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Abstract 14 

 15 

Visual motion estimation is a canonical neural computation. In Drosophila, recent advances have 16 

identified anatomical and functional circuitry underlying direction-selective computations. 17 

Models with varying levels of abstraction have been proposed to explain specific experimental 18 

results, but have rarely been compared across experiments. Here we construct a minimal, 19 

biophysically inspired synaptic model for Drosophila’s first-order direction-selective T4 cells 20 

using the wealth of available anatomical and physiological data. We show how this model relates 21 

mathematically to classical models of motion detection, including the Hassenstein-Reichardt 22 

correlator model. We used numerical simulation to test how well this synaptic model could 23 

reproduce measurements of T4 cells across many datasets and stimulus modalities. These 24 

comparisons include responses to sinusoid gratings, to apparent motion stimuli, to stochastic 25 

stimuli, and to natural scenes. Without fine-tuning this model, it sufficed to reproduce many, but 26 

not all, response properties of T4 cells. Since this model is flexible and based on straightforward 27 

biophysical properties, it provides an extensible framework for developing a mechanistic 28 

understanding of T4 neural response properties. Moreover, it can be used to assess the 29 

sufficiency of simple biophysical mechanisms to describe features of the direction-selective 30 

computation and identify where our understanding must be improved. 31 
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 32 

Introduction 33 

 34 

Motion estimation is a canonical visual computation that requires integrating information 35 

nonlinearly over both time and space. Direction-selective signals are tuned to motion in a 36 

preferred-direction (PD), which elicits the strongest responses, while motion in the opposite, 37 

null-direction (ND), elicits a weaker response. This directional computation has been described 38 

by a wide variety of computational models. Classical models, such as the Hassenstein-Reichardt 39 

correlator (HRC) (Hassenstein and Reichardt, 1956) and motion energy model (Adelson and 40 

Bergen, 1985), rely on sensing correlations between pairs points separated in time and space. 41 

These phenomenological models have provided striking insights into neural and behavioral 42 

responses in a variety of species, including in flies (Yang and Clandinin, 2018).  43 

 44 

In the last decade, advances in defining the anatomical and functional connectivity of 45 

Drosophila’s visual circuits suggest that we should move towards more mechanistic, biophysical 46 

descriptions of this computation. Here, we follow previous work (Gruntman et al., 2018; Torre 47 

and Poggio, 1978) to propose a simple, biophysically-plausible synaptic model for direction-48 

selectivity in Drosophila's ON-edge sensitive motion pathway. We compare its predictions to 49 

measurements made by several research groups in response to many stimuli, giving us a tool for 50 

understanding which features are sufficient to describe different response properties. 51 

 52 

The inputs to direction-selective cells have been identified by electron microscopy and through 53 

genetic silencing experiments. The most peripheral direction-selective neurons in the Drosophila 54 

optic lobe are the T4 and T5 cells, which are sensitive to moving ON-edges (consisting of 55 

contrast increments) and OFF-edges (consisting of contrast decrements), respectively (Clark et 56 

al., 2011; Joesch et al., 2010; Maisak et al., 2013). Electron microscopy and genetic silencing 57 

have identified primary inputs to T4 and T5 cells (Serbe et al., 2016; Shinomiya et al., 2019; 58 

Strother et al., 2017; Takemura et al., 2017). These studies suggest that T4 cells receive input 59 

from three distinct colinear spatial locations, with the neurons Mi1 and Tm3 both relaying 60 

information about the central point, and the neurons Mi9 and Mi4 acting as relays for the two 61 

flanking points (Takemura et al., 2017) (Fig. 1A). The neuron T5 appears to have a similar 62 
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spatial structure, with different input neurons (Shinomiya et al., 2019). Both cell types also 63 

receive spatially-localized inputs from other neurons, whose functions remain less well 64 

understood (Shinomiya et al., 2019; Takemura et al., 2017). 65 

 66 

The physiological properties of the inputs to T4 and T5 cells have also been characterized. At 67 

their receptive field centers, Mi1 and Tm3 cells respond quickly to visual stimuli, and provide 68 

excitatory input to T4 (Arenz et al., 2017; Behnia et al., 2014; Gruntman et al., 2018; Strother et 69 

al., 2017; Takemura et al., 2017). On the preferred direction side of the receptive field, the cells 70 

Mi4 and CT1 are ON cells with slower kinetics, likely inhibiting T4 cells (Arenz et al., 2017; 71 

Shinomiya et al., 2019; Takemura et al., 2017). On the null direction side of the receptive field, 72 

Mi9 cells are delayed OFF cells, which are likely to provide inhibitory, glutamatergic input to T4 73 

cells (Arenz et al., 2017; Salazar-Gatzimas et al., 2018). The inputs to T5 cells similarly appear 74 

to be arranged with a fast central input and delayed flanking inputs, but whether these inputs 75 

excite or inhibit T5 is less clear (Arenz et al., 2017; Behnia et al., 2014; Shinomiya et al., 2019; 76 

Wienecke et al., 2018). 77 

 78 

The functional properties of the T4 and T5 cells and their inputs have been interrogated using 79 

many stimulus and measurement modalities. This wealth of data has led to many different 80 

models that seek to describe the response properties of T4 and T5 cells (Arenz et al., 2017; 81 

Badwan et al., 2019; Behnia et al., 2014; Clark et al., 2011; Creamer et al., 2018; Eichner et al., 82 

2011; Gruntman et al., 2018; Haag et al., 2016; Leong et al., 2016; Leonhardt et al., 2016; 83 

Salazar-Gatzimas et al., 2018; Salazar-Gatzimas et al., 2016; Serbe et al., 2016; Strother et al., 84 

2017; Wienecke et al., 2018). Many measurements of T4 and T5 have demonstrated 85 

phenomenology that could not be produced by the classical HRC model. However, proposed 86 

models were most often evaluated by how they reproduced the associated dataset, rather than the 87 

full the range of phenomena in the literature. Here we ask how a minimal, constrained model 88 

reproduces T4 phenomenology (and some T5 phenomenology) from many different experiments. 89 

We compare the model to data in response to moving edges, to sinusoids, to apparent motion 90 

stimuli, to stochastic stimuli, and to natural scenes. 91 

 92 
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In this minimal model, the spatially-separated inputs to T4 are represented as three linear-93 

nonlinear (LN) transformations of the input contrast (Dayan and Abbott, 2001). These model 94 

neurons then interact with T4 by altering the conductance of excitatory and inhibitory currents 95 

(Gruntman et al., 2018; Torre and Poggio, 1978). This construction is simple enough to allow 96 

some algorithmic intuition but incorporates greater biophysical realism than most 97 

phenomenological models. We do not fit the model to every dataset. Rather, our goal is to test 98 

the sufficiency of a minimal circuit model to account for different measured phenomena in T4 99 

cells. This model does not contain any exotic channels or receptors, and it biophysically models 100 

the membrane voltage and intracellular calcium concentration in T4 neurons. It does not 101 

reproduce all functional properties of T4 cells, but it provides a flexible framework for 102 

understanding the sufficiency of simple circuit properties and mechanisms to describe the 103 

processing properties of T4 neurons. In cases where this model is insufficient to describe data, 104 

we suggest how model parameters might be changed to better describe the data. 105 

 106 

Methods 107 

 108 

Constructing an anatomically constrained synaptic model for T4 cells 109 

Following proposed synaptic architectures for direction-selective computations (Gruntman et al., 110 

2018; Torre and Poggio, 1978), we constructed an elementary motion detector based on the 111 

connectome of the Drosophila optic lobe. We simplified this structure to consider three inputs to 112 

a T4 cell: a delayed ND-offset OFF inhibitory input representing Mi9, a centered ON excitatory 113 

input representing Mi1 and Tm3, and a delayed PD-offset ON inhibitory input representing Mi4 114 

(and/or CT1) (Figure 1A) (Strother et al., 2017; Takemura et al., 2017).  115 

 116 

We will model these inputs to T4 cells as simple linear-nonlinear (LN) transformations of the 117 

input contrast (Behnia et al., 2014). We will further model effects of these synaptic inputs on the 118 

membrane potential of the T4 cell by changes in the conductance of excitatory and inhibitory 119 

currents (Torre and Poggio, 1978). For notational convenience, we define our model below in 120 

continuous space and time, noting as needed where adjustments are made for the discretization 121 

used in numerical simulation. We take the inputs to the model to be contrasts. We take each 122 

input to the motion detector to have an 𝐿1-normalized Gaussian spatial acceptance function 123 
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 124 

ℎ(𝑥) =
1

√2𝜋𝜎2
 𝑒

−
𝑥2

2𝜎2 125 

 126 

where the spatial parameter 𝜎 is related to the full width at half maximum (FWHM) of the 127 

acceptance function by FWHM = 2√2 log 2 𝜎. We fix FWHM = 5.7° to approximately match 128 

the spatial acceptance functions of photoreceptors in the fly eye (Stavenga, 2003). To represent 129 

the delayed inputs to the motion detector, we use the 𝐿2-normalized lowpass temporal filter 130 

 131 

𝑓(𝑡) = 2 𝜏−
3
2 𝑡 Θ(𝑡) 𝑒−

𝑡
𝜏 132 

 133 

where Θ(𝑥) is the Heaviside step function. To represent the non-delayed central input to the 134 

motion detector, we replace the temporal filter 𝑓 by its derivative 𝑓̇. We note that the term 135 

resulting from the distributional derivative of Θ(𝑡) vanishes when 𝑓̇ is convolved with any signal 136 

as it is proportional to 𝑡 𝛿(𝑡), where 𝛿(𝑥) is the Dirac delta distribution. Using these filters, we 137 

define the filtered contrast signal 𝑠 at each point in spacetime: 138 

 139 

𝑠(𝑡, 𝑥) ≔ (𝑓ℎ ∗ 𝑐)(𝑡, 𝑥) 140 

 141 

where 𝑐(𝑡, 𝑥) is the input contrast and ∗ denotes spatiotemporal convolution over the appropriate 142 

domain. As taking the temporal derivative of the filtered contrast signal is equivalent to filtering 143 

with the derivative of the temporal filter, we will use the notation �̇� for the high-pass-filtered 144 

signal throughout. For convenient handling of spatial boundary conditions, we numerically 145 

simulate the full 360° of visual space, which is a periodic interval.  146 

 147 

We denote the spacing between neighboring inputs as Δ. Here, we use 5° spacing so that the 148 

inputs evenly tile 360° of visual space. Then, we define the three inputs to the motion detector as 149 

rectified-linear functions of the filtered contrast signal at three points in space, mimicking the 150 

polarity-selectivity of the inputs to T4 cells: 151 

 152 
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𝑔1(𝑡, 𝑥) ≔ 𝑔inh 𝑅(−𝑠(𝑡, 𝑥 − Δ)) 153 

𝑔2(𝑡, 𝑥) ≔ 𝑔exc 𝑅(�̇�(𝑡, 𝑥)) 154 

𝑔3(𝑡, 𝑥) ≔ 𝑔inh 𝑅(𝑠(𝑡, 𝑥 + Δ)) 155 

 156 

where 𝑅(𝑥) ≔ max{0, 𝑥} is the ramp function and 𝑔inh and 𝑔exc are parameters scaling the 157 

effects of each input on the postsynaptic conductances (Figure 1A-B). Thus far, we have 158 

represented the conductances as linear-nonlinear (LN) transformations of the input contrast 159 

(Dayan and Abbott, 2001).  160 

 161 

We define the membrane potential 𝑉m of the postsynaptic cell such that the reversal potential for 162 

leak currents is 0 mV. The cell’s membrane voltage dynamics are then given as (Torre and 163 

Poggio, 1978) 164 

 165 

𝑐m�̇�m + 𝑉m(𝑔leak + 𝑔1 + 𝑔2 + 𝑔3) = 𝑔1𝐸inh + 𝑔2𝐸exc + 𝑔3𝐸inh 166 

 167 

where 𝑐m is the membrane capacitance, 𝑔leak is the leak conductance, and 𝐸inh and 𝐸exc are the 168 

reversal potentials for inhibitory and excitatory currents, respectively. Neglecting capacitive 169 

currents, we solve for the pseudo-steady-state (Gruntman et al., 2018; Torre and Poggio, 1978). 170 

 171 

𝑉m =
𝑔1𝐸inh + 𝑔2𝐸exc + 𝑔3𝐸inh

𝑔leak + 𝑔1 + 𝑔2 + 𝑔3
 172 

 173 

Then, we model the transformation from membrane voltage to calcium concentration 𝐶 as a 174 

positively rectifying half-quadratic function 𝑅2(𝑥) ≔ (𝑅(𝑥))2: 175 

 176 

𝐶(𝑡, 𝑥) ≔ 𝑅2(𝑉m(𝑡, 𝑥)) 177 

 178 

which qualitatively captures the expansive nonlinear effect of the transformation between 179 

voltage and calcium (Kato et al., 2014; Leong et al., 2016) (Figure 1B). 180 

 181 
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 7 

Visual stimuli 182 

We presented this model with spatiotemporal contrast patterns to mimic a variety of visual 183 

stimuli used in the field. Detailed mathematical descriptions of each stimulus are given in 184 

Appendix A. Briefly, we presented the model with moving and stationary sinusoidal gratings, 185 

with apparent motion stimuli, with stochastic stimuli including those with imposed correlations, 186 

and with natural scenes. In each case, we compared how the model responds to the published 187 

responses of T4 and T5 neurons. 188 

 189 

Selecting model parameters 190 

This model uses a parameter set equal to one that was developed to explain direction-opponency 191 

in T4 cells (Badwan et al., 2019). There, we fixed the filter time constant 𝜏 = 150 ms to produce 192 

peak responses to PD sinusoidal gratings at ~1 Hz (Badwan et al., 2019; Creamer et al., 2018; 193 

Maisak et al., 2013). We fix the excitatory and inhibitory reversal potentials to values of 𝐸exc =194 

60 mV and 𝐸inh = – 30 mV, which are plausible based on electrophysiological experiments 195 

(Gruntman et al., 2018). As the model membrane potential can be rewritten as 196 

 197 

𝑉m = (
𝑔1

𝑔leak
𝐸inh +

𝑔2

𝑔leak
𝐸exc +

𝑔3

𝑔leak
𝐸inh) (1 +

𝑔1

𝑔leak
+

𝑔2

𝑔leak
+

𝑔3

𝑔leak
)

−1

 198 

 199 

only the ratios of 𝑔1, 𝑔2, and 𝑔3 to 𝑔leak, rather than their absolute magnitudes, are relevant. We 200 

therefore express the postsynaptic conductances as non-dimensional quantities in units of 𝑔leak, 201 

leaving 𝑔exc/𝑔leak and 𝑔inh/𝑔leak as the model’s two free parameters. The procedure used to 202 

select the values of these parameters is described in detail in Appendix B. As shown previously 203 

(Badwan et al., 2019), there exists a broad region of parameter space for which this model 204 

displays responses to sinusoid gratings with a temporal frequency of 1 Hz and a spatial 205 

wavelength of 45° consistent with those measured in T4 and T5 cells. We note that our choice of 206 

filter normalization, which differs from that in the previous use of this model (Badwan et al., 207 

2019), affects the parameter values chosen, as it scales 𝑔1, 𝑔2, and 𝑔3 relative to 𝑔leak. Table 1 208 

summarizes the model parameter values used in all simulations.  209 

 210 
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Table 1: Parameter values used in all simulations. 211 

Parameter Value 

Photoreceptor spacing Δ 5° 

Photoreceptor spatial FWHM 5.7° 

Temporal filter time constant 𝜏 0.150 s 

Spatial sampling interval Δ𝑥 0.5° 

Temporal sampling interval Δ𝑡 1/240 s 

Leak current reversal potential 𝐸leak 0 mV 

Excitatory current reversal potential 𝐸exc +60 mV 

Inhibitory current reversal potential 𝐸inh -30 mV 

Excitatory to leak conductance ratio 𝑔exc/𝑔leak 0.1 

Inhibitory to leak conductance ratio 𝑔inh/𝑔leak 0.3  

 212 

In vivo two-photon calcium imaging in T4 cells 213 

Most of our comparisons relate the synaptic model’s responses to published data, but we also 214 

compare the model to a new dataset of T4 cell responses to glider stimuli. The protocol for two-215 

photon calcium imaging in T4 cells matches published methods (Badwan et al., 2019) and used 216 

Psychtoolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) to present stimuli on a 217 

panoramic visual display (Creamer et al., 2019). The glider stimuli presented during these 218 

measurements are described in Appendix A. Net responses were computed as the difference in 219 

responses to stimuli moving in the preferred and null directions of each T4 region of interest, and 220 

then averaged within each fly. Non-parametric two-sided Wilcoxon signed-rank tests were used 221 

to test whether median net responses differed significantly from zero (Hollander et al., 2013). 222 

For statistical purposes, each individual fly was considered to be an independent sample.  223 

 224 

Numerical methods 225 

Numerical simulations were conducted using Matlab 9.6 (R2019a) (The MathWorks, Natick, 226 

MA, USA).  For stimuli containing randomly-generated components, responses were averaged 227 
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over 1000 realizations, and bootstrapped 95% confidence intervals for the mean were computed 228 

using the bias-corrected and accelerated percentile method (Efron, 1987). Results 229 

 230 

The synaptic model reduces to HRC-like terms  231 

To gain intuition about the operation of the T4 synaptic model, we consider its expansion in the 232 

small-input limit. To do so, we approximate the ramp function nonlinearity with a smooth 233 

function that represents a soft rectifier, which can be approximated by a linear function for small 234 

inputs (Fitzgerald and Clark, 2015). In particular, letting 𝑠1(𝑡) ≔ 𝑠(𝑡, 𝑥 − Δ), 𝑠2(𝑡) ≔ 𝑠(𝑡, 𝑥), 235 

and 𝑠3(𝑡) ≔ 𝑠(𝑡, 𝑥 + Δ), and defining the non-negative constants 𝛼 ≔ |𝑔inh𝐸inh/𝑔leak| and 𝛾 ≔236 

|𝑔exc𝐸exc/𝑔leak|, we have, to lowest order in the inputs,  237 

 238 

𝐶 ≈
1

16
(𝛼𝑠1 + 𝛾�̇�2 − 𝛼𝑠3)2 239 

 240 

which may be rewritten as  241 

 242 

𝐶 ≈
𝛼2

16
(𝑠1 − 𝑠3)2 +

𝛾2

16
(�̇�2)2 +

𝛼𝛾

8
(𝑠1�̇�2 − �̇�2𝑠3) 243 

 244 

This expansion represents a motion-energy approximation of the model. The first term in this 245 

expansion is a finite-difference approximation to a spatial derivative, while the second term is a 246 

temporal derivative at the center of the model’s receptive field. The third term, which is the only 247 

direction-selective term, is the subtraction of two offset correlators with opposite directional 248 

tuning. This subtraction step provides some intuition for why this model mimics some properties 249 

of a fully-opponent HRC model (Badwan et al., 2019). This same direction-selective term also 250 

appears in the second-order expansion of the membrane voltage. Because this expansion of the 251 

model is only to second-order, it is invariant under contrast inversions, and cannot account for 252 

properties like ON-edge selectivity (Clark et al., 2014; Fitzgerald and Clark, 2015; Fitzgerald et 253 

al., 2011). Though this simple description does not capture all properties of the synaptic model, it 254 

provides intuition for the sensitivity of the model to certain stimulus features.  255 

 256 
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The synaptic model is strongly ON/OFF-edge- and direction-selective 257 

T4 and T5 neurons are distinguished by the fact that T4 cells respond to ON-edges while T5 cells 258 

respond to OFF-edges (Maisak et al., 2013). We first compared the ON/OFF edge- and direction-259 

selectivity of our T4 synaptic model to responses measured using two-photon calcium imaging in 260 

T4 cells sensitive to front-to-back (FTB) motion. Like T4 FTB cells, our synaptic model 261 

responded strongly to an ON edge moving in the FTB direction, but displayed little or no 262 

response to OFF edges moving in the FTB direction or to edges of either polarity moving in the 263 

back-to-front (BTF) direction (Figure 1C) (Maisak et al., 2013; Salazar-Gatzimas et al., 2016).  264 

 265 

The spatiotemporal tuning of the synaptic model is consistent with that of T4 cells 266 

Sinusoid grating stimuli are a common tool for characterizing direction-selective computations. 267 

Responses to these stimuli have been used to suggest that the membrane voltage of T5 cells is a 268 

nearly linear transformation of the visual input (Figure 2A) (Wienecke et al., 2018). In the 269 

synaptic model, the membrane voltage is a nonlinear function of the input contrast because the 270 

inputs are first rectified and then interact nonlinearly. We applied the same linearity testing 271 

protocol to our model membrane voltage, constructing predictions for responses to PD and ND 272 

drifting gratings from the responses to counterphase gratings (see Appendix A) (Jagadeesh et al., 273 

1993; Wienecke et al., 2018). The responses of the T4 synaptic model to drifting gratings were 274 

similar to those predicted by a linear model for membrane voltage (Figure 2A). Thus, even a 275 

nonlinear system like the T4 synaptic model may appear reasonably linear by this protocol.  276 

 277 

T4 and T5 cells display direction-opponent average calcium responses to sinusoid gratings 278 

(Figure 2B) (Badwan et al., 2019). This property means that the average response to PD motion 279 

is reduced by the addition of ND motion, imposing a strong constraint on models for the 280 

direction-selective computation. In particular, it implies that linear-nonlinear models with 281 

expansive nonlinearities cannot account for the response properties of these cells (Badwan et al., 282 

2019). A variant of this synaptic model was proposed to account for these direction-opponent 283 

responses (Badwan et al., 2019). This model reproduces the strong suppression when ND motion 284 

is added to PD motion without substantial enhancement when orthogonal-direction (OD) motion 285 

is added to PD motion (Figure 2B). 286 

 287 
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T4 and T5 cells are tuned to the temporal frequency of sinusoidal stimuli (Figure 2C) (Creamer 288 

et al., 2018). This means that the mean neural response is maximal at a single temporal 289 

frequency, independent of the wavelength. This property also applies to measurements of fly 290 

behavior (Creamer et al., 2018; Kunze, 1961) and is consistent with the classical, fully-opponent 291 

HRC. We presented the T4 synaptic model with drifting gratings of different spatial and 292 

temporal frequencies to find the mean response to each. The model response was strongly 293 

temporal-frequency-tuned (Figure 2C). To quantify the temporal-frequency-tuning, we asked 294 

how much of the variance in this surface was accounted for by the product of one function of 295 

temporal frequency and one fuction of spatial frequency response (Creamer et al., 2018; Priebe et 296 

al., 2006). Such a separable model accounted for 99% of the variance in the response (see 297 

Appendix A, Figure 2C). Because of our choice of parameters, the input temporal filters in this 298 

model produce peak responses at around 1 Hz, lower than the roughly 2-4 Hz peak measured in 299 

these T4 cells.  300 

 301 

T4 and T5 cells respond to static gratings with amplitudes that depend on the grating orientation 302 

(Fisher et al., 2015) (Figure 2D). The preferred orientation (defined by the vector normal to the 303 

edges in a static grating) approximately matches the preferred direction of motion of these cells 304 

(Maisak et al., 2013). The convention we use here for defining the orientation of a static grating 305 

is rotated 90º relative to that used in the original study, which defined orientation in terms of 306 

vectors parallel, rather than normal, to the edges (Fisher et al., 2015) (see Appendix A). When 307 

the T4 synaptic model was presented with both static and drifting gratings of many different 308 

orientations, it reproduced the orientation tuning observed experimentally for both static and 309 

moving gratings (Figure 2D). The model was more selective for both orientation and direction 310 

than the T4 cell measurements. 311 

 312 

The synaptic model reproduces the selectivity of apparent motion responses in T4 cells 313 

In addition to sinusoid gratings, apparent motion stimuli are a useful tool for investigating 314 

direction-selective systems. These stimuli decompose visual motion into summations of simpler 315 

spatiotemporal patterns, which can provide strong intuition into the motion computation (Barlow 316 

and Levick, 1965).  317 

 318 
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Electrophysiological measurements of T4 cells have shown fast depolarization and delayed, 319 

offset hyperpolarization in response to a small flashed white bar placed on a gray background 320 

(Gruntman et al., 2018) (Figure 3A). The synaptic T4 model displayed qualitatively consistent 321 

responses to the same stimulus (Figure 3A). The positive lobe in the model is narrower than in 322 

the electrophysiological recording; this is likely because the true central input to T4 has a wider 323 

receptive field than in our model (Behnia et al., 2014; Takemura et al., 2013). Consistent with 324 

electrophysiology, the OFF input to the T4 model is not visible under this analysis because it was 325 

rectified with a threshold at mean gray (zero contrast). 326 

 327 

Since the synaptic model reproduced T4 cell voltage responses to flashed bars, we sought to 328 

characterize its responses to apparent motion stimuli composed of pairs of bars offset in 329 

spacetime (Salazar-Gatzimas et al., 2018). These stimuli can induce in humans and in flies the 330 

“reverse-phi” motion illusion, in which a reversal of contrast polarity induces a motion percept in 331 

the direction opposite the stimulus displacement (Anstis, 1970; Clark et al., 2011; Hassenstein 332 

and Reichardt, 1956). We aligned these stimuli so that the temporally-delayed bar is placed at the 333 

center of the receptive field (Figure 3B) (Salazar-Gatzimas et al., 2018). T4 cells respond 334 

maximally to one phi and one reverse-phi apparent motion stimulus out of eight possible pairings 335 

(Salazar-Gatzimas et al., 2018). The synaptic model reproduced this selectivity (Figure 3C-D).  336 

 337 

Various groups have assessed nonlinear enhancement or suppression of PD and ND apparent 338 

motion stimuli relative to linear decompositions. This analysis can be misleading because it does 339 

not allow one to uniquely characterize the nonlinearity as ‘enhancing’ or ‘suppressing’, since 340 

there exist an infinite number of linear decompositions of a given stimulus (Salazar-Gatzimas et 341 

al., 2018). Despite this difficulty, such analyses have been applied as an intuitive way to try to 342 

understand direction-selective computations (Barlow and Levick, 1965; Fisher et al., 2015; 343 

Gruntman et al., 2018; Haag et al., 2016).  344 

 345 

In T4 cells, an analysis of responses to sequential bars has indicated that calcium signals include 346 

both PD enhancement and ND suppression relative to a linear prediction from the responses to 347 

individual bars (Haag et al., 2016) (Figure 3E). Our model failed to reproduce this result, 348 

showing only suppression of ND motion under this analysis (Figure 3E). This discrepancy could 349 
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be influenced by the timescale of this stimulus, which is far longer than the 150 ms offset used in 350 

the apparent motion stimuli in (Figure 3C-D). Additionally, previous theoretical work has 351 

shown that disinhibition can generate PD enhancement in similar models (Borst, 2018; Torre and 352 

Poggio, 1978); the choice of thresholds in this model did not permit flanking disinhibition with 353 

ON stimuli.  354 

 355 

The synaptic model does not reproduce the fast timescale tuning of T4 cells 356 

A third approach to characterizing direction-selective signals has been to apply stochastic stimuli 357 

with specified correlation structure. Responses to uncorrelated stimuli can be used to generate an 358 

unbiased estimate of a system’s linear receptive field (Chichilnisky, 2001). By using reverse-359 

correlation and uncorrelated stimuli to extract spatiotemporal receptive fields, T4 cells have been 360 

characterized by oriented linear receptive fields with a central excitatory lobe and a delayed, 361 

offset inhibitory lobe (Figure 4A) (Leong et al., 2016; Salazar-Gatzimas et al., 2016). The T4 362 

synaptic model generates the same shape of receptive field (Figure 4A). However, in the model, 363 

the inhibitory lobe lasts longer than that measured in T4 cells, and the tuning of the model was 364 

slower overall.  365 

 366 

Responses to stochastic stimuli containing precise pairwise spatiotemporal correlations have 367 

revealed fast-timescale tuning in T4 cells (Salazar-Gatzimas et al., 2016). In measurements of T4 368 

and T5, the cells could discriminate between spatiotemporal correlations with delays of 0 and 15 369 

ms (Figure 4B). We presented the synaptic model with stimuli containing pairwise 370 

spatiotemporal correlations at different temporal delays. The model was direction-selective and 371 

responded to both positive and negative correlations, as in the cellular measurements. However, 372 

the model did not reproduce the fast timescale discrimination between delays (Figure 4B). 373 

Furthermore, the synaptic model showed strong suppression of ND-oriented positive correlations 374 

and enhancement of ND-oriented negative correlations, which was not observed in the data.  375 

 376 

Behaving Drosophila respond direction-selectively to correlations higher than second-order 377 

(Clark et al., 2014; Leonhardt et al., 2016). This cannot be explained by models that compute 378 

pairwise correlations in the stimulus, such as the HRC and motion energy model. The sensitivity 379 

to higher-order correlations has been assessed using three-point glider stimuli, which contain 380 
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precise third-order correlations (Hu and Victor, 2010) (Figure 4C). The net responses of T4 cells 381 

to these stimuli have previously been inferred from behavioral measurements in Drosophila with 382 

the synaptic outputs of T5 cells silenced, using gliders updated at 24 Hz (Leonhardt et al., 2016). 383 

We used in vivo two-photon calcium imaging to measure directly the responses of T4 cells to 384 

three-point gliders updated at 5 Hz, and found that the signs of the net responses were consistent 385 

with those measured in behavior with T5 cells silenced (Figure 4C, see Methods and Appendix 386 

A for details).  387 

 388 

With an update rate of 24 Hz, the synaptic model correctly predicted the signs of net responses to 389 

diverging gliders measured in imaging and behavior, but predicted the wrong converging glider 390 

responses (Figure 4C). At 5 Hz, the synaptic model correctly predicted the signs of both 391 

converging and diverging glider responses, but not the relative magnitudes. Thus, the glider 392 

responses in T4 appear relatively insensitive to the glider timescale (24 vs. 5 Hz), but the 393 

model’s response depends strongly on the input timescales.  394 

 395 

T4 and T5 cells have been shown to display strongly direction-selective responses to rigidly-396 

translating stimuli consisting of black and white squares placed at random on a gray background 397 

(see Appendix A) (Badwan et al., 2019). When two such stimuli that move in opposite 398 

directions are superimposed, they generate transparent motion percepts in primates (Qian et al., 399 

1994), and they generate responses in T4 that are reduced compared to presenting PD stimuli 400 

alone (Badwan et al., 2019). The synaptic model qualitatively reproduced these responses 401 

(Figure 4D). In particular, the responses of T4 cells are suppressed more strongly under the 402 

addition of ND motion than under the addition of OD motion, a feature that is reproduced by the 403 

synaptic T4 model (Figure 4D). Therefore, as in T4 cells, the selective direction-opponency 404 

observed in the model persists even with stimuli containing multiple spatiotemporal frequencies.  405 

 406 

The T4 synaptic model provides decorrelated channels for naturalistic motion 407 

Beyond artificial stimuli, natural scenes have been used to investigate the performance of 408 

direction-selective signals generated by models, behavior, and neurons (Badwan et al., 2019; 409 

Chen et al., 2019; Dror et al., 2001; Fitzgerald and Clark, 2015; Leonhardt et al., 2016; Salazar-410 

Gatzimas et al., 2018; Straw et al., 2008). We therefore sought to investigate the performance of 411 
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the T4 synaptic model in natural motion processing. To do so, we presented it with rigidly-412 

translating scenes from a database of natural images (see Appendix A, Figure 5A) (Meyer et al., 413 

2014) (Badwan et al., 2019; Chen et al., 2019; Fitzgerald and Clark, 2015; Meyer et al., 2014; 414 

Salazar-Gatzimas et al., 2018). Though the structure and properties of inputs to T5 cells are 415 

known to differ from the inputs to T4 (Serbe et al., 2016; Shinomiya et al., 2019), to make an 416 

OFF-edge selective channel we created a ‘T5’ model by simply inverting the ON/OFF selectivity 417 

of the inputs to our T4 synaptic model. This is intended merely to be an OFF-selective channel 418 

for the purposes of comparing T4 and potential T5 cell responses. The resulting four channels 419 

displayed strongly direction-selective average responses to translating natural scenes (Figure 420 

5B).  421 

 422 

Measured responses of T4 and T5 cells to translating natural scenes are decorrelated, so that only 423 

one channel is active at once (Salazar-Gatzimas et al., 2018). The synaptic models of T4 and 424 

‘T5’ also generated highly decorrelated responses, with the coactivation matrix of the four 425 

channels being nearly diagonal (Figure 5C). Such decorrelated parallel channels may provide a 426 

convenient representation of motion signals (Salazar-Gatzimas et al., 2018).  427 

 428 

Discussion 429 

 430 

An anatomically constrained synaptic model suffices to reproduce many, but not all, of the 431 

properties of Drosophila T4 cells. This model reproduces the direction-opponency, temporal-432 

frequency-tuning, orientation-tuning, and phi/reverse-phi selectivity measured in T4 cells 433 

(Figures 2-4). When applied to a naturalistic velocity estimation task, it produces decorrelated 434 

signals similar to those measured in T4 and T5 neurons (Figure 5). However, it fails to 435 

reproduce the PD enhancement and fast-timescale tuning observed in T4 cells (Figures 3-4). 436 

Moreover, though it is sensitive to triplet correlations in its input, it fails to reproduce them on 437 

the same timescales as observed in the data (Figure 4). In short, this simple synaptic model is 438 

sufficient to reproduce several distinct properties of T4 cells, but cannot account for several 439 

observations. 440 

 441 
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Minimal models and levels of understanding 442 

Here, we asked whether a minimal synaptic model could qualitatively reproduce features of T4 443 

cell responses. The minimal model required no exotic neurotransmitter receptors or interactions, 444 

and was based on simple synaptic conductances. The simplifications sufficient to explain 445 

different phenomena will depend strongly on the features one seeks to reproduce, and on the 446 

desired level of fidelity. However, minimal models are useful precisely because they can be 447 

relatively straightforward to analyze. 448 

 449 

Marr famously proposed different levels of understanding neural circuitry, including an 450 

algorithmic level and a mechanistic level (Marr and Poggio, 1976). As we drive towards a deeper 451 

understanding of the visual motion circuit in the fly, the levels of algorithm and mechanism can 452 

appear increasingly blurred. It is hard to define what distinguishes the mechanistic circuit 453 

description presented here from a detailed algorithm-level description of the computation. 454 

However, it remains important to connect proposed mechanistic models to high-level 455 

descriptions of the system such as the HRC. This is because the high-level descriptions of 456 

computations provide a level of intuition for the behavior of the system that a more intricate 457 

model cannot. Moreover, the HRC explains a wide variety of neural and behavioral data in flies 458 

(Borst and Egelhaaf, 1989; Yang and Clandinin, 2018), so an HRC-like algorithm must be a 459 

limiting case of any proposed mechanistic model (Potters and Bialek, 1994). 460 

 461 

Sufficiency of models 462 

Many details of the function of the early visual system were neglected in this model. For 463 

instance, the filter shapes in neurons leading into the model T4 cell have been well-characterized 464 

(Arenz et al., 2017; Behnia et al., 2014), but this model used simple exponential filters. Lateral 465 

inhibition is widely documented in the early fly visual system (Arenz et al., 2017; Freifeld et al., 466 

2013; Meier et al., 2014), but this model used simple Gaussian spatial acceptance functions 467 

without lateral inhibition. The synapses that feed into the medulla neurons that synapse onto T4 468 

are likely to have complex, nonlinear processing properties (Yang et al., 2016), yet we modelled 469 

the entire input pathway as a purely linear filter. The rectifications of neural responses upstream 470 

of T4 are imperfect (Behnia et al., 2014; Salazar-Gatzimas et al., 2018), but this model used 471 

simple threshold-linear rectifiers. The fly eye possesses neurons that feedback onto earlier stages 472 
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and create reciprocal interactions between neurons (Takemura et al., 2013; Takemura et al., 473 

2017), but this model is entirely feedforward.  474 

 475 

Despite these approximations, the synaptic T4 model presented here is sufficient to qualitatively 476 

match a variety of T4 neuron responses. Adding some of these neglected details into a model 477 

may make it sufficient to reproduce other features of T4 responses. This provides a method for 478 

understanding which details of processing are related to which response features in T4 cells: one 479 

may ask how different details of the system affect the sufficiency of a model to reproduce 480 

specific downstream response properties. As the field acquires more and more detailed 481 

information about the motion detection circuitry, this sort of analysis will be critical to 482 

understand the functional role of different properties. 483 

 484 

One might naturally ask whether the synaptic model presented here might be further simplified 485 

without sacrificing its ability to account for the response properties of T4 cells. As described in 486 

Appendix C, a simplified linear-nonlinear cascade (LNLN) representing the numerator of the 487 

biophysical nonlinearity can generate some, but not all, of the properties of the full model.  488 

 489 

Flexibility in extending this minimal synaptic model 490 

In selecting parameter values for this synaptic model, we sought to reproduce only a few 491 

properties of T4 cells: a temporal frequency maximum of 1 Hz and a direction-opponent average 492 

responses to sinusoid gratings with a temporal frequency of 1 Hz and a spatial wavelength of 45º 493 

(Appendix B) (Badwan et al., 2019). To capture a larger subset of the measured properties of T4 494 

cells, one could optimize the parameters of the model capture many response properties (Deb, 495 

2014). Such a solution would provide information about the maximal ability of this synaptic 496 

model to reproduce the properties of T4 cells, but it seems unlikely to provide insight into the 497 

predictive power of the core features of the model.  498 

 499 

The organization of this model allows for several clear tuning mechanisms. First, the temporal 500 

filters could be modified to better match measured filters (Figure 2). Second, the degree to 501 

which inhibition is shunting or hyperpolarizing can be adjusted by changing the reversal 502 

potential of inhibitory currents. This could effectively hide inhibition under some stimuli and 503 
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measurements. Third, it is clear that to better represent preferred direction enhancement, the 504 

threshold for the OFF-inhibitory input could be changed (Figure 3) (Borst, 2018). This would 505 

allow disinhibition of Mi4 to change the gain for the central input.  506 

 507 

In the model analyzed here, we chose all thresholds of the input LN models to be zero. This 508 

effectively ignores contrast asymmetries in the natural world (Geisler, 2008), which have been 509 

used to understand many functional properties of motion detectors in flies (Chen et al., 2019; 510 

Clark et al., 2014; Fitzgerald and Clark, 2015; Fitzgerald et al., 2011; Leonhardt et al., 2016; 511 

Salazar-Gatzimas et al., 2018). Changing these thresholds to optimize for natural scene motion 512 

estimation might also generate a parameter set that better captures responses to triplet 513 

correlations (Figure 4) (Fitzgerald and Clark, 2015). In short, the synaptic model presented here 514 

is highly flexible and extensible, and uses only simple, known biophysical mechanisms.  515 

 516 

For the sake of simplicity, we have used single delay and non-delay lines in this work (Figure 517 

1A). However, T4 cells receive fast excitatory input at the center of their receptive fields from 518 

both Mi1 and Tm3 cells, and delayed OFF inhibitory input offset in the PD from both Mi4 and 519 

CT1 cells (Shinomiya et al., 2019; Takemura et al., 2017). Dissecting how information from 520 

these parallel channels is used, particularly if it is nonlinearly combined, will be important in 521 

developing a full understanding of the direction-selective computation performed by T4 cells.  522 

 523 

Modelling temporal processing 524 

The model presented here failed to capture some of the fast-timescale tuning measured in T4, 525 

including in its responses to pairwise and triplet spatiotemporal correlations (Figure 4). In this 526 

minimal model, we represented all temporal processing by linear filters. However, the temporal 527 

processing upstream of T4 cells involves nonlinear and adaptive mechanisms, which can affect 528 

temporal response properties (Howard et al., 1984; Zheng et al., 2006). Thus far, the study of 529 

nonlinear mechanisms in the fly visual system has focused on static nonlinear effects such as 530 

rectification (Behnia et al., 2014; Yang et al., 2016) and on nonlinear interactions between 531 

linearly filtered signals (Borst et al., 2005; Fitzgerald and Clark, 2015). The inclusion of 532 

nonlinear effects on the dynamics themselves may be necessary to accurately capture the 533 

temporal processing upstream of T4 cells. As a first step towards experimentally understanding 534 
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adaptation in this circuit, one might characterize the temporal kernels of the inputs to T4 cells 535 

with high resolution (Mano et al., 2019; Yang et al., 2016) and study how their properties depend 536 

on stimulus statistics and history (Baccus and Meister, 2002; Kim and Rieke, 2001; Rieke, 537 

2001). Only a few models have focused on these sorts of changes in processing dynamics (Clark 538 

et al., 2013). Though the analysis of dynamic temporal nonlinearities is complex, incorporating 539 

them into models may provide insight into how fast timescale tuning of T4 cells arises.  540 

 541 

A T5 synaptic model 542 

In this work, we used a sign-inverted version of our T4 synaptic model to represent the OFF-543 

edge-selective T5 cells. This representation would correspond to a first-order direction-selective 544 

cell that receives OFF excitatory input at the center of its receptive field, delayed OFF inhibitory 545 

input offset in its preferred direction, and delayed ON input offset in the null direction. Such a 546 

model would correctly predict the selective responses of T5 cells to phi and reverse-phi apparent 547 

motion stimuli (Salazar-Gatzimas et al., 2018). However, the functional and anatomical structure 548 

of the inputs to T5 cells suggests that it receives only OFF inputs (Serbe et al., 2016; Shinomiya 549 

et al., 2019). Somehow, however, signals in T5 cells are sensitive to both contrast increments and 550 

decrements (Salazar-Gatzimas et al., 2018; Wienecke et al., 2018). Further study of the physical 551 

and functional connectome of the OFF-edge motion pathway, will be required to elucidate how 552 

the direction-selective computations in T4 and T5 cells differ.  553 

 554 

Relationships to mammalian visual systems 555 

The organization of the fly’s visual motion detection circuits bear striking similarities to those in 556 

mammalian retina in their anatomy, circuitry, and algorithmic processing (Borst and 557 

Helmstaedter, 2015; Clark and Demb, 2016; Sanes and Zipursky, 2010). In mammalian retina, 558 

the earliest direction-selective signals are generated by starburst amacrine cells (SACs), which 559 

are also tuned to ON- and OFF-edges (Euler et al., 2002; Famiglietti Jr, 1983). It appears that 560 

SACs may receive inputs that are differentially delayed (Fransen and Borghuis, 2017; Kim et al., 561 

2014), similar to the inputs to T4 cells. It would be interesting to investigate how much SAC 562 

phenomenology that mechanism alone could account for, when linked to simple biophysical 563 

mechanisms. As in this study, it could provide insight into where the circuit understanding is 564 

lacking, especially when complex stimuli are used to probe SAC function (Chen et al., 2016). 565 
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 566 

It is notable that the ON-ON-OFF spatial organization of T4 inputs (Fig. 1A) is almost identical 567 

to a model proposed to explain cortical responses to pairwise correlations (Mo and Koch, 2003). 568 

This suggests there may be deep parallels between T4 and T5 and cortical motion processing 569 

steps. Models for fly and cortical direction-selectivity have traditionally differed in whether they 570 

assume discrete inputs (fly, HRC-like models) or more continuous inputs (cortex, motion-571 

energy-like spatiotemporal filtering). If synaptic interactions are considered, then continuous 572 

linear filters cannot be applied, and models must incorporate the discrete receptive fields of the 573 

inputs to a cell. It would be interesting to ask how such conductance models fare in predicting 574 

cortical responses; the statistical nature of cortical connections make it more difficult to make a 575 

general model of this type. 576 

 577 

In this synaptic model of T4 cell function, we have paired known connectivity with measured 578 

physiology and simple biophysics to predict many circuit processing properties. This allows us to 579 

define where such a model succeeds and where it fails. This represents progress towards the 580 

ultimate goal of understanding this circuit at all levels, from utility to algorithm to mechanism.  581 

 582 

Author contributions 583 

JAZV and DAC conceived of numerical experiments. JAZV performed numerical simulations 584 

and analyzed the model. BAB acquired calcium imaging data. JAZV and DAC wrote the paper. 585 

 586 

Acknowledgements 587 

We thank J. E. Fitzgerald and members of the Clark lab for helpful conversations. DAC and this 588 

research were supported by NIH R01EY026555, NIH P30EY026878, NSF IOS1558103, a 589 

Searle Scholar Award, a Sloan Fellowship in Neuroscience, the Smith Family Foundation, and 590 

the E. Matilda Ziegler Foundation.  591 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2019. ; https://doi.org/10.1101/833970doi: bioRxiv preprint 

https://doi.org/10.1101/833970
http://creativecommons.org/licenses/by-nc/4.0/


 

 21 

Figure Legends 592 

 593 

 594 

Figure 1: An anatomically constrained synaptic model for T4 cells.  595 

A. Left: Diagram of proposed inputs to Drosophila T4 first-order direction-selective cells 596 

based on anatomical and physiological measurements. Mi1 and Tm3 cells provide ON 597 

excitatory input at the center of the receptive field of each T4 cell, while Mi9 provides 598 

delayed OFF inhibitory input offset in the null direction, and Mi4 provides delayed ON 599 

inhibitory input offset in the preferred direction. Right: Synaptic model based on the 600 

anatomical structure shown at left.  601 
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B. Responses of each component of the synaptic model to a 1 Hz, 45º sinusoidal grating 602 

drifting in the preferred (rightward) direction. Top: Input contrasts to each of the three 603 

presynaptic units of the model. Upper middle: Conductances of excitatory and inhibitory 604 

currents corresponding to each input in response to the sinusoidal stimulus. Lower 605 

middle: Membrane voltage. Bottom: Calcium signal.  606 

C. Left: Responses of T4 cells sensitive to front-to-back (FTB) motion to ON and OFF 607 

edges moving FTB and back-to-front (BTF) at 30º/s, measured using two-photon calcium 608 

imaging (data from (Salazar-Gatzimas et al., 2016)). Right: As at left, but for the T4 609 

synaptic model. 610 

 611 
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Figure 2: The T4 synaptic model reproduces sinusoidal grating responses measured in T4 613 

cells.  614 

A. Left: Images and kymographs of sinusoid gratings drifting in the preferred (PD) and null 615 

(ND) directions. Center: Membrane voltage of T5 FTB cells to 1 Hz, 25º drifting gratings 616 

compared with linear predictions from contrast-modulated counterphase gratings, 617 

measured using voltage indicators (data from (Wienecke et al., 2018)). Right: As at 618 

center, but for voltage responses of the T4 synaptic model. The model has coefficients of 619 

determination for PD and ND of 0.92 and 0.82. 620 

B. Mean responses to 1 Hz, 45º sinusoid gratings. Left: Images and kymographs of 621 

composite sinusoid gratings containing PD and ND motion or PD and orthogonal 622 

direction (OD) motion. Center: Mean responses of T4 cells to drifting gratings, measured 623 

using a calcium indicator (data from (Badwan et al., 2019)). Error bars indicate ±1 SEM. 624 

Right: As at center, but for calcium responses of the T4 synaptic model.  625 

C. Spatiotemporal frequency tuning. Left: Kymographs of sinusoid gratings with varying 626 

spatiotemporal frequency content. Center: Spatiotemporal frequency tuning of T4 cells 627 

(data from (Creamer et al., 2018)). Black circles indicate the temporal frequency at which 628 

the maximum response at a given spatial frequency is attained. Right: As at center, but 629 

for the T4 synaptic model.  630 

D. Orientation and direction tuning. Left: Images of oriented sinusoid gratings. Center: 631 

Orientation tuning of T4 and T5 cells with static gratings (data from (Fisher et al., 2015)) 632 

and direction tuning of T4 cells with drifting gratings (data from (Maisak et al., 2013)). 633 

The orientation of a static grating is defined by the vector normal to the apparent edges, 634 

the same definition as for moving gratings (see Appendix A). Right: As at center, but for 635 

the T4 synaptic model.  636 

 637 
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Figure 3: The T4 synaptic model reproduces the spatial organization and selectivity of 639 

apparent motion responses in T4 cells.  640 

A. Responses to a single white bar flashed at different spatial locations. Left: Kymograph of 641 

2º white bar presented for 160 ms. Center: Membrane voltage of T4 cells to flashed white 642 

bars, measured using electrophysiology (data from (Gruntman et al., 2018)). Right: As at 643 

center, but for the T4 synaptic model. Red, orange, and yellow lines indicate the spatial 644 

acceptance functions of the three model inputs.  645 

B. Apparent motion stimuli are aligned such that the lagging bar is located at the center of 646 

the receptive field (Salazar-Gatzimas et al., 2018). The leading bar is presented at time 647 

zero and lasts for 1 second, and the lagging bar is presented 150 ms later. Each bar 648 

subtends 5º of visual angle. Red, orange, and yellow lines indicate the spatial acceptance 649 

functions of the three inputs. 650 

C. Responses to phi apparent motion stimuli, aligned as in (B). Left: Kymographs of all four 651 

possible phi apparent motion stimuli. Center: Responses of T4 FTB cells to all four phi 652 

apparent motion stimuli, measured using two-photon calcium imaging (data from 653 

(Salazar-Gatzimas et al., 2018)). Error patches indicate ±1 SEM. Right: As at center, but 654 

for the T4 synaptic model.  655 

D. As in (C), but for reverse-phi apparent motion stimuli, in which the sequentially 656 

presented bars have opposite contrasts. 657 

E. Assessing PD enhancement and ND suppression. Left: Kymographs of linear 658 

decomposition of flashed apparent motion stimuli, with 4.5º-wide white bars presented 659 

sequentially for 400 ms each. Center: Nonlinear response component, defined as the 660 

residual of the linear prediction, measured using a calcium indicator (data from (Haag et 661 

al., 2016)). Right: As at center, but for the T4 synaptic model.  662 

 663 
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Figure 4: The minimal T4 synaptic model is not sufficient to reproduce the fast-timescale 665 

tuning of T4 cells.  666 

A. Linear receptive field measurements. Left: Schematic depiction of binary, uncorrelated 667 

spatiotemporal noise. Center: Linear receptive field of T4 FTB cells (data from (Salazar-668 

Gatzimas et al., 2016)). Right: As at center, but for the T4 synaptic model.  669 

B. Correlation interval receptive field measurements. Left: Schematic depiction of ternary 670 

noise containing pairwise correlations at a specified interval Δ𝑡. Center: Responses of T4 671 

FTB cells to positive and negative correlations, measured using a calcium indicator (data 672 

from (Salazar-Gatzimas et al., 2016)). Error bars indicate ±1 SEM. Right: As at center, 673 

but for the T4 synaptic model. Error patches, which are barely visible, indicate 95% 674 

confidence intervals of the mean, which is variable due to the stochastic stimulus. 675 

C. Triplet correlation sensitivity. Left: Kymographs of three-point glider stimuli containing 676 

positive and negative triplet correlations. Center top: Turning behavioral responses to 677 

three-point gliders updated at 24 Hz of flies with the synaptic outputs of T5 cells silenced 678 

(data from (Leonhardt et al., 2016)). Positive rotations correspond to the direction of the 679 

displacement of the spatial mean location of each triplet. Center bottom: Net responses of 680 

T4 cells to three-point gliders updated at 5 Hz, measured using a calcium indicator (see 681 

Methods). Asterisks indicate that median net response differs from zero at the p < 0.05 682 

(*) or p < 0.01 (**) level by a Wilcoxon signed-rank test with N = 16 flies. Exact p-683 

values are p = 0.0174, 0.0061, 0.0097, and 0.0131 for con+, con-, div+, and div-, 684 

respectively. Error bars indicate ±1 SEM over flies, and black circles indicate individual 685 

per-fly means. Right: As at center, but for the T4 synaptic model. Error bars indicate 95% 686 

confidence intervals of the mean. 687 

D. Responses to rigidly translating stimuli with stochastic checkerboard patterns. Left: 688 

Images of random checkerboard stimuli. Center: Mean responses of T4 cells to 689 

checkerboard stimuli translating at 100º/s, measured using a calcium indicator (data from 690 

(Badwan et al., 2019)). Error bars indicate ±1 SEM. Right: As at center, but for the T4 691 

synaptic model. Error bars indicate 95% confidence intervals of the mean. 692 

 693 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2019. ; https://doi.org/10.1101/833970doi: bioRxiv preprint 

https://doi.org/10.1101/833970
http://creativecommons.org/licenses/by-nc/4.0/


 

 29 

 694 

Figure 5: The T4 synaptic model generates decorrelated signals in response to naturalistic 695 

motion. 696 

A. A rigidly rotating panoramic natural scene, with three spatially offset input signals as a 697 

function of time.  698 

B. Average responses of the T4 synaptic model and a ‘T5’ variant to naturalistic motion 699 

constructed by rigidly translating natural scenes at a variety of velocities. Error patches 700 

indicate 95% confidence intervals of the mean. ‘T5’ cells were constructed by sign-701 

inverting the inputs to the minimal T4 synaptic model. 702 

C. Decorrelation of channels with naturalistic motion. Left: Coactivation matrix of T4 and 703 

T5 cells in response to rigidly translating natural scenes (data from (Salazar-Gatzimas et 704 

al., 2018)). Right: As at left, but for the T4 synaptic model and ‘T5’ variant. Coactivation 705 

was computed for an ensemble of (image, velocity) pairs, in which the velocity was 706 

chosen from a Gaussian distribution with zero mean and 100º/s standard deviation. 707 

  708 
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Appendix A: Visual stimuli used in simulations and imaging experiments 709 

 710 

In this appendix, we describe in detail all stimuli used in this work.  711 

 712 

ON and OFF edges (Figure 1) 713 

ON and OFF edges were constructed by placing white (respectively black) edges on a gray 714 

background. All edges translated at 30º/s. 715 

 716 

Sinusoid grating stimuli (Figures 1 and 2) 717 

Sinusoid grating stimuli were constructed as in (Badwan et al., 2019; Creamer et al., 2018; 718 

Maisak et al., 2013). Briefly, rightward- and leftward-drifting gratings were constructed as  719 

 720 

𝑐(𝑡, 𝑥) = 𝑐0 sin(𝜔𝑡 ∓ 𝜅𝑥) 721 

 722 

where 𝑐0 is the input contrast, 𝜔 is the temporal frequency in units of radians per second, 𝜅 is the 723 

spatial frequency in units of radians per degree, and the negative sign is taken for rightward-724 

drifting gratings. To assess whether our model is temporal-frequency-tuned, we computed the 725 

fraction of the total variance in a spatiotemporal frequency sweep of its responses accounted for 726 

by a separable approximation resulting from its singular value decomposition (Creamer et al., 727 

2018). Counterphase gratings were constructed as  728 

 729 

𝑐(𝑡, 𝑥) = 𝑐0 sin(𝜔𝑡 + 𝜅𝑥 + 𝜙1) + 𝑐0 sin(𝜔𝑡 − 𝜅𝑥 + 𝜙2) 730 

 731 

where 𝜙1 and 𝜙2 are uniformly sampled phase offsets, over which we average in all analyses. 732 

Gratings containing preferred- and orthogonal-direction motion were constructed as  733 

 734 

𝑐(𝑡, 𝑥) = 𝑐0 sin(𝜔𝑡 + 𝜅𝑥 + 𝜙1) + 𝑐0 sin(𝜔𝑡 + 𝜙2) 735 

 736 

The linearity analysis in Figure 2A was applied to T5 cells (Wienecke et al., 2018), following a 737 

previously developed protocol (Jagadeesh et al., 1993). This analysis relies upon the fact that a 738 

drifting sinusoid grating may be decomposed into a sum of counterphase gratings as 739 
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 740 

𝑐(𝑡, 𝑥) = 𝑐0 sin(𝜔𝑡 ∓ 𝜅𝑥) =
𝑐0

4
∑ sin (𝜔𝑡 +

𝑛𝜋

8
∓

𝜋

2
) sin (𝜅𝑥 ±

𝑛𝜋

8
)

7

𝑛=0

 741 

 742 

Therefore, if a system is linear, its scaled, summed response of a linear system to counterphase 743 

gratings with these phase shifts will be equal to its response to the corresponding drifting grating. 744 

By comparing the linear prediction of the drifting grating response to the actual response, one 745 

may assess a system’s linearity.  746 

 747 

To assess the orientation- and directional-tuning of the model with sinusoid gratings in Figure 748 

2D, we defined a two-dimensional grating 749 

 750 

𝑐(𝑡, 𝑥, 𝑦) = 𝑐0 sin(𝜔𝑡 − 𝜅(𝑥 cos 𝜃 + 𝑦 sin 𝜃)) 751 

 752 

where the angle 𝜃 defines its orientation. In this analysis, we assume that the ring of detectors is 753 

located at 𝑦 = 0, and that the Gaussian spatial filter is symmetric in 𝑥 and 𝑦. Static gratings were 754 

formed by setting 𝜔 = 0. We note that our convention for the orientation of a static grating 755 

differs from the original manuscript (Fisher et al., 2015); we define the orientation as the angle 756 

between the normal to the apparent edge and the preferred direction rather than the angular 757 

position of the edge itself. Therefore, in our convention the preferred orientations and directions 758 

align.  759 

 760 

Apparent motion stimuli (Figure 3) 761 

Single-bar stimuli were constructed as previously published (Gruntman et al., 2018; Salazar-762 

Gatzimas et al., 2018). Briefly, 5º (respectively 2º) black or white bars were placed on a gray 763 

background, and presented for one second (respectively 160 ms) to match (Salazar-Gatzimas et 764 

al., 2018) (respectively (Gruntman et al., 2018)). Bar pair apparent motion stimuli were 765 

constructed as in (Salazar-Gatzimas et al., 2018). Briefly, 5º black or white bars were placed on a 766 

gray background and presented for one second. To create apparent motion, a second black or 767 

white bar was added 150 ms after the onset of the first bar at a neighboring spatial location. 768 

Responses to these bar pair apparent motion stimuli were aligned such that the location of the 769 
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lagging bar matched the location of peak single-bar responses, as in (Salazar-Gatzimas et al., 770 

2018). Flashed apparent motion stimuli were constructed similarly to those presented to T4 and 771 

T5 cells in (Gruntman et al., 2018; Haag et al., 2016). Briefly, 4.5º white bars were placed on a 772 

gray background and were presented for 400 ms in sequential spatial positions.  773 

 774 

Noise stimuli and linear receptive field extraction (Figure 4) 775 

As previously published (Salazar-Gatzimas et al., 2016), we extracted linear receptive fields 776 

from responses to uncorrelated binary stimuli composed of 5º black or white bars, updated at 60 777 

Hz. We estimated the linear receptive field from these responses using reverse correlation 778 

(Chichilnisky, 2001). Ternary noise stimuli with pairwise correlations were constructed as in 779 

(Salazar-Gatzimas et al., 2016). Briefly, the contrast of the correlated noise stimulus was given 780 

as 781 

 782 

𝑐(𝑡, 𝑥) =
1

2
(𝐵(𝑡, 𝑥) ± 𝐵(𝑡 + 𝛿𝑡, 𝑥 + 𝛿𝑥)) 783 

 784 

where 𝐵(𝑡, 𝑥) is an uncorrelated binary stimulus composed of 5º black or white bars, and 785 

addition (respectively subtraction) generates positive (respectively negative) correlations. The 786 

stimulus was updated at a fixed rate, and the temporal offset 𝛿𝑡 was taken to be one cycle, with 787 

its sign determining whether the stimulus was oriented in the preferred or null direction. The 788 

spatial offset 𝛿𝑥 was fixed to be one bar width. As shown in (Salazar-Gatzimas et al., 2016), the 789 

autocorrelation function of this stimulus, with spacetime discretized by the bar width and 790 

sampling rate, is  791 

 792 

⟨𝑐(𝑡, 𝑥)𝑐(𝑡 + 𝜏, 𝑥 + 𝜌)⟩ =
1

2
𝛿𝜏,0𝛿𝜌,0 +

1

4
(𝛿𝜏,𝛿𝑡𝛿𝜌,𝛿𝑥 + 𝛿𝜏,−𝛿𝑡𝛿𝜌,−𝛿𝑥) 793 

 794 

where 𝛿𝑖,𝑗 is the Kronecker delta.  795 

 796 

Three-point glider stimuli (Figure 4) 797 

As in previous studies (Clark et al., 2014; Fitzgerald and Clark, 2015), we constructed three-798 

point glider stimuli following (Hu and Victor, 2010). Briefly, these binary stimuli enforce 799 
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correlations over space and time among triplets of pixels. Three-point gliders may be categorized 800 

into four types: converging gliders with positive parity (con+), converging gliders with negative 801 

parity (con-), diverging gliders with positive parity (div+), and diverging gliders with negative 802 

parity (div-). Letting 𝜌 be the pixel spacing and 𝛿 be the frame duration (the inverse of the 803 

update rate), the update rules for each of the four three-point glider types are (see kymographs in 804 

Figure 4): 805 

 806 

𝑐con+(𝑡, 𝑥)𝑐con+(𝑡, 𝑥 + 𝜌)𝑐con+(𝑡 + 𝛿, 𝑥 + 𝜌) = +1 807 

𝑐con−(𝑡, 𝑥)𝑐con−(𝑡, 𝑥 + 𝜌)𝑐con−(𝑡 + 𝛿, 𝑥 + 𝜌) = −1 808 

𝑐div+(𝑡, 𝑥)𝑐div+(𝑡 + 𝛿, 𝑥)𝑐div+(𝑡 + 𝛿, 𝑥 + 𝜌) = +1 809 

𝑐div−(𝑡, 𝑥)𝑐div−(𝑡 + 𝛿, 𝑥)𝑐div−(𝑡 + 𝛿, 𝑥 + 𝜌) = −1 810 

 811 

The direction of the displacement of the spatial mean location of each triplet is inverted by 812 

inverting the sign of the pixel spacing. Starting from an initial seed state, the values of each pixel 813 

at each timepoint are determined by these update rules using the surrounding pixels’ values. As 814 

we simulate the full 360º of visual space, we use periodic boundary conditions to avoid 815 

undetermined edge pixel values. As in previous studies (Clark et al., 2014; Fitzgerald and Clark, 816 

2015; Leonhardt et al., 2016), the pixel spacing was taken to be 5º in both imaging experiments 817 

and numerical simulations. In imaging experiments, visual stimuli were generated and presented 818 

as described in previous studies (Badwan et al., 2019).  819 

 820 

Random checkerboard stimuli (Figure 4) 821 

Random checkerboard stimuli were constructed as in (Badwan et al., 2019). Briefly, 5º black or 822 

white bars were placed at random with a density of 40% on a gray background. The resulting 823 

checkerboards were then rigidly translated at a velocity of 100º/s. When combining rightward- 824 

and leftward-moving stimuli, summation was defined such that two white bars summed to white, 825 

two black bars summed to black, and one white and one black bar summed to gray. Therefore, 826 

the contrast of the composite stimulus matched that of the individual components, though its 827 

density rose to 64%.  828 

 829 
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Natural scene stimuli (Figure 5) 830 

Following prior work (Chen et al., 2019; Clark et al., 2014; Fitzgerald and Clark, 2015), we 831 

generated a left-right symmetric ensemble of natural scenes by drawing independent row and 832 

column samples from the database gathered by (Meyer et al., 2014). In this ensemble, scenes 833 

were rigidly-translated at velocities sampled from a Gaussian distribution with a standard 834 

deviation of 100º/s, which roughly matches typical rotational velocities of walking flies 835 

(DeAngelis et al., 2019; Katsov and Clandinin, 2008). To convert the scenes to contrast signals, 836 

we spatially filtered each image with the photoreceptor kernel to generate blurred images 𝐼blur, 837 

and then used a Gaussian kernel with a standard deviation of 20º to estimate locally-averaged 838 

images 𝐼mean (Chen et al., 2019). The contrast signal was then defined as  839 

 840 

𝑐(𝑥, 𝑦) ≔
𝐼blur(𝑥, 𝑦) − 𝐼mean(𝑥, 𝑦)

𝐼mean(𝑥, 𝑦)
 841 

 842 

As in previous studies of coactivation (Salazar-Gatzimas et al., 2018), the coactivations in Figure 843 

5C were computed as normalized inner products of response timeseries. For all analyses in 844 

Figure 5, we used an ensemble with 106 elements.  845 

  846 
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Appendix B: Parameter value selection 847 

 848 

In this appendix, we briefly describe how we selected values of the weighting parameters 849 

𝑔exc/𝑔leak and 𝑔inh/𝑔leak. We evaluated the model solely based on its ability to produce 850 

direction-opponent average responses to 1 Hz, 45º sinusoid gratings similar to those measured in 851 

T4 cells (Badwan et al., 2019). To do so, we considered the direction selectivity index and 852 

analogous indices of direction-opponency and orthogonal direction enhancement, defined as 853 

 854 

DSI ≔  
𝑟(𝑃𝐷) − 𝑟(𝑃𝐷)

𝑟(𝑃𝐷) + 𝑟(𝑃𝐷)
, 855 

 856 

𝐼PD+ND ≔  
𝑟(𝑃𝐷 + 𝑁𝐷) − 𝑟(𝑃𝐷)

𝑟(𝑃𝐷 + 𝑁𝐷) + 𝑟(𝑃𝐷)
, 857 

and 858 

𝐼PD+OD ≔  
𝑟(𝑃𝐷 + 𝑂𝐷) − 𝑟(𝑃𝐷)

𝑟(𝑃𝐷 + 𝑂𝐷) + 𝑟(𝑃𝐷)
 859 

 860 

As shown in Figure B1, there exists a broad region of parameter space for which the model 861 

produces responses with a similar degree of direction-opponency to that measured in T4 cells 862 

without significant PD+OD enhancement. We therefore made a simple choice of round-number 863 

values within that region.  864 

 865 

 866 

Appendix Figure B1: Sweeping the parameters of the T4 synaptic model. 867 
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A. The direction-selectivity index of the T4 synaptic model’s responses to drifting sinusoid 868 

gratings as a function of 𝑔exc/𝑔leak and 𝑔inh/𝑔leak. Red dot indicates the selected values 869 

of 𝑔exc/𝑔leak = 0.1 and 𝑔inh/𝑔leak = 0.3. 870 

B. As in (A), but for the opponency index. 871 

C. As in (A), but for the OD enhancement index.  872 

  873 
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Appendix C: LNLN cascade factorization of the T4 synaptic model 874 

 875 

In this appendix, we show how our T4 synaptic model may be factorized as a product of linear-876 

nonlinear-linear-nonlinear (LNLN) cascades representing the numerator and denominator of the 877 

biophysical nonlinearity. The response 𝐶 of the full model at each point in spacetime is given in 878 

terms of the filtered contrast signal 𝑠 as 879 

 880 

𝐶 = 𝑅2 (
�̃�1𝐸inh + �̃�2𝐸exc + �̃�3𝐸inh 

1 + �̃�1 + �̃�2 + �̃�3
) 881 

 882 

where we have defined �̃�𝑖 ≔ 𝑔𝑖/𝑔leak for brevity. Noting that the denominator of this expression 883 

is always positive, we may re-express the response as  884 

 885 

𝐶 =
𝑅2(�̃�1𝐸inh + �̃�2𝐸exc + �̃�3𝐸inh)

(1 + �̃�1 + �̃�2 + �̃�3)2
 886 

 887 

hence the full EMD model admits a factorization into a product of LNLN models as 888 

 889 

𝐶(𝑡, 𝑥) = 𝑁(𝑡, 𝑥) 𝐷(𝑡, 𝑥)  890 

where 891 

 892 

𝑁(𝑡, 𝑥) ≔ 𝑅2(�̃�1𝐸inh + �̃�2𝐸exc + �̃�3𝐸inh) 893 

 894 

and 895 

 896 

𝐷(𝑡, 𝑥) ≔ (1 + �̃�1 + �̃�2 + �̃�3)−2 897 

 898 

which is bounded as 𝐷(𝑡, 𝑥) ≤ 1. Because 𝐷(𝑡, 𝑥) ≤ 1, 𝐶(𝑡, 𝑥) ≤ 𝑁(𝑡, 𝑥). 899 

 900 

The denominator LNLN cascade 𝐷 is the result of applying a convex function (𝑥−2 for 𝑥 > 0) to 901 

a non-negative linear combination of LN models with convex nonlinearities. Therefore, it cannot 902 
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generate direction-opponent (DO) average responses to sinusoid gratings. The proof of this 903 

proposition is a minor extension of our previous results on LNLN models with continuously-904 

differentiable convex nonlinearities and non-negative secondary linear filters (Badwan et al., 905 

2019). We define the soft ramp function 906 

 907 

𝑅𝛽(𝑥) ≔ 𝛽−1 log(1 + exp(𝛽𝑥)) 908 

 909 

which is a continuously differentiable, monotone increasing, non-negative, and convex function 910 

of 𝑥 for all positive 𝛽. As 𝛽 → ∞, 𝑅𝛽(𝑥) → 𝑅(𝑥) pointwise. By continuity, defining 𝐷𝛽(𝑡, 𝑥) 911 

using 𝑅𝛽, we have 0 ≤ 𝐷𝛽(𝑡, 𝑥) → 𝐷(𝑡, 𝑥) ≤ 1 as 𝛽 → ∞. We denote the nonlinear functional 912 

corresponding to the spacetime average of 𝐷𝛽(𝑡, 𝑥) for some input stimulus 𝑓 as 𝐷𝛽[𝑓]. As we 913 

have the integrable constant dominating function 1, by the Lebesgue dominated convergence 914 

theorem we have 0 ≤ 𝐷𝛽[𝑓] → 𝐷[𝑓] ≤ 1 as 𝛽 → ∞ (Stein and Shakarchi, 2009). By the result of 915 

(Badwan et al., 2019), we know that 𝐷𝛽[𝑃𝐷 + 𝑁𝐷] ≥ 𝐷𝛽[𝑃𝐷] and 𝐷𝛽[𝑃𝐷 + 𝑁𝐷] ≥ 𝐷𝛽[𝑁𝐷], 916 

where 𝐷𝛽[𝑃𝐷], 𝐷𝛽[𝑁𝐷], and 𝐷𝛽[𝑃𝐷 + 𝑁𝐷] are the average responses to PD, ND, and PD+ND 917 

sinusoid gratings, respectively. As these inequalities hold pointwise for all positive 𝛽, by taking 918 

𝛽 → ∞ we may obtain 𝐷[𝑃𝐷 + 𝑁𝐷] ≥ 𝐷[𝑃𝐷] and 𝐷[𝑃𝐷 + 𝑁𝐷] ≥ 𝐷[𝑁𝐷]. Therefore, the 919 

denominator LNLN cascade cannot generate DO average responses to sinusoid gratings. 920 

 921 

However, as the numerator LNLN model is the result of applying a convex function to a non-922 

convex linear combination of LN models with convex nonlinearities, we cannot analytically 923 

exclude the possibility that it could generate DO average responses to sinusoid gratings using the 924 

results of (Badwan et al., 2019). In fact, numerical simulation shows that it can generate DO 925 

average responses to sinusoid gratings, though it generates strong PD+OD enhancement (Figure 926 

C1). It also generates DO responses over a smaller region in spatiotemporal frequency space 927 

than the full model. If one replaced the infinitely sharp ramp functions with more biophysically 928 

plausible soft rectifiers, the numerator LNLN cascade would be well-approximated for small 929 

input contrasts by a LN model with a quadratic nonlinearity. Therefore, it could not generate DO 930 

average responses for sufficiently small input contrasts. However, even in the limit in which both 931 

the numerator and denominator are represented as LN models with quadratic nonlinearities, the 932 
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full model could likely generate DO average responses. In particular, this limiting construction 933 

would resemble a type of adaptive gain model which was previously shown to generate DO 934 

average responses (Badwan et al., 2019).  935 

 936 

 937 

Appendix Figure C1: Sinusoid grating responses of different components of the LNLN 938 

factorization.  939 

From left to right: Average responses of the full T4 synaptic model, the numerator LNLN 940 

cascade, the denominator LNLN cascade, and the numerator LN cascade to 1 Hz, 45º sinusoid 941 

gratings. All responses are normalized by the response of the given component to a grating 942 

drifting in the PD of the full model.  943 

  944 
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