically validated target for cardiac prevention 

through inhibition of its binding to the LDL receptor and reduction of blood LDL cholesterol levels (55). We can study 

the cluster of genes and traits produced by PCSK9 in PhenomeXcan for relevant information about this target. Most of the 

traits with strongest associations to PCSK9 relate to diagnosis and treatment of elevated cholesterol or atherosclerosis, 

including familial heart disease. Because inherited PCSK9 variation is associated with increased likelihood of type 2 

diabetes, there was concern that PCSK9 therapies could elevate risk to type 2 diabetes. The inhibiting drugs therefore 

required large substudies from clinical trials to confirm no association with worse diabetes (56, 57). While not at genome-

wide significance, PCSK9 has a negative association with type I diabetes in PhenomeXcan (p-value=8.2 x 10-4, locus 

RCP<0.1), consistent with the clinical concern that downregulation of the gene could lead to increased diabetes risk. We 

recognize that type I and type 2 diabetes have different clinical etiologies. For the purpose of drug development, though, 

assessing PCSK9 in PhenomeXcan produces both its primary target (blood cholesterol levels as related to atherosclerosis) 

and, through independently identified traits, potential adverse effects via diabetes. The most commonly represented genes 

associated with the strongest traits for PCSK9 include APOE, LDLR, APOB, PSRC1, CELSR2, SORT1, ABCG8, ABCG5, 

and HMGCOR. Unsurprisingly, all of these genes have all been implicated in genetic susceptibility to 

hypercholesterolemia (some, such as SORT1, may be the primary causative gene in their pathway) (58). Examining 

potential targets in PhenomeXcan could not only help anticipate side effects via independent traits, but also identify 

related gene networks / alternative targets with therapeutic relevance.   
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Discussion 

In this paper, we introduce PhenomeXcan, an innovative, powerful resource that makes comprehensive gene-trait 

associations easily accessible for hypothesis generation. Using PrediXcan allows us to derive gene-based associations 

with traits in context by integrating GWAS summary statistics with transcriptome-wide predicted expression and 

regulatory / functional information. We previously demonstrated that integrated analysis using PrediXcan and 

colocalization improves precision and power for target gene identification (24). To build PhenomeXcan, we also develop 

a novel, rapid colocalization method, fastENLOC, that could handle data at this scale (4,091 traits x 22,515 genes x 49 

tissues) (see Methods). PhenomeXcan implements the best practices derived from applying GTEx v8 (21, 59) to 

biologically prioritize genes with possible causal contribution to a given trait.  

 

PhenomeXcan’s flexible structure and adaptability allow translational researchers to easily explore clinically relevant 

questions. The resource can be queried by gene or trait and allows identification of novel and underrepresented 

associations. It offers exploration of polygenicity and pleiotropy dimensions by allowing for queries across multiple genes 

and traits. It can also be integrated with other gene-trait datasets to explore linked traits and report common associated 

genes. We offer ClinVar as an example, but any deeply annotated database of genes and traits, including molecular or 

biological traits, may be integrated in this manner. Other possible translational uses of PhenomeXcan include biomarker 

exploration, identification of clinically relevant disease modifiers, and polygenic score building (using genes associated 

with queried traits), as well as novel directions for basic science collaborations and clinical study of linked traits (using 

traits associated with queried genes). 

 

We note some caveats. Diseases with variability not related to changes in gene expression (e.g. epigenetic regulation or 

traits with important environmental contributions) are not expected to be captured well by this method. With just expression 

levels, this resource is a starting point, and additional molecular traits, such as miRNA levels, protein levels, alternative 

splicing structures, are a priority for us to incorporate as data becomes available in sufficiently large sample sizes. Our 

model also better captures common overall genetic contributors rather than genes identified from rare variants. We do note 

that our validation standards tend to favor larger-effect genes with monogenic etiology, while the PhenomeXcan association 
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method itself is less biased. Regulatory pleiotropy is widespread across the genome (21). In our chronotype example, 

VAMP3 and PER3 demonstrate regulatory pleiotropy. VAMP3, from our findings associated with chronotype, is likely to 

be a false positive due to co-regulation of both genes by causal variants. With that degree of proximity, large-scale tools are 

not able to distinguish causal genes well, exemplifying the need for additional functional data to determine the causality of 

the gene (21). We discuss this finding to acknowledge how PhenomeXcan encounters this phenomenon and show the benefit 

of performing these associations across all human genes. We offer colocalization as a possible means of prioritizing causal 

variants, but significance of association, colocalization and co-regulatory sites must be taken into account in our results. 

Work from large-scale statistical genetics tools, such as PhenomeXcan, and Mendelian genetics / functional studies must 

then be combined in order to best understand the breadth of genetic contributors to complex traits. We have favored a locus 

RCP threshold of 0.1 to limit false negatives related to colocalization. Poor regional colocalization probability (locus 

RCP~0) may reflect a lack of sufficient evidence with available data, particularly for understudied genes, rather than true 

lack of causality. We therefore reported traits in this paper that had a locus RCP < 0.1, but had functional support for 

potential association. Similarly, the genome-wide threshold of significance is conservative, and we discuss associations with 

functional support even with less significant p-values. Importantly, GWAS summary statistics used in this project were for 

subjects and patients of European ancestry. Improving the applicability of this type of work to global populations remains 

of paramount importance throughout genetic medicine, and we will continue to integrate more GWAS summary statistics 

from broader consortia. 

 

Resources that translate biologically relevant genomic and transcriptomic information into gene-trait associations are 

already critical for hypothesis generation and clinically relevant research (60). We offer PhenomeXcan, an integrated 

mapping for the function of every human gene, as a publicly available resource to advance the investigation of complex 

human diseases by improving the accessibility of relevant links between the entire genome and the phenome.  
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Materials and Methods 

Trait selection and preprocessing/quality control of variants 

We developed PhenomeXcan with 4,091 traits from publicly available GWAS summary statistics. Summary statistics from 

GWAS performed for 4,049 traits from the UK Biobank (on 361,194 samples) were obtained from the publicly available 

dataset compiled by the Neale Lab at the Broad Institute (61); we did not use individual-level data. The UK Biobank is a 

prospective cohort of approximately 500,000 subjects between 40 and 69 years of age, recruited from 2006-2010 in the 

United Kingdom (62). Traits characterized by the Neale lab include 2,891 auto-curated traits using PHESANT (63), of 

which 274 are continuous, 271 ordinal and 2,346 binary. 633 binary traits were extracted from hospital-level data (ICD-10 

codes). 559 traits were manually curated in collaboration with the FinnGen Consortium. Traits available cover a range of 

categories, from lifestyle traits and socio-demographic questions to clinical biomarkers and diagnoses. Separate sex-specific 

summary statistics and sex chromosome analyses were not included in this project. More details on the GWAS derivations 

and quality control is provided in the website of the project: http://www.nealelab.is/uk-biobank. We do note that for these 

GWAS, 361,194 individuals were selected for inclusion based on quality of genotypes, white British ancestry (based on 

both self-report and principal components analysis). Only those variants with an imputation quality score (INFO) > 80%, a 

minor allele frequency (MAF) > 0.1%, call rate > 95% and a Hardy-Weinberg equilibrium p-value > 1 x 10-10 were selected.  

 

We also compiled 42 additional traits from summary statistics from publicly available GWAS and GWAS-meta analyses 

external to the UK Biobank study both to validate synthesis of additional GWAS data and to overcome limitations related 

to poor sample sizes in the UK Biobank for specific diseases (e.g. breast cancer). These GWAS and traits represent a broad 

array of disease-related categories, including immunological response, psychiatric and neurologic traits, cardiometabolic 

diseases and syndromes and cancer. We have previously described the harmonization and imputation process (24) 

(Supplementary Table S5).  

  

ClinVar is a publicly available archive of clinically reported human genetic variants and associations with disease 

maintained by the National Institutes of Health (https://www.ncbi.nlm.nih.gov/clinvar/). Variant associations with disease 
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are identified by manual review of submitted interpretations from “clinical testing laboratories, research laboratories, locus-

specific databases, Online Mendelian Inheritance of Man (OMIM), GeneReviews, UniProt, expert panels and practice 

guidelines” (30, 48). Traits can be reported to ClinVar as a single concept or set of clinical features. When possible, traits 

are mapped manually to standardized terms from databases including OMIM and the Human Phenotype Ontology (HPO) 

(29). All gene-trait associations published by ClinVar for 7/2019 were used for integration with PhenomeXcan. 

PrediXcan and Summary-MultiXcan (S-MultiXcan) 

S-MultiXcan is a method in the PrediXcan family (18) that associates genes and traits by testing the mediating role of gene 

expression variation in complex traits, but (a) requires only GWAS summary statistics and (b) uses multivariate regression 

to combine expression information across tissues (22). First, linear prediction models of genotype in the vicinity of the gene 

to expression are trained in reference transcriptome datasets such as the Genotype-Tissue Expression project (GTEx) (21). 

Second, predicted expression based on actual genetic variation is correlated to the trait of interest to produce a gene-level 

association result for each tissue. In S-MultiXcan, the predicted expression is a multivariate regression of expression across 

multiple tissues. In order to avoid collinearity issues and numerical instability, the model decomposes the predicted 

expression matrix into principal components and keeps only the eigenvectors of non-negligible variance. We considered a 

PCA regularization threshold of 30 to be a conservative choice. This approach improves detection of associations relative 

to use of one tissue type alone and offers a reduced false negative rate relative to a Bonferroni correction. We used optimal 

prediction models based on the number and proportion of colocalized gene level associations (24). These models select 

features based on fine-mapping (25) and weights using eQTL effect sizes smoothed across tissues using mashr (59). The 

result of this approach is a genome-wide gene-trait association list for a given trait and GWAS summary statistic set. 

Colocalization of GWAS and eQTL signals 

Bayesian fine-mapping was performed using TORUS (27). We estimated probabilities of colocalization between GWAS 

and cis-eQTL signals using Bayesian regional colocalization probability, as described in the ENLOC methodology (23). 

For this particular study, given the large scale of the data, we developed a novel implementation, entitled fastENLOC. 

fastENLOC was applied for all trait-tissue pairs, and the maximum colocalization probability across all tissues was used, 
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thus obtaining a single RCP value for each gene-trait pair. This aggregation of RCP values across tissues allowed us to 

combine results from fastENLOC and S-MultiXcan. 

fastENLOC 

fastENLOC is a novel computational method built upon the existing colocalization analysis framework of ENLOC (23). 

As in the original ENLOC, fastENLOC estimates the relative enrichment of causal eQTLs in the GWAS hits. This is a 

distinct feature from other existing colocalization approaches. For example, eCAVIAR assumes that the probability of a 

variant being causal for a trait is independent of the probability of the variant causally affecting gene expression, which 

results in rapid processing but can be too conservative (64); whereas “coloc” allows users to specify enrichment parameter 

subjectively (65). However, the inappropriate parameter setting can introduce systematic false-positive and false-negative 

colocalization findings (64, 65). fastENLOC also follows the ENLOC approach to compute and report both SNP-level 

colocalization probabilities (SCPs) and region/locus-level colocalization probabilities (RCPs), although the probability 

computation is improved and the selection of genetic loci becomes fully automatic in the new method. 

 

The main innovation in the fastENLOC lies in its explicit usage of signal clusters/Bayesian credible sets computed from 

the Bayesian fine-mapping analysis. A signal cluster is a group of SNPs in LD and represents the same underlying genetic 

association signal. Currently, we note that fine-mapping algorithms DAP-G and SUSIE-R can generate the required signal 

clusters.  The utilization of pre-computed signal cluster information from both GWAS and eQTL data greatly speeds up 

the overall colocalization analysis and achieves higher accuracy through better probability calibration and explicit 

accounting of allelic heterogeneity. This computation saving is particularly important in this application, where each of 

the 4000+ traits is tested for colocalization with eQTLs in 49 different tissues. In a benchmark test, we record the 

computational time of ENLOC and fastENLOC for colocalization analysis of whole blood eQTL data from the GTEx and 

the high-density cholesterol GWAS data from the Global Lipid Genetic Consortium (GLGC) (66). In this experiment, we 

provide fine-mapped eQTL results from DAP-G and single-SNP z-scores from GLGC. On a Linux system with Xeon 2.13 

GHz CPUs and 48 GB memory, the total processing times for fastENLOC and ENLOC were 6 minutes 44 seconds and 

219 minutes 20 seconds, respectively. While the methodological innovation contributes to this performance improvement, 

the new computational implementation of fastENLOC (e.g., by reducing redundant I/O operations) also has a significant 
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impact. Finally, we keep fastENLOC backwards compatible with the original ENLOC: in the simplest case, single-SNP 

association summary statistics from GWAS and eQTL analysis are sufficient to start the fastENLOC analysis with a fast 

pre-processing step via software package TORUS. The details are provided here: https://github.com/xqwen/fastenloc. 

 

Next, we provide an overview of the fastENLOC analysis procedure.  The overall procedure includes two interconnected 

steps: enrichment estimation and colocalization computation. The enrichment estimation aims to estimate the enrichment 

level of causal eQTLs in causal GWAS hits, or equivalently, the conditional prior probability that a SNP being a causal 

GWAS hit given its causal eQTL status. Because the true causal SNPs for both eQTL and GWAS  are not observed, and 

the results from the association analysis carry a great deal of uncertainty due to LD, we adopt a multiple imputation (MI) 

approach to sample the true causal SNPs from different traits then average the enrichment estimates over multiple 

independent sets of imputed causal status.  As a unique feature,  fastENLOC implements a novel hierarchical sampling 

procedure based on the signal cluster information: It first draws a Bernoulli random variable based on the cumulative 

SNP-level posterior inclusion probabilities (PIPs) for a given signal cluster to determine if a cluster contains a causal 

variant; conditional on a positive outcome, the actual causal SNP is subsequently drawn from the member SNPs within 

the cluster.  In comparison, the original ENLOC imputation procedure performs independent sampling based on SNP-

level PIPs. This unstructured sampling procedure has some obvious caveats that are remedied in the new fastENLOC 

procedure. For example, the fastENLOC scheme ensures at most a single causal variant can be drawn from each signal 

cluster, whereas the ENLOC procedure does not enforce such desirable constraint. As a result of this new imputation 

procedure, we observe that the fastENLOC yields more accurate enrichment estimate and the sampling variance from the 

multiple imputation procedure is also lower than the original ENLOC. 

 

In summary, the faster speed and the improved performance of fastENLOC are achieved with the following changes: 

● Pre-computation of posterior inclusion probabilities (fine-mapping) of eQTLs, which could be reused for any trait 

● Pre-computation of posterior inclusion probabilities (fine-mapping) of GWAS, which could be re-used for each of 

the 49 tissues 

● Faster calculation of enrichment parameters (α0,α1) by taking advantage of the pre-computed credible sets  
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● Analytic update of the posterior probability of fine-mapping and colocalization using the posterior probability 

input from both GWAS and eQTL fine-mapping 

● A new computational implementation using C++ 

● Structured sampling procedure based on the signal clustering 

 

When a GWAS identifies few association signals, the enrichment estimate can be highly unstable, i.e., the point estimate 

is outside the normal range and the standard error is extremely large. In such cases, a desired outcome is to shrink the 

estimate to near 0. Through analyzing 4000+ traits with 49 GTEx tissues, we find the adaptive shrinkage procedure 

proposed in the ENLOC occasionally is insufficient to stabilize the point estimate. Thus, we implement a new shrinkage 

approach in fastENLOC to deal with these scenarios.  

 

Briefly, we propose a normal prior, N(0,1/λ), for the enrichment parameter α1, and report its posterior mean for the 

downstream colocalization computation. Specifically,  

α1̂
shrinkage =

α1̂

1 + λ𝑠1
2, 

𝑠1
shrinkage

= √
𝑠1

2

1 + λ𝑠1
2, 

Where α1̂ and 𝑠1 are estimates from the multiple imputation procedure. The shrinkage parameter λ, which can be 

customized by the users, quantifies the strength of the shrinkage: λ → 0 represents no shrinkage and λ → ∞ shrinks any 

estimate to exactly 0. By default, we find set λ = 1 achieves a good balance in practice, where we find the enrichment 

parameters are well stabilized with standard error ≤ 1.  

 

Despite the new shrinkage scheme, the locus RCPs calculated by ENLOC and fastENLOC show good agreement 

(Supplementary Figure S4).  This is likely because the instability of the enrichment estimates typically indicate a lack of 

colocalized signals. (On the contrary, the noteworthy colocalization probabilities are typically computed from those traits 

where enrichment parameters can be stably computed even with weak or no shrinkages.) 
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Given the enrichment parameters �̂� = (α1̂, α2̂), we derive the analytic formula to calculate the colocalization probability 

using the pre-computed posterior inclusion probabilities and the signal cluster information from fine-mapping results of 

GWAS and eQTL traits. 

 

Let 𝑫, 𝑬  denote the association data from GWAS and eQTL analyses, respectively. We consider a signal cluster inferred 

from the fine-mapping analysis of either eQTLs or GWAS and use latent binary indicator 𝑝-vectors 𝒅, 𝛄 to represent the 

causal association status of its 𝑝 member single-nucleotide polymorphisms (SNPs) with the complex trait and the gene 

expression level of interest, respectively. (Recall that a signal cluster, by definition, contains a set of SNPs in LD and 

represents the same underlying genetic association signal.) Furthermore, we use γ0 to denote the configuration of no 

causal eQTLs in the cluster and 𝛄1 to denote the 𝑖th SNP is the true causal eQTL SNP (i.e., the 𝑖th entry is set to 1 and 0 for 

the remaining SNPs). 

 

Assuming GWAS data are originally analyzed using an exchangeable prior π1̃, i.e., 

Pr(𝒅𝑖) = π1̃(1 − π1̃)𝑝−1, 

and 

Pr(𝒅0) = (1 − π1̃)𝑝 

By the nature of a signal cluster, it follows from the Bayes rule that 

 
Pr( 𝒅𝑖 ∣∣ 𝑫 ) =

BF𝑖

(1 − 𝜋1̃)/𝜋1̃ + ∑ BF𝑗𝑗
, 

(1) 

where BF𝑖 denotes the marginal likelihood ratio, 

BF𝑖 =
𝑃( 𝑫 ∣∣ 𝒅𝑖 )

𝑃( 𝑫 ∣∣ 𝒅0 )
 

Note that in case that the GWAS posterior probability is derived from a multi-SNP analysis, BF𝑖 may not be well-

approximated by single SNP testing statistics. Nevertheless, given π1̃ and note that Pr( 𝛄𝑖 ∣∣ 𝑫 ) coincides with the 

posterior inclusion probability (PIP) of the 𝑖th SNP in the signal cluster, BF𝑖 's can be straightforwardly computed from 

Eq. (1). Additionally, π1̃ can be obtained by averaging the PIPs from all interrogated SNPs. 

 

Given the enrichment information, the GWAS prior differs for eQTL and non-eQTL SNPs. Specifically, for eQTL SNP, 
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π1
𝑒 ≔ Pr( 𝑑 = 1 ∣∣ γ = 1, �̂� ) =

exp(α0̂ + α1̂)

1 + exp(α0̂ + α1̂)
, 

 and for non-eQTL SNP, 

π1
�̅� ≔ Pr( 𝑑 = 1 ∣∣ γ = 0, �̂� ) =

exp(α0̂)

1 + exp(α0̂)
. 

Using the eQTL-informed priors, the GWAS posterior probability can be updated analytically, i.e., 

Pr( 𝒅𝑖 ∣∣ 𝑫, �̂�, 𝛄𝑖 ) 

=
π1

𝑒(1 − π1
�̅�)

𝑖

𝑝−1
BF𝑖

(1 − π1
𝑒)(1 − π1

�̅�)
𝑝−1

+ (1 − π1
𝑒)(1 − π1

�̅�)
𝑝−2

π1
�̅� ∑ BF𝑗𝑗≠𝑖 + π1

𝑒(1 − π1
�̅�)

𝑝−1
BF𝑖

 

=
π1

𝑒(1 − π1
�̅�)BF𝑖

(1 − π1
e)(1 − π1

e̅) + (1 − π1
e)π1

e̅ ∑ BFjj≠i + π1
e(1 − π1

e̅)BFi

. 

Subsequently, the colocalization probability at the 𝑖th SNP is computed by 

Pr( 𝒅𝑖, 𝛄𝑖 ∣∣ 𝑫, 𝑬, �̂� ) = Pr( 𝒅𝑖 ∣∣ 𝑫, �̂�, 𝛄𝑖 ) Pr( 𝛄𝑖 ∣∣ 𝑬, 𝑫 ), 

where we approximate Pr( 𝛄𝑖 ∣∣ 𝑬, 𝑫 ) with the eQTL PIP for the 𝑖th SNP. The regional colocalization probability, RCP, 

for the signal cluster of interest is given by 

RCP = ∑ Pr( 𝒅𝑖 , 𝛄𝑖 ∣∣ 𝑫, 𝑬, �̂� )

𝑖

, 

because events {𝛄𝑖, 𝒅𝑖} and {𝛄𝑗, 𝒅𝑗} for 𝑖 ≠ 𝑗 are mutually exclusive within a signal cluster. 

The software and its source code are freely available at https://github.com/xqwen/fastenloc/.  

Validation of PhenomeXcan using PheWAS Catalog, OMIM and Type 2 Diabetes 

reported genes 

We evaluated the accuracy of gene-trait associations in PhenomeXcan by using two different gene-trait association 

datasets (PheWAS Catalog and OMIM) as well as genes linked with functional evidence with type 2 diabetes (T2D) 

according to the Accelerating Medicines Partnership T2D (AMP T2D). We then derived the receiver-operator (ROC) and 

precision-recall (PR) curves for PrediXcan and fastENLOC independently and a combination of both.  
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We mapped traits from PhenomeXcan to those in either PheWAS Catalog (28) or OMIM (30) by using the Human 

Phenotype Ontology (29) and the GWAS Catalog as intermediates. For traits in the PheWAS Catalog, we tested 2,202 

gene-trait associations that could be mapped in both PhenomeXcan and the PheWAS Catalog, from a total 19,119 gene-

traits associations consisting of all genes present in an LD block with GWAS signal. For the OMIM traits, we developed a 

standard (Supplementary Table S2) of 7,809 high-confidence gene-trait associations that could be used to measure the 

performance of PhenomeXcan, of which 125 presented in the LD block of GWAS signal so that were included in the 

analysis. This standard, as described in our recent work (24), was obtained from a curated set of trait-gene pairs from the 

OMIM database by mapping traits in PhenomeXcan to those in OMIM. Briefly, traits in PhenomeXcan were mapped to 

the closest phecode using the GWAS catalog-to-phecode map proposed in (Denny et al. 2013). As disease description in 

OMIM has been mapped to the Human Phenotype Ontology (HPO) (Kohler et al. 2019), we created a map from phecodes 

to terms in HPO, which allowed us to link our GWAS traits to OMIM disease description by utilizing phecodes and HPO 

terms as intermediate steps . For each gene-trait pair considered causal in this standard, we determined if PhenomeXcan 

identified that association as significant based on the resulting p-value.  The OMIM-based standard is publicly available 

through R package https://github.com/hakyimlab/silver-standard-performance. 

 

For T2D, we obtained a list of predicted effector transcripts identified by AMP T2D and use 76 genes categorized as 

“causal”, “strong” or “moderate” as our gold-standard for evaluation (Supplementary Table S3). As we did for OMIM and 

PheWAS Catalog, 20 of these “causal” genes could be mapped in PhenomeXcan, from a total of 5,036 genes present in an 

LD block with GWAS signal. We used seven traits highly related to T2D: ICD10 codes E11 and E14, “Self-reported type 

2 diabetes” (data-field 20002 in UK Biobank with code 1223), and four phenotypes manually curated by the FinnGen 

Consortium (Type 2 diabetes without complications, Type 2 diabetes with ophthalmic complications, Type 2 diabetes, and 

Type 2 diabetes with peripheral circulatory complications); then we took the maximum Z-score obtained (for MultiXcan) 

and the maximum RCP (for fastENLOC) across the seven T2D traits for each gene evaluated. The results are shown in 

Figure 3 and Supplementary Figure S2. Notice that multiple testing is not an issue, since for the performance curves are 

not using a significance threshold but all levels are assessed in terms of the false positive and true positive rates. 
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Supporting evidence for PhenomeXcan results 

PhenomeXcan results for case studies were included based on their p-values and locus RCP. We defined putative causal 

gene contributors as those genes with p-values less than 5.49 x 10-10 and locus RCP > 0.1. Given these conservative 

measures, however, we did discuss associations that were less significant or had a lower locus RCP with functional 

evidence. We used the NHGRI-EBI GWAS Catalog (10/21/2019) to identify GWAS results both using the UK Biobank 

(given the predominance of this dataset in PhenomeXcan) and other datasets. We performed systematic literature searches 

on PubMed using the gene name alone, with the specific trait category and trait name to identify functional studies 

relevant to a trait of interest. 

Building PhenomeXcan x ClinVar 

We examined links between 4,091 PhenomeXcan traits and 5,094 ClinVar traits and associated genes. ClinVar traits were 

excluded if they did not have known associated genes in PhenomeXcan. To compare a PhenomeXcan trait t and a ClinVar 

trait d, we calculated the mean squared Z-score:  

avg(𝜒𝑡,𝑑
2 ) =

1

𝑘
∑ 𝑍𝑡,𝑖

2

𝑘

𝑖=1

, 

where k is the number of genes reported in ClinVar for trait d, and Z is the Z-score of gene i obtained with S-MultiXcan 

for trait t. We then created a matrix of PhenomeXcan traits by ClinVar traits with mean squared Z-scores. We defined 

significant associations between traits as those with Z-score > 6; this represents the equivalent of a Bonferroni-adjusted p-

value of 0.05 based on our map of the distribution of Z-scores (Supplementary Figure S3). 
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