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Abstract

In many applications, features with consistently high measurements across many samples are
particularly meaningful and useful for quality control or biological interpretation. Identification
of these features among many others can be challenging especially when the samples cannot be
expected to have the same distribution or range of values. We present a general method called
conserved feature discovery (CFD) for identifying features with consistently strong signals across
multiple conditions or samples. Given real-valued data, CFD requires no parameters, makes no
assumptions on the underlying sample distributions, and is robust to differences across these
distributions. We show that with high probability CFD identifies all true positives and no false
positives under certain assumptions on the median and variance distributions of the feature
measurements. Using simulated data, we show that CFD is tolerant to a small percentage of
poor quality samples and robust to false positives. Applying CFD to RNA sequencing data
from the Human Body Map project and GTEx, we identify lists of housekeeping genes as highly
expressed genes across tissue types and compare to previous results in this domain. CFD is
consistent between the two data sets, and identifies lists of genes enriched for basic cellular
processes as expected. The framework can be easily adapted for many data types and desired
feature properties.

1 Introduction

Many biological applications involve measuring features across a range of samples, bringing up the
natural question of which features have consistently high values across samples. Despite many
methods for identifying features with significant differences between sets of samples [19, 18, 20],
there is no general statistical method for identification of features that are consistent across sample
sets. Similarity across conditions can signal the importance of a feature, such as an epigenetic
mark required for proper gene regulation or an oncogene that is highly expressed across many
cancer types. Genes that are highly expressed across many healthy tissue types are likely to be
essential for cellular functioning, and can be used as controls for data normalization. This work
presents a statistical method for identifying features that, across a majority of samples, have high
measurements relative to their respective sample distributions.

Previous related methods focus on specific use cases, such as reproducibility measurements.
Irreproducible discovery rate (IDR) is a statistical method to identify features from high-throughput
sequencing experiments that are consistent across replicates [13]. In principle this is a very similar
goal to the one presented here, but the assumptions inherent to IDR are specific to the case of
replicates. IDR looks for the top n signals with highest values, where the challenge is determining
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the n at which the correspondence between replicate signals drops off. Additionally, IDR expects
the input samples to have similar distributions among the highest values, which is an appropriate
assumption when looking at replicates but not when studying non-replicate samples.

Identification of features in single-cell data that are stable across cells has recently become
an important problem as single-cell data becomes more available and prevalent in genomic and
epigenomic analyses. There have been a few methods developed specifically for the discovery
of so-called stably expressed genes (scSEGs) in single-cell RNA sequencing (scRNAseq) [10, 14].
Recently, a method called scMerge [14] used a Gamma-Gaussian mixture model to compute certain
characteristics related to stability that are then used to rank genes by an “SEG index,” which is
the average rank across these stability properties. The assumptions made by this model, including
the Gamma and Gaussian priors, are specific to the analysis of scRNAseq and would likely not
generalize to other domains. scMerge additionally requires an arbitrary rank percentile cutoff, and
assumes similar ranges of values across conditions. Another recent method called CORGI, which
ranks genes based on their ability to capture common trajectories between scRNAseq data sets, is
specifically for use in trajectory inference methods [24]. Though the goal of CORGI is to integrate
data sets and therefore should be robust to distribution and value differences unlike scMerge, it
optimizes for a different objective (capturing common trajectories) than the one stated here.

In bulk gene expression analysis, genes that are consistently expressed across all cell and tissue
types have been known as “housekeeping genes.” This term is generally used to describe genes that
are required for basic cellular functioning, and many methods on many different data types have
been developed for their identification [4, 8, 3, 21, 12, 26, 27, 6]. Housekeeping genes tend to be
highly active, and their expression is essential for survival [25]. They can additionally be used as
controls or in normalization methods for gene expression analyses. While they have been studied for
a long time, there is little consensus on which genes are most confidently considered housekeeping
genes, with differing methods reporting lists with little overlap [7, 21, 2]. One of the reasons for
differing results is that there is no consistent definition of a housekeeping gene; some studies look for
genes which are simply expressed in all samples [4], others look for genes with consistent expression
levels across samples [8], and still others look for genes with high expression across samples [3]. The
discrepancies between results from different studies highlights the importance of rigorous methods
in this space.

We introduce a parameter-free statistical method, called conserved feature discovery (CFD),
for identifying features with consistently high values across samples, robust to differences in dis-
tributions and ranges of values between the samples studied. CFD works with any data type that
can be viewed as a list of features with numerical values for each sample. This includes RNA
sequencing (RNA-seq) data, where features are genes or transcripts and the values represent their
abundance, or ChIP-seq data, where features could be genomic bins and the values are the peak
heights at these locations. CFD could also be used with single-cell data, or with mass spectrometry
measurements. Regardless of the underlying data type and feature set, CFD identifies the features
that are statistically significantly conserved with relatively high values across input samples.

We provide theoretical guarantees and demonstrate the utility of CFD with simulation data to
show tolerance to uninformative samples and false positives. CFD is applied to biological data,
identifying housekeeping genes from two human tissue RNA-seq datasets, resulting in robust gene
lists enriched for annotations related to basic cellular processes.

2

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/833624doi: bioRxiv preprint 

https://doi.org/10.1101/833624
http://creativecommons.org/licenses/by/4.0/


fe
at

ur
es

conditions

% of features 
in same

condition 
with greater 

value

med
ian

variance

% of 
features

with 
higher
median

�2

Significant 
features

p-valuesMultiple 
hypothesis

correction
% of 

features

with 
lower

variance

Figure 1: Method overview. The input to CFD is an m× n matrix of m feature measurements
across n conditions. The given measurement values are converted to percentages based on their
position within their respective sample distributions. Medians and variances of these values are
taken across features, and converted to p-values which are combined with Fisher’s method to a
χ2 value and converted back to p-values for multiple hypothesis correction. A list of statistically
significant features and their p-values is returned.

2 Methods

Given a set of measurements on features in multiple samples, CFD identifies features that have
consistently high values across samples by computing a conservation p-value that considers both
consistency across samples and magnitude within a sample. The method first converts input values
to rankings representing the fraction of the sample with higher values. The median and variance of
these rankings for each feature are then combined with a χ2 test, and we use multiple hypothesis
correction to return features that are statistically significant in conservation across samples and
demonstrate relatively high values within each sample (Figure 1). Details of each step are given
below.

2.1 Computing relative magnitude and variance of features

The input to CFD is a matrix A ∈ Rm×n of measurements on m features, over n samples or
conditions, or n vectors of m feature values, which we will combine into an m × n matrix. The
input data is expected to be nonnegative, so any features with zero values across all samples are
removed to avoid testing unnecessary hypotheses where a feature takes the minimum of the domain
under all conditions. In order to convert the given measurement values to p-values without making
assumptions on the underlying distributions of measurements, we define a function ψ : Rm×1 →
[0, 1]m×1 that computes, for each value in the input vector, the fraction of other numbers within
the input vector of greater value, returning a vector with values between 0 and 1. We apply ψ(·)
to each column of A, storing the results in a matrix B:

B = [b1, . . . ,bn] = [ψ(a1), . . . , ψ(an)],where ψ(a)j =

∑
k 1[ak > aj ]

|a|
(1)

with 1[·] as the standard indicator function. This formulation makes CFD invariant to translations
and positive multiplicative factors of the input samples. If the input data has negative values, it
can therefore be shifted by any amount to ensure nonnegativity.

We then compute the median and variance of each row of B. This gives two vectors u and v of
length m, where uk = median(Bk∗) and vk = Var(Bk∗) for each row k of B. Intuitively, the vector
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u represents the median rank of each feature within its sample distribution, and v quantifies how
much that ranking changes across samples.

2.2 Combination into one test statistic

We look for the features with high median ranking and low variance of rankings with respect to
other features, computing uρ = ψ(u) and vρ = 1 − ψ(v), which measure how many features have
higher median ranks (uρ) and how many have lower variance of ranks (vρ). The two vectors of
p-values, uρ and vρ, are combined with Fisher’s method, returning a vector x of χ2 values with
four degrees of freedom:

x = [x1, . . . , xm] = [−2(ln(vρi) + ln(uρi)) | i ∈ [1, . . .m]] (2)

These values are then converted back to p-values for multiple hypothesis correction, via the standard
cumulative density function for χ2 values.

2.3 Multiple hypothesis correction

At this stage, we have a vector of p-values that reflects the statistical significance of the medians
and variances of all feature rankings within their sample distributions. However, many biological
applications of this method will have a large number of features, requiring multiple hypothesis
correction. We use the Benjamini-Hochberg procedure [1] to control the false discovery rate at a
level of 0.05, and report only the features and their p-values if the null hypothesis can be rejected.
Briefly, the Benjamini-Hochberg procedure returns an index on a list of sorted p-values, scaling the
threshold based on the position in the list and total number of hypotheses. The null hypothesis
can be rejected for all hypotheses up to this index.

3 Results

We first derive some theoretical guarantees on CFD’s sensitivity and specificity under certain as-
sumptions, then demonstrate two desirable properties using simulated data. CFD is applied to
biological data using two RNA-seq data sets, identifying genes that are consistently highly ex-
pressed across broad ranges of human tissue samples.

3.1 Theoretical guarantees

Given features with median and variance ranks drawn from normal distributions, we show that
with a probability dependent on the standard deviation of these distributions, the p-values of all
true positive features will be less than 0.05 as long as the true positives make up no more than 10%
of all features, and that all background features will have p-values greater than 0.05.

For the following, let there be t true positive features in a set Y , and s background features
in a set X: Y = {yi | i = 1, 2, . . . , t}, X = {xi | i = 1, 2, . . . , s}. Suppose the background
features have medians and variances drawn from normal distributions: median(X) ∼ N (µm, σ

2),
and Var(X) ∼ N (µv, σ

2). The true positives, which should have higher medians and lower vari-
ances, also have medians and variances drawn from normal distributions, but with higher or
lower means, respectively, and smaller standard deviations: median(Y ) ∼ N (µm + 2σ, σ2/3), and
Var(Y ) ∼ N (µv − 2σ, σ2/3). In particular, the true positives have medians drawn from a normal
distribution centered two standard deviations higher than the background values, and variances
are drawn from a distribution centered at two standard deviations lower than the background.
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We first give a lemma that will be used later, defining the final p-value as a function of the
median and variance ranks.

Lemma 3.1. For a feature ζ with p-value of its median rankings ε (there are εm features with a
higher median) and p-value of its variance rankings δ (there are δm features with lower variance),
the p-value pζ is given by pζ = εδ(1− ln(εδ)).

Proof. We first note that using Fisher’s method to combine p-values, the χ2 value for this feature
will be x = −2(ln(ε) + ln(δ)) = −2 ln(εδ). In order to convert this value back to a single combined

p-value, we must solve pζ(x, k) = 1− γ(k/2,x/2)
Γ(k/2) , where k is the number of degrees of freedom (twice

the number of p-values combined) giving k = 4 here, Γ(·) is the standard Gamma function, and
γ(·, ·) is the lower incomplete gamma function:

pζ(k, x) = 1− γ(k/2, x/2)

Γ(k/2)
= 1− γ(2, x/2)

Γ(2)

= 1−
∫ x/2

0
te−tdt = e−x/2(1 + x/2), where x = −2 ln(εδ)

= εδ(1− ln(εδ)).

Proposition 3.2. With X and Y defined above and t
t+s ≤ 0.10, p(yi) < 0.05 for all i, with

probability at least 1− 2
0.0032

σ2.

Proof. For median values mx ∼ N (µm, σ
2) and my ∼ N (µm + 2σ, σ2/3),

P (mx ≥ my) = 1− P (mx −my ≤ 0) = 1− Φ(
√

3),

where Φ is the cumulative distribution function for the standard N (0, 1) distribution. Similarly, for
variance values vx ∼ N (µv, σ

2
v) and vy ∼ N (µv − 2σv, σ

2
v/3), P (vx ≤ vy) = Φ(−

√
3) = 1− Φ(

√
3).

For a particular true positive feature y, P (myi ≥ my) = 1 − Φ(0) = 1/2 for any other yi ∈ Y .
The expected number of features with a higher median than y is therefore s(1−Φ(

√
3)) + t/2, and

by similar argument the expected number of features with lower variance is also s(1−Φ(
√

3))+ t/2.
The total number of features is s+t, so both expected p-values of median and variance rankings for y
are given by E(εy) = E(δy) = t

2(t+s) + s
t+s(1−Φ(

√
3)). We note that εy = δy under our assumptions,

so without loss of generality we will work with εy for the remainder of the proof. εy is a sum of two
independent random variables (the fraction of background samples greater than y plus the fraction
of other true positives greater than y), so its variance is given by: Var(εy) = 2σ2/3 + 4σ2/3 = 2σ2.
Using this fact and Chebyshev’s inequality, we can probabilistically bound the distance from εy to
its expected value:

P (|εy − E(εy)| ≥ a) ≥ 1− 2

a2
σ2. (3)

Rewriting the result of Lemma 1 as p(y) = f(εy) = ε2y(1 − 2 ln(εy)), we now want to bound p(y).
Note that for εy ∈ [0, 1], f(εy) is Lipschitz with a constant of 1.5:

|f(εy)− f(E(εy))| ≤ 1.5|εy − E(εy)|. (4)

To bound the maximum p-value below 0.05, we therefore want to bound p(y) = f(εy) ≤ f(E(εy)) +
1.5a < 0.05. Setting a = 0.003 and using the assumption s

s+t ≤ 0.1, with probability at least
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1− 2
0.0032

σ2:

p(y) ≤
[
0.1/2 + (1− 0.1)(1− Φ(

√
3))
]2

(1− ln(
[
0.1/2 + (1− 0.1)(1− Φ(

√
3))
]2

)) + 0.0045

≤ 0.00765(1− ln(0.00765)) + 0.0045 < 0.05.

Proposition 3.3. With X and Y defined as above and assuming at least one true positive, p(xi) >
0.05 for all i, with probability at least 1− 2

0.132
σ2.

Proof. For any background feature x with median mx, P (mxi > mx) = 1/2 for any other xi, and
P (myi > mx) = 1 − Φ(−

√
3). The expected number of features with greater median, as well as

those with lower variance, than x is therefore s/2 + t(1−Φ(−
√

3)). Using the same logic as above,
εx = δx = s

2(t+s) + t
t+s(1− Φ(−

√
3)). We again use Equation 3 and Equation 4, but now focus on

the case where p(y) = f(εy) < f(E(εy)), to bound p(y) above 0.05.
Using the assumption that t

t+s > 0 and setting a = 0.13,

p(y) ≥ f(E(εy))− 1.5|εy − E(εy)|

≥
[1
2

(
s

t+ s
) +

t

t+ s
(1− Φ(−

√
3))
]2

(1− ln(
[1
2

(
s

t+ s
) +

t

t+ s
(1− Φ(−

√
3))
]2

))− 1.5(0.13)

≥ (1/2)2 − 0.195 > 0.05.

These bounds may not be practical because it is unlikely for biological data to be well represented
by normal distributions, and in order for the probabilities we give to be high, the variance of the
distributions (σ) must be extremely small. The Chebyshev inequality that these proofs depend on
is quite weak, giving a loose bound, so more practical limits on the distributions may exist with a
tighter bound. These bounds still provide some insight on the outcomes of CFD, notably showing
that the conditions for avoiding false positives are much weaker than for guaranteeing discovery of
all true positives.

3.2 Data

Simulated data was created to test two scenarios: tolerance of poor quality samples, and ability to
avoid false positives. For biological data, bulk RNA-seq from two major studies was downloaded in
.fastq format. The Illumina Human Body Map data consists of samples from 16 different normal
human tissues, with two replicates of each. This is the same data used by Eisenberg and Levanon [8]
to identify housekeeping genes previously. GTEx version 7 consists of 9781 samples from 55 different
human tissue sites [15]. All bulk RNA-seq data was quantified as TPM values using Salmon version
0.9.1 [16]. We used the R package tximport [22] to combine transcript level quantifications to gene
level quantifications, using gene annotations from GENCODE version 26 [11].

3.3 Simulation data

In order to test the level of consistency required, or CFD’s tolerance to low quality samples, matrices
with 10000 features over 1000 samples were generated with 0%, 5%, 10%, 15%, 20%, and 25% of
the samples drawn from a uniform distribution, which we will call uninformative samples. In each
case, 50 features were drawn from a normal distribution with high mean and low variance (these
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# features # samples High mean Low mean High var Low var Ratio

10000 1000 0.7 0.3 0.4 0.2 0.5

10000 1000 0.7 0.3 0.5 0.1 0.5

10000 1000 0.85 0.15 0.5 0.1 0.5

10000 1000 0.85 0.15 0.4 0.2 0.5

20000 1000 0.7 0.3 0.4 0.2 0.5

20000 1000 0.7 0.3 0.5 0.1 0.5

20000 1000 0.85 0.15 0.4 0.2 0.5

20000 1000 0.85 0.15 0.5 0.1 0.5

20000 20 0.7 0.3 0.4 0.2 0.5

20000 20 0.7 0.3 0.5 0.1 0.5

20000 20 0.85 0.15 0.4 0.2 0.5

20000 20 0.85 0.15 0.5 0.1 0.5

10000 1000 0.85 0.15 0.5 0.1 0.25

10000 1000 0.85 0.15 0.5 0.1 0.75

1

a b

Figure 2: Performance on simulated data. (a) Influence of the fraction of uniformly distributed
samples on overall accuracy. Accuracy is measured as the percentage of true positives returned by
CFD. Each bar represents the results from 100 simulated matrices, with the given percentage of
samples drawn from a uniform distribution to simulate poor quality or uninformative samples.
Error bars represent the standard deviation. (b) Table representing all parameter choices tested to
measure robustness to false positives. In each case, the given ratio of features was produced with
high mean and high variance, with the remaining features drawn from distributions of low mean
and low variance. Under all of these parameter settings, CFD returned no significant results.

are the true positives), and the rest of the features were drawn from normal distributions with
other combinations of mean and variance values. For each percentage of uninformative samples,
100 matrices were simulated with true positives drawn from N (0.95, 0.05). All other features were
drawn from either N (0.85, 0.6) (high mean, high variance), N (0.15, 0.6) (low mean, high variance),
or N (0.15, 0.1) (low mean, low variance). Accuracy is measured as the true positive rate: the
number of features correctly reported divided by the total number of true positive features.

On simulation data, CFD proved to tolerate a low percentage of poor quality samples, but its
accuracy dropped to zero when 25% of samples were uniformly distributed. We note that in all
cases, CFD never reported any false positives so the specificity in each of these experiments was
100%. While CFD maintains high accuracy for small proportions of noisy samples (there is no
statistically significant difference in accuracy distributions between 0%, 5%, and 10% under the
Kolmogorov-Smirnov two-sample test), the accuracy rapidly decreases when over 10% of samples
do not preserve the high median and low variance of the true features, and goes to zero when 25%
of samples do not match the conservation pattern (Figure 2a).

CFD is also able to identify cases in which none of the input fits the pattern of consistently
high values. Previous methods such as scMerge [14] rank features by some conservation metric
and pick the top n% as the conserved features, for some user-specified n. When no input features
are truly consistently high, an approach like this will simply result in a list of false positives. In
contrast, we find that CFD returns no statistically significant features when all input features are
either high mean and high variance, or low mean and low variance, across 14 different parameter
settings (Figure 2b)). Therefore in simulation data CFD appears highly robust to false positives.

3.4 Identifying housekeeping genes

CFD found a number of genes which are consistently highly expressed across human tissue samples
on both the Human Body Map and GTEx data sets. On the Human Body Map data which consists
of 16 samples, CFD ran in ≈1.7 seconds, and 8054 samples of GTEx data took ≈ 5 minutes on one
core of a Linux Ubuntu 18.04 machine with an Intel Xeon Gold 6148 processor.
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Gene Description HBM p-value GTEx p-value

MT-ND4 NADH:ubiquinone oxidoreductase core subunit 4 6.388× 10−9 6.876× 10−9

MT-CO1 cytochrome c oxidase I 1.239× 10−8 1.013× 10−8

MT-ND2 NADH:ubiquinone oxidoreductase core subunit 2 4.648× 10−8 1.082× 10−7

MT-RNR216S rRNA 6.837× 10−8 2.891× 10−8

MT-ATP6 ATP synthase membrane subunit 6 1.181× 10−7 3.389× 10−7

MT-CO3 cytochrome c oxidase III 1.529× 10−7 5.002× 10−8

MT-CYB cytochrome b 1.805× 10−7 1.196× 10−7

MT-ND1 NADH:ubiquinone oxidoreductase core subunit 1 3.875× 10−7 4.292× 10−7

EEF1A1 eukaryotic translation elongation factor 1 alpha 1 4.137× 10−7 3.175× 10−7

MT-CO2 cytochrome c oxidase II 4.397× 10−7 5.002× 10−8

Table 1: Top 10 most consistently highly expressed genes across human tissue samples computed
by CFD.

Housekeeping genes are typically defined as genes required for the maintenance of basic cellular
functions, and they are expected to be relatively highly expressed in all cell and tissue types. Robust
identification of these genes has proven challenging.

3.4.1 Human Body Map.

We identified 168 genes that passed statistical significance and multiple hypothesis testing using
CFD. These genes are all consistently near the top of their respective sample distributions, demon-
strating high values and low variance as desired. The top ten genes with lowest p-values are reported
in Table 1, and the full list can be found in Supplemental Data. Nine of these genes are mitochon-
drially encoded genes. Mitochondrial DNA contains genes that are necessary for mitochondrial
function [23], therefore it is reasonable to see these genes identified as consistently highly expressed
across samples from various tissue types.

Our set of housekeeping genes is enriched for GO terms related to basic cellular functions and
processes, across all three GO categories (Table 2). These results were obtained using gProfiler [17],
with the ordered list of genes as input and the background as all human genes. Full GO enrichment
results can be found in Supplemental Data.

3.4.2 GTEx: filtering out low quality samples.

Not all of GTEx data is of high quality as noted in previous GTEx studies [5], so we filtered out
lower quality samples. With the help of MultiQC [9], we used mapping percentage (percent of reads
that could be mapped during quantification) as a proxy for data quality and filtered GTEx by this
value. Running CFD on the full GTEx version 7 release (9781 samples) returned no significantly
conserved genes. Plotting the p-value distributions for the GTEx data shows that including the
low quality data produces an unexpected distribution with unexplained peaks, which persists even
when considering data with at least 60% of reads mapped (Figure 3a). This figure also suggests
that many genes are very far from satisfying the property of high values across samples, as seen
by the large number of genes with very high p-values. More significant genes could be obtained
by filtering out the genes with very high p-values, thereby better satisfying the expectation of a
uniform distribution of p-values and testing fewer unnecessary hypotheses. To verify that the genes
we identified by thresholding the data were due to the higher data quality rather than simply a
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a b

Figure 3: P -value histograms show the importance of filtering out low quality samples
in GTEx data. Both plots show histograms of p-values across all genes as computed by CFD. (a)
Comparison of p-value distributions from full GTEx data (9781 samples, green), partially filtered
GTEx data (9216 samples, purple), and only the high quality samples (8054 samples, pink), as
measured by mapping percentage. (b) Distributions from 10 random subsets of size 8054 from
GTEx (green), as compared to the 8054 high quality (> 80% reads mapped) samples (pink).

smaller sample size, we took ten random subsets of 8054 samples from GTEx, and ran CFD on each
of them. None of these random subsets returned any significant genes, and all showed an uneven
p-value distribution consistent with the full data (Figure 3b).

On the subset of 8054 high quality GTEx samples, 149 genes passed statistical significance and
multiple hypothesis testing. This gene list is enriched for similar terms as the set from the Human
Body Map, again representing terms fundamental to cellular functioning. The top three terms from
each category on each set (Human Body Map and GTEx) are provided with p-values in Table 2.
For both the biological process and cellular component categories, the top three terms from Human
Body Map and GTEx were not identical, so all terms in the top three of either list are reported.
The top ten genes of the GTEx list are the same as the top ten we found from the Human Body
Map data, though in a different order (Table 1).

3.5 Comparisons to previous work show little agreement in housekeeping gene
lists

Housekeeping genes have been identified using many different data types and methods, with gen-
erally little agreement between them [7, 21, 2]. We compared our results with three studies from
within the last ten years (Figure 4). Two of these previous studies identified many more housekeep-
ing genes than we did (3804 and 2064), while the third resulted in a list of only 27 genes. Chang et
al. [4] computed housekeeping genes as those that are universally expressed in normal tissue, based
on microarray samples. Eisenberg and Levanon [8] used the same Human Body Map RNA-seq
data used here and defined housekeeping genes as those expressed at a constant level in all tissues.
Caracausi et al. [3] searched for genes with high expression values and low standard deviation that
were present in a large majority of samples, based on specific cutoff values for each criteria. These
definitions all differ somewhat from each other and from the objective of CFD, which looks for
genes that are consistently highly expressed across tissues, relative to their sample distributions.
For both of our gene lists from GTEx and from the Human Body Map data, we find only 1 gene
in common with all three previous lists (RPL8, a ribosomal protein), and about 50 genes in com-
mon with both Chang et al. [4] and Eisenberg and Levanon [8] (Figure 4a). Despite the different
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GO term HBM padj GTEx padj
Molecular Function
RNA binding 2.634× 10−53 2.010× 10−55

structural constituent of ribosome 2.851× 10−53 1.359× 10−66

structural molecule activity 2.033× 10−32 8.160× 10−42

Biological process
SRP-dependent cotranslational protein targeting to membrane 1.205× 10−66 1.525× 10−82

translational initiation 4.605× 10−66 1.931× 10−71

cotranslational protein targeting to membrane 2.656× 10−65 6.168× 10−81

protein targeting to ER 2.474× 10−63 1.359× 10−78

Cellular component
cytosolic ribosome 4.276× 10−66 1.825× 10−81

ribonucleoprotein complex 4.569× 10−54 6.926× 10−58

ribosomal subunit 2.896× 10−53 1.707× 10−66

ribosome 9.362× 10−53 7.568× 10−64

Table 2: Top three GO term results for each GO category on both Human Body Map and GTEx
data.

definitions, only approximately 30 genes in our set were not found in any of the previous lists, and
half of these were mitochondrially encoded genes, which may not have been considered by previous
studies.

Most studies report a short list of their most confident housekeeping genes, and we see little
consistency in these lists across methods. Caracausi et al. [3] gave a list of eight genes, and
Eisenberg and Levanon [8] reported eleven. Chang et al. [4] did not provide a short list, but gave
their full ranking, and we pulled the top ten from this list. Among the eight genes listed as best
fitting the criteria of Caracausi et al. [3], four were not in either of our lists, despite the more
similar definition of a housekeeping gene (Figure 4b). There is almost no overlap between the three
previously published lists of “highly confident” housekeeping genes (Figure 4c); only two genes are
shared between two studies, while the third study has no genes in common with either of the other
two. Using CFD on our two data sets, we find a fairly large overlap in the full lists (Figure 4d),
and as previously noted the top ten genes from both Human Body Map and GTEx are identical,
suggesting that CFD returns fairly consistent results. Taken together, these results highlight the
level of uncertainty and importance of methods in identifying housekeeping genes.

4 Discussion and Conclusions

We have introduced a general statistical method called CFD that identifies features with consis-
tently high values across input conditions, proved guarantees on its specificity and sensitivity, and
demonstrated its effectiveness through simulated data and by identifying human housekeeping genes
on two bulk RNA-seq data sets. CFD requires no parameters and makes no assumptions about the
underlying distributions of or relationships between input samples. Simulated data suggests that
CFD requires consistency across at least 80% of samples to identify any meaningful features, and
has very high specificity. The housekeeping genes that we identify are consistent between two very
different RNA-seq data sets, and gene annotations suggest that the genes we identify are involved
in fundamental cellular processes, as we would expect for housekeeping genes.
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Eisenberg and 
Levanon, 2013

Chang et al., 2011

Caracausi et al., 2017 Human Body Map GTEx

a cb d

Figure 4: Comparisons with previous housekeeping gene lists. (a) Barplot showing the
overlap between full HK gene lists from three previous studies (2011, 2013, and 2017 refer to
[4], [8], and [3], respectively) with our lists from Human Body Map and GTEx data. (b) Barplots
showing the overlap with only the top 8-11 most confident genes reported by the same three previous
studies. (c) Venn diagram of most confident gene sets from previous studies shows little agreement.
(d) Venn diagram of the gene lists returned by CFD on Human Body Map and GTEx data shows
significant overlap, suggesting our method is relatively consistent across these two input sets.

It is likely that more than the 149 or 168 genes identified by CFD satisfy the definition of
housekeeping genes. The relatively low numbers reported here may be due to the very large
number of genes that are either variable across tissue types or have low expression values, as shown
by the large numbers of high p-values (Figure 3). If desired, more careful filtration of these genes
that clearly do not fit the desired properties would likely yield more genes passing the multiple
hypothesis testing procedure, and a larger list of housekeeping genes. The application to GTEx
data in particular showed that CFD can sometimes benefit from some preprocessing or filtration
steps to ensure the input data is not obscured by poor quality samples.

The framework of CFD can be easily adapted to identify any combination of high or low median
and high or low variance features, simply by changing the direction of the inequality in ψ. In other
applications, measurements with low values or high variance might be more of interest, and our
statistical framework could be adapted in a straightforward manner to identify such features. In yet
other applications it may be desirable to weight the relative importance of median and variance,
which could be done by switching the p-value combination from Fisher’s method to Stouffer’s
Z-score method, in which weights are straightforward to introduce.

This general statistical method represents a step towards principled analyses of conserved real-
valued features across multiple conditions, and its framework can be easily adapted for different
objectives. CFD could be applied to any data in which the same features are measured under
different conditions, including gene expression, ChIP-seq, and protein quantifications.

Availability

Code for CFD and scripts to reproduce the figures and analysis in this work, along with Supple-
mental Data files, are available at https://github.com/Kingsford-Group/cfd.
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[9] Ewels, P., Magnusson, M., Lundin, S., Käller, M.: MultiQC: summarize analysis results for
multiple tools and samples in a single report. Bioinformatics 32(19), 3047–3048 (2016)

[10] Ghazanfar, S., Bisogni, A.J., Ormerod, J.T., Lin, D.M., Yang, J.Y.: Integrated single cell data
analysis reveals cell specific networks and novel coactivation markers. BMC Systems Biology
10(5), 127 (2016)

[11] Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken,
B.L., Barrell, D., Zadissa, A., Searle, S., et al.: GENCODE: the reference human genome
annotation for the ENCODE project. Genome Research 22(9), 1760–1774 (2012)
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