
 

1 

 

Article´s category: Research Article 1 

Title 2 

Improving tuberculosis surveillance by detecting international transmission using publicly available 3 

whole-genome sequencing data 4 

 5 

Authors 6 

Andrea Sanchini1,*, Christine Jandrasits2,*, Julius Tembrockhaus2, Thomas Andreas Kohl3,4, Christian 7 

Utpatel
3,4

,
 
 Florian P. Maurer

5
, Stefan Niemann

3,4
, Walter Haas

1
, Bernhard Y. Renard

2
, Stefan Kröger

1 
8 

 9 

Affiliations 10 

1 
Respiratory Infections Unit (FG36), Department of Infectious Disease Epidemiology, Robert Koch 11 

Institute, Berlin, Germany 12 

2 Bioinformatics Unit (MF1), Department of Methodology and Research Infrastructure, Robert Koch 13 

Institute, Berlin, Germany 14 

3Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany 15 

4 German Center for Infection Research (DZIF), partner site Hamburg - Lübeck - Borstel - 16 

Riems, Germany 17 

5
 National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, 18 

Borstel, Germany 19 

* Equal contribution 20 

 21 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/834150doi: bioRxiv preprint 

https://doi.org/10.1101/834150
http://creativecommons.org/licenses/by/4.0/


 

2 

 

Corresponding author information 22 

Bernhard Y. Renard, RenardB@rki.de 23 

Bioinformatics Unit (MF1), Department of Methodology and Research Infrastructure,  24 

Robert Koch Institute, Berlin, Germany 25 

 26 

Abstract 27 

Introduction: Improving the surveillance of tuberculosis (TB) is especially important for multidrug-28 

resistant (MDR) and extensively drug-resistant (XDR)-TB. The large amount of publicly available 29 

whole-genome sequencing (WGS) data for TB gives us the chance to re-use data and to perform 30 

additional analysis at a large scale.  31 

Aim: We investigated to what extent we could use globally available WGS raw data of MDR/XDR-TB 32 

isolates available from the public sequence repositories to improve TB surveillance. 33 

Methods: We extracted raw WGS data and the related metadata of Mycobacterium tuberculosis 34 

isolates available from the Sequence Read Archive. We compared this public dataset with WGS data 35 

and metadata of 131 MDR- and XDR-TB isolates from Germany in 2012-2013.  36 

Results: We aggregated a dataset that includes 1,081 MDR and 250 XDR isolates among which we 37 

identified 133 molecular clusters. In 16 clusters, the isolates were from at least two different 38 

countries. For example, cluster2 included 56 MDR/XDR isolates from Moldova, Georgia, and 39 

Germany. By comparing the WGS data from Germany and the public dataset, we found that 11 40 

clusters contained at least one isolate from Germany and at least one isolate from another country. 41 

We could, therefore, connect TB cases despite missing epidemiological information.  42 

Conclusion: We demonstrated the added value of using WGS raw data from public repositories to 43 

contribute to TB surveillance. By comparing the German and the public dataset, we identified 44 
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potential international transmission events. Thus, using this approach might support the 45 

interpretation of national surveillance results in an international context.  46 

 47 
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 57 

Introduction 58 

Improving the surveillance of Tuberculosis (TB) is one of the eight core activities identified by the 59 

World Health Organization (WHO) and the European Respiratory Society to achieve TB elimination, 60 

defined as less than one incident case per million [1]. Monitoring transmission is especially important 61 

for multidrug-resistant (MDR)-TB isolates – defined as being resistant to rifampicin and isoniazid – 62 

and for extensively drug-resistant (XDR)-TB isolates – defined as MDR-TB isolates with additional 63 

resistant to at least one of the fluoroquinolones and to at least one of the second-line injectable 64 

drugs. In 2017, the WHO estimated that worldwide more than 450,000 people fell ill with MDR-TB 65 

and among these, more than 38,000 fell ill with XDR-TB [2].  66 
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The rapid advance in molecular typing technology – especially the availability of whole-genome 67 

sequencing (WGS) to identify and characterize pathogens – gives us the chance of integrating this 68 

information into the disease surveillance. For TB surveillance it is possible to combine the results of 69 

molecular typing of Mycobacterium tuberculosis complex isolates with traditional epidemiological 70 

information to infer or to exclude TB transmission [3, 4]. This is of particular relevance if transmission 71 

occurs among multiple countries, where epidemiological data such as social contacts are more 72 

difficult to get and where data exchange is more difficult to organize. The European Centre for 73 

Disease Prevention and Control (ECDC) identified 44 events of international transmission 74 

(international clusters) of MDR-TB isolates collected in different European countries between 2012 75 

and 2015 [5]. In this example, the authors inferred TB transmission using the mycobacterial 76 

interspersed repetitive units variable number of tandem repeats (MIRU-VNTR) typing method. 77 

However, this method has limitations such as low correlation with epidemiological information in 78 

outbreak settings and low discriminatory power [3, 6]. In comparison, WGS analysis offers a much 79 

higher discriminatory power and allows for inferring (or excluding) TB transmission at a higher 80 

resolution [4]. In a recent systematic review, van der Werf and co-authors identified three studies 81 

that used WGS to investigate the international transmission of TB [7]. 82 

In recent years, the amount of WGS data available is increasing, especially due to the reduction of 83 

sequencing costs [8]. In addition, more and more authors deposit the raw data of their projects in 84 

open access public repositories such as the Sequence Read Archive (SRA) of the National Center for 85 

Biotechnology Information (NCBI) [9]. These raw WGS data of thousands of isolates – together with 86 

their public availability – enable the re-use and the additional analysis at a large and global scale from 87 

different perspectives [10]. However, standards in bioinformatics analysis and interpretation of these 88 

WGS data for surveillance purposes are not yet fully established [11]. In addition, it is still unclear if 89 

and how far we can use this high amount of publicly available data to improve TB surveillance.  90 

Our aim was to investigate to what extent we could use raw WGS data of global MDR/XDR-TB 91 

isolates available from public repositories for TB surveillance. Specifically, we wanted to identify 92 
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potential international events of TB transmission and to compare the international isolates with a 93 

collection of M. tuberculosis isolates collected in Germany in 2012-2013.  94 

 95 

Methods   96 

Data collection: public dataset 97 

The SRA database is a public repository provided by the NCBI (U.S. National Library of Medicine, 98 

Bethesda, USA) which stores raw sequencing data derived from high-throughput sequencing 99 

platforms [9]. We queried the repository for the pathogen “Mycobacterium tuberculosis” and 100 

restricted the results to “genomic”, “WGS” data from the “Illumina” sequencing technology using the 101 

appropriate query keywords. After excluding single-end sequenced and missing raw data, 8,716 102 

isolates remained, which were further filtered for sequence characteristics. We excluded samples 103 

with reads shorter than 100 bp, as well as samples with a relatively low (< 20x) or high (> 500x) 104 

average coverage depth of the reference genome (see below) to obtain a more homogenous dataset. 105 

In addition, we excluded samples with less than 90% reads aligned to the reference genome to 106 

prevent having contaminated or incorrectly annotated samples in the set. Samples for which over 107 

50% of all single-nucleotide variant calls were inconclusive were also excluded (see Supplementary 108 

Material for details).  To identify duplicates (e.g. the same file uploaded more than once in different 109 

projects) within the public dataset, we compared numbers of reads and detected variants at every 110 

step of the analysis. We excluded samples that were identical in all those numbers and their 111 

corresponding epidemiological data. After all filtering steps, 7,620 isolates remained and we will 112 

refer to these isolates as the “public dataset” throughout the manuscript. In addition to the raw 113 

reads, we also collected metadata available in the SRA repository [9] (for details see Supplementary 114 

Table S1). 115 

 116 
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Data collection: German dataset 117 

In addition to the international public dataset, we analyzed isolates from Germany, which will be 118 

referred to as “German dataset” throughout the manuscript. The German dataset includes all 119 

M. tuberculosis complex isolates processed at the National Reference Center for Mycobacteria 120 

(Forschungszentrum Borstel, Germany) and classified as MDR-TB or XDR-TB in 2012-2013 by drug 121 

susceptibility tests (DST) according to the German TB surveillance system. We extracted the 122 

epidemiological data available for the M. tuberculosis complex isolates using the laboratory ID of the 123 

National Reference Center for Mycobacteria. Then, we identified the respective isolate in the 124 

national surveillance system at the Robert Koch Institute (the German public health institute) and 125 

thus matched molecular with epidemiological data. We collected information on year of isolation, 126 

federal state of isolation, DST results, and patient-related information such as age, gender, 127 

citizenship, and country of birth. Ethical approval was not required for this study since data were 128 

extracted from anonymized notification data. 129 

 130 

NGS analysis workflow 131 

Raw reads were subjected to quality control with Trimmomatic [12] and Flash [13]. The trimmed and 132 

filtered reads were mapped to two different reference genomes: the M. tuberculosis H37Rv strain 133 

and a pan-genome reference built from 146 M. tuberculosis genomes [14, 15] with bwa mem [16]. 134 

Duplicated reads were marked and reads with mapping quality less than 10 were excluded. The 135 

Genome Analysis Toolkit (GATK) [17] was used for variant detection mapped to both reference 136 

genomes and extracted all SNPs of high quality (see Supplementary Material for details).  137 

 138 

Drug-resistance prediction 139 
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We used Phyresse [18] and TBDreamDB [19] to identify drug-resistance mutations in our datasets 140 

(last access October 18th, 2018). We filtered both lists to include only single nucleotide substitutions. 141 

For TBDreamDB we mapped the provided locations within resistance genes to positions on the 142 

M. tuberculosis H37Rv genome where necessary. We excluded mutations not associated with drug-143 

resistance according to the WHO [20] and to the CRyPTIC study (see Supplementary Table S2 for the 144 

list of all identified mutations and, among those, all the excluded mutations). We intersected this list 145 

of mutations with the variants detected from reads mapped to the M. tuberculosis H37Rv genome 146 

from each sample to identify resistance-associated mutations within samples. We also identified 147 

uncovered or low-quality regions that overlap with locations of resistance mutations. For the 148 

classification of isolates into resistance classes (MDR-TB and XDR-TB), we used the definitions of the 149 

WHO [2]. 150 

 151 

Molecular clustering 152 

We used PANPASCO [15] to calculate relative pairwise SNP distance between all isolates classified as 153 

MDR-TB or XDR-TB in the public and German dataset. This method builds on two parts to enable 154 

distance calculation for large, diverse datasets: mapping all reads to a computational pan-genome 155 

including 146 M. tuberculosis genomes and distance calculation for each individual pair of samples. 156 

For this, we identified all positions with high quality for each pair of samples and calculated the SNP 157 

distance based on this set of positions (for details on the filtering workflow, PANPASCO and distance 158 

calculation see Supplementary Material). SNPs in repeat-rich genes were not used for distance 159 

calculations as studies have shown that variants found in these regions are often false positives [3, 160 

21]. The list of genes provided by Comas et al. [22] was used for filtering. 161 

We applied single-linkage agglomerative clustering for defining transmission clusters and used a 162 

threshold of fewer than 13 SNPs, based on a previous study [23]. PANPASCO calculates distances 163 

based on data available for each pair separately. For this reason, an individual sample can potentially 164 
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have small distances to samples that have a much greater distance in direct comparison, due to a 165 

higher number of compared high-quality sites. In this study, we aimed to discover clusters of closely 166 

related samples. Therefore, the implemented agglomerative clustering approach evaluates the 167 

distance from the sample that should be added to two instead of one sample of an existing cluster –  168 

we did not only compare pairs of samples but two sets of trios.  The sample was added to the cluster 169 

only if the maximum distance in the trio was below twice the SNP threshold.  Samples that violated 170 

this condition were iteratively removed from the clustering and were marked for potential follow-up 171 

analyses.  172 

We used Cytoscape 3.7 to visualize the clusters [24]. We classified all clustered samples into TB 173 

lineages using lineage-specific SNPs provided in [25] and [26] (see Supplementary Table S6). We 174 

compared and validated clustering results of a subset of isolates using the pipeline MTBSeq [27] (see 175 

Supplementary Table S7).  176 

 177 

Results  178 

Final dataset  179 

After the filtering steps, 7,620 of initially 8,716 downloaded isolates remained in the public dataset 180 

and 131 isolates from the German dataset (Figure 1). We focused our study on MDR/XDR-TB, and 181 

therefore the final dataset contained overall 1,335 isolates after filtering using resistant associated 182 

SNPs. Supplementary Table S1 shows the cluster assignment, molecular drug-resistance prediction 183 

and extracted metadata of these 1,335 isolates. 184 

 185 

Metadata availability and drug-resistance prediction: public dataset (N=1,204)  186 

The majority of metadata collected from the public dataset consisted of the country of isolation 187 

(1,049/1,204, 87.13 %), the year of isolation (921/1,204, 76.49 %) and the source of the isolate 188 

(997/1,204, 82.81 %) (Table 1). For other metadata we could collect less information, for example in 189 
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the case of patient age (174/1,204, 14.45 %), patient gender (171/1,204, 14.20 %), or patient HIV 190 

status (157/1,204, 13.04 %) (Supplementary Table S1). For 912 isolates, we had information on both 191 

country and year of isolation. Initially, we identified 336 isolates with missing data for the country of 192 

isolation. After examining the Bioproject information (SRA, [9]) of these 332 isolates, we could 193 

further identify the country of isolation of 177 isolates. We identified 970/1,204 MDR (80.56 %) and 194 

234/1,204 XDR (19.44 %) isolates. 195 

 196 

Metadata availability and drug-resistance prediction: German dataset (N=131) 197 

We could retrieve demographics, epidemiological information and DST results for 129/131 (98.47 %) 198 

of the isolates from the German TB surveillance system. Table 2 and Supplementary Table S3 show 199 

the collected metadata. The 131 German isolates came from 15/16 (93.75 %) of the German federal 200 

states. The most frequent countries of birth of the patients were Russia (27/131, 20.61 %), Germany 201 

(19/131, 14.50 %) and Romania (10/131, 7.63%) (Table 2). 202 

We identified discrepancies in the identification of rifampicin resistance between the results of the 203 

phenotypic DST and the detection of drug-resistance mutations in 13 isolates (Supplementary Table 204 

S3). Specifically, four isolates were classified as MDR in the TB surveillance system (isolates 4556-12, 205 

9165-12, 72-13 and 14102-13) while they were classified as non-MDR according to the molecular 206 

analysis, due to the absence of any drug-resistance mutations against rifampicin. However, in one of 207 

these four isolates (isolate 72-13), we found insufficient sequencing coverage in some of the genomic 208 

regions with known resistance mutations for rifampicin; while in another isolate (isolate 14102-13) 209 

we found an insertion of 3 nucleotides near a region with known resistance mutations for rifampicin. 210 

In addition, nine isolates were classified as MDR in the TB surveillance system (isolates 11355-13, 211 

2955-12, 3007-13, 4245-13, 5096-13, 5190-13, 7712-13, 8291-13 and 8565-12), while they were 212 

classified as XDR according to the analysis of the drug-resistance mutations. The reason for such 213 

discrepancy was that a drug-resistance mutation against amikacin, kanamycin or capreomycin was 214 

identified in these ten isolates, but no DST results were available for these antibiotics. 215 
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 216 

Molecular clustering and comparison between the public and the German dataset 217 

Among all the isolates of our study, we identified 133 molecular clusters – with at least 2 isolates – 218 

and 591 singletons. The 133 clusters included 744 isolates (Supplementary Table S4). Supplementary 219 

Table S5 shows a summary of distances between all isolates for all molecular clusters. In 16 clusters, 220 

the isolates were from at least two different countries of isolation, suggesting larger events of 221 

international transmission of TB (Supplementary Table S4). For example, cluster2 included 56 222 

MDR/XDR isolates from three countries – Moldova, Georgia and Germany. A total of 51/56 isolates in 223 

this cluster were part of a previous study (Bioproject PRJNA318002, [28], Supplementary Table S1). In 224 

Figure 2 we show the country of isolation and the year of isolation of the isolates belonging to 225 

cluster2.  226 

Cluster1 is the largest cluster (n=79) identified in our study. According to the metadata (such as host 227 

subject, isolate name, year of isolation, patient age, and patient gender, see Supplementary Table 228 

S1), the isolates were 79 autopsy samples from different anatomic sites (such as lung or liver) of the 229 

same patient, marked as “P21”. Similarly, cluster3, cluster14, cluster16, cluster18 and cluster28 230 

contained multiple isolates from single patients from South Africa, which were part of a study 231 

including 2,693 autopsy samples of 44 subjects [29]. In line with previous findings [29], our analysis 232 

showed very low variability within these clusters (Supplementary Table S5). In addition, the analysis 233 

of the respective metadata revealed that cluster26, cluster32 and cluster33 included multiple isolates 234 

from single patients. These isolates were part of a study investigating the evolution of drug-resistant 235 

TB in patients during long-term treatment [30]. 236 

When we compared the German dataset with the public dataset, we observed that in 11 clusters 237 

there was at least one isolate from Germany and at least one isolate from another country. Table 3 238 

shows the relation between the German isolates and the international isolates from the public 239 

dataset. The epidemiological information collected from the German isolates correlates well with 240 

molecular clusters in 7/11 cases. For example, in cluster9 there were 16 isolates from Georgia and 241 
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two isolates from Germany; the country of birth recorded for one of these two isolates from 242 

Germany was Georgia. Moreover, cluster24, cluster35, and cluster103 included isolates from Georgia 243 

and Germany, and the country of birth recorded for the isolates from Germany was Georgia. Three 244 

further examples of agreement between molecular and epidemiological data were: the cluster13, 245 

which included isolates from Germany and Kazakhstan, the cluster53, which included isolates from 246 

Germany and from Romania and the cluster58, which included isolates from Germany and from India 247 

(Table 3). By comparing the molecular data of the German and of the public dataset, we could 248 

connect previously epidemiologically unlinked cases. For example, in the cluster2 (Figure 2) two 249 

isolates from Germany (in orange) were connected through several isolates from Georgia and 250 

Moldova (in dark and light blue), and the distance between the two German isolates was >13 SNPs. 251 

Similarly, in the cluster53 two isolates from Romania were connected through a German isolate, and 252 

the distance between the two isolates from Romania was > 13 SNPs (data not shown).  253 

 254 

Data availability  255 

The raw whole genome sequencing data used in this study are available in the NCBI SRA repository. 256 

The accession numbers for all samples of the public dataset are available in the Supplementary Table 257 

1. The German dataset is available as Bioproject PRJEB35201. Software for creating a pan-genome 258 

sequence (seq-seq-pan) is accessible at https://gitlab.com/rki_bioinformatics/seq-seq-pan and 259 

scripts for the NGS workflow and the SNP-distance method (PANPASCO) are available at 260 

https://gitlab.com/rki_bioinformatics/panpasco. The code for the clustering method is available at 261 

https://gitlab.com/rki_bioinformatics/snp_distance_clustering. 262 

 263 

Discussion 264 

In this study, we investigated to what extent WGS data of MDR/-XDR-TB isolates available from 265 

public sequence repositories can be used for improving TB surveillance. We identified several 266 
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molecular clusters including isolates from multiple countries, suggesting larger events of 267 

international transmission of TB. We expected to find international TB-transmission events, also 268 

considering previous studies reporting cross-border molecular clusters [5, 7]. Looking at the collected 269 

metadata, we identified several clusters with multiple isolates from the same patient or multiple 270 

autopsy samples collected from the same patient [29, 30]. This shows the importance of providing 271 

complete metadata together with the publicly available molecular data. Based on the metadata, we 272 

could distinguish between clusters of isolates taken from different patients – the “real” transmission 273 

clusters – and clusters of isolates taken from a single patient. The real transmission clusters are 274 

crucial for the routine TB surveillance, while the clusters of isolates taken from the same patient are 275 

useful to study the intra-host variability of isolates.  276 

We observed agreement between molecular and epidemiological data by comparing the public and 277 

the German datasets. This is clear for example in the clusters containing isolates from both the 278 

German dataset and the public dataset originating from Georgia. It is therefore likely that migrants 279 

from Georgia acquired the TB infections in their country – or during visits there – and were 280 

diagnosed later when they moved or returned to Germany, as already described [31]. This shows that 281 

we could identify events of potential international transmission (between Germany and Georgia), 282 

that we could have missed by looking only at the German molecular clusters.  283 

We observed discrepancies in the identification of rifampicin resistance between the results of the 284 

phenotypic DST and the detection of drug-resistance mutations. Specifically, four isolates were 285 

phenotypically resistant to rifampicin but they did not contain any known drug-resistance mutation 286 

against rifampicin or the genetic regions containing the known mutation had lower sequencing 287 

quality. This means that in our study the drug-resistance mutations correctly predicted the resistance 288 

to rifampicin in 125/129 of the isolates, resulting in a sensitivity of 96.90 %. This sensitivity is in 289 

accordance with a study by the CRyPTIC Consortium, where the authors reported a sensitivity of 290 

97.50 % [32]. The incorrect identification of rifampicin resistance misclassified four isolates which 291 

were MDR by phenotype, but non-MDR by genotype. This might have had consequences for patient 292 
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therapy if we would have replaced the phenotypic DST with the molecular detection of 293 

drug-resistance mutations. Therefore, we suggest being careful in the transition from phenotypic to 294 

genotypic drug-resistance determination as suggested by the CRyPTIC Consortium [32]. Specifically, 295 

laboratories and national reference laboratories should still perform the phenotypic DST, for example 296 

on a representative set of isolates or on isolates with low sequencing quality and coverage. 297 

Our study has one major implication: we demonstrated that by considering the international context 298 

(the public dataset), while analysing the national molecular data (the German dataset), we could 299 

identify previously unknown transmissions between patients. Thus, we could detect larger and 300 

international events of TB transmission. To improve the WGS-based TB surveillance we, therefore, 301 

suggest to regularly compare the national molecular clusters with the international molecular 302 

clusters available in the public sequence repositories.  303 

Our study has two major limitations: first, the raw WGS data uploaded in the SRA repository [9] were 304 

either from single studies or from outbreaks, and therefore they were not representative of the TB 305 

situation in the different countries. This sampling bias is, however, a well-known bias in molecular 306 

epidemiology studies [33]. Second, the metadata collected were incomplete, especially regarding 307 

patient information. Both limitations can be overcome by genotyping all TB isolates, by including the 308 

genotyping results in the TB surveillance systems and by making genotyping data publicly available. 309 

In conclusion, we demonstrated that using WGS data from public repositories improved the 310 

surveillance of TB. The comparison between the German and the international molecular clusters 311 

was indeed useful to identify potential international events of transmission. Kohl and co-authors 312 

suggested a similar approach and used the core genome multilocus sequence typing to detect 313 

clusters [34]. Lastly, supranational institutions such as the WHO, the ECDC or international TB 314 

networks could perform such analysis at a global scale, improving the global surveillance of TB. 315 

 316 
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Tables 

Table 1. Characteristics of the 1,204 multi- and extensively drug-resistant Mycobacterium tuberculosis 

isolates from the public dataset analyzed in this study. 

Characteristic  n % 

Country of isolation South Africa 295  24.50 

 Georgia 160 13.29 

 Moldova 135 11.21 

 Vietnam 68 5.65 

 Azerbaijan 57 4.73 

 Bangladesh 46 3.82 

 Romania 37 3.07 

 Djibouti 31 2.57 

 Ivory Coast 29 2.41 

 India 28 2.33 

 Nigeria 27 2.24 

 Thailand 24 1.99 

 Peru 23 1.91 

 China 23 1.91 

 Tanzania 17 1.41 

 Other  49 4.07 

 NA 155 12.87 

    

Year of isolation 2016 53 4.40 

 2015 254 21.10 

 2014 106 8.80 

 2013  147 12.21 

 2012  86 7.14 

 2011 60 4.98 

 2010 87 7.23 

 2009 65 5.40 

 2008 27 2.24 

 2007 11 0.91 

 2006 6 0.50 

 2005 14 1.16 

 2004 6 0.50 

 2003 1 0.08 

 1996 1 0.08 

 NA 280 23.26 

    

Source of the isolate Sputum 833 69.19 

 Morgue 167 13.87 

 Other  6 0.50 

 NA 198 16.45 

NA: not available 
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Table 2. Characteristics of the 131 multi- and extensively drug-resistant Mycobacterium tuberculosis isolates 

from Germany analyzed in this study. We found demographic information, epidemiological information and drug 

susceptibility test- results in the German TB surveillance system for 129/131 isolates. 

Characteristic n  % 

Molecular drug MDR 111  84.73 

resistance prediction XDR 16  12.21 

 Non MDR non XDR 4  3.05 

    

Phenotypic drug MDR 122 93.13 

Resistance prediction XDR 7 5.34 

 NA 2 1.53 

    

Year of isolation 2013 80  61.07 

 2012 50  38.17 

 2014 1  0.76 

    

Federal state  North Rhine-Westphalia 32  24.43 

of isolation  Bavaria  13  9.92 

 Baden-Württemberg 15  11.45 

 Saxony 10 7.63 

 Lower Saxony 10 7.63 

 Berlin 10 7.63 

 Hamburg 8 6.11 

 Hesse 8 6.11 

 Schleswig-Holstein 5 3.82 

 Saxony-Anhalt
 

5 3.82 

 Other 11 8.40 

 NA 4 3.05 

    

Patient age Median  34 (2-83)  

 Mean  35.73  

    

Patient gender  Male 79  60.31 

 Female 50  38.17 

 NA 2 1.53 

    

Patient citizenship Germany 30  22.90 

 Russia  25 19.08 

 India 8 6.11 

 Georgia 7 5.34 

 Romania 7  5.34 

 Kazakhstan 6  4.58 

 Ukraine 5  3.82 

 other 39 29.78 

 NA 4 3.05 

    

Patient country Russia  27 20.61 

of birth Germany  19 14.50 

 Romania 10 7.63 

 Ukraine  8 6.11 

 India  8 6.11 

 Kazakhstan 8 6.11 

 Georgia 7 5.34 

 Other 41 31.30 

 NA 3 2.29 

MDR: multidrug-resistant; XDR: extensively drug-resistant; NA: not available
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Table 3. Characteristics of the 11 molecular clusters identified in this study which contain at least one isolate from Germany and at least one isolate from another country. In bold the isolates 

from Germany. Within each cluster, information about the country of birth, the nationality and the federal state of isolation of the German isolates is provided.  

       Characteristics of the German isolates within the clusters 

Cluster 

name   

No. of isolates 

in the cluster 

No. of MDR Country of isolation 

of MDR (n) 

No. of XDR Country of isolation 

of XDR (n) 

 Patient country of birth  (n) Patient nationality (n) 

2 56 55 Moldova (49) 

Germany (2) 

Georgia (1) 

NA (3) 

1 Moldova (1)  Romania (1) 

Germany (1) 

 

Romania (1) 

Germany (1) 

 

         

5 30 12 South Africa (11) 

Germany (1) 

18 South Africa (18) 

 

 Abroad (1) Abroad (1) 

         

9 18 18 Georgia (16) 

Germany (2) 

0 0  Georgia (1) 

Romania (1) 

Georgia (1) 

Germany (1) 

         

13 10 1 Germany (1) 9 Kazakhstan (9)  Kazakhstan (1) Germany (1) 

         

21 6 6 Georgia (5) 

Germany (1) 

0 0  Syria (1) Syria (1) 

         

24 5 5 Georgia (3) 

Germany (2) 

0 0  Georgia (2) Georgia (2) 

         

35 4 1 Georgia (1) 3 Georgia (2) 

Germany (1) 

 Georgia (1) Georgia (1) 

         

53 3 2 Romania (1) 

Germany (1) 

1 Romania (1) 

 

 Romania (1) Romania (1) 

         

58 3 3 India (2) 

Germany (1) 

0 0  India (1) India (1) 

         

59 3 3 Georgia (1) 

Germany (2) 

0 0  Georgia (1) 

Ukraine(1) 

Georgia (1) 

Ukraine(1) 

         

103 2 2 Georgia (1) 

Germany (1) 

0 0  Georgia (1) Georgia (1) 

MDR: multidrug-resistant; XDR: extensively drug-resistant; NA: not available

.
C

C
-B

Y
 4.0 International license

under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available 

T
he copyright holder for this preprint (w

hich w
as

this version posted N
ovem

ber 8, 2019. 
; 

https://doi.org/10.1101/834150
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/834150
http://creativecommons.org/licenses/by/4.0/


 

21 

 

Figures 

Figure 1. Flowchart of the inclusion and exclusion of isolates in our study from the public and the 

German dataset. The final dataset included 1,335 isolates: 1,204 from the public and 131 from the 

German dataset.  
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Figure 2. Visualization of the transmission cluster2 (N=56) identified among the 1,335 

Mycobacterium tuberculosis isolates analyzed in our study. The country of isolation, multi- and 

extensive drug-resistance classification and year of isolation are represented in the clusters. SNP 

distances were calculated for each pair of isolates individually. Links with less than 6 SNPs are 

marked black, those with less than 13 SNPs are marked in grey. Connections with 13 SNPs or more 

than are not shown in the network.  
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