
Detection of interictal epileptiform discharges:
A comparison of on-scalp MEG and conventional MEG

measurements

Karin Westin1, 2 , Christoph Pfeiffer3 , Lau M. Andersen4,1 , Silvia Ruffieux3 , Gerald
Cooray1,2,

Alexei Kalaboukhov3 , Dag Winkler3 , Martin Ingvar1 , Justin Schneiderman5 , 
& Daniel Lundqvist1

1NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
2Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden

3Department of Microtechnology and Nanoscience - MC2, Chalmers University of
Technology, Gothenburg,

Sweden
4Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus,

Denmark
5MedTech West and the Institute for Neuroscience and Physiology, Sahlgrenska Academy,

University of
Gothenburg, Gothenburg, Sweden

Abstract

Magnetoencephalography (MEG) is an important part of epilepsy evaluations because of

its unsurpassed ability to detect interictal epileptiform discharges (IEDs). This ability may

be improved by next-generation MEG sensors, where sensors are placed directly on the

scalp instead of in a fixed-size helmet, as in today’s conventional MEG systems. In order

to investigate the usefulness of on-scalp MEG measurements we performed the first-ever

measurements of on-scalp MEG on an epilepsy patient. The measurement was conducted

as  a  benchmarking  study,  with  special  focus  on  IED  detection. An  on-scalp  high-

temperature SQUID system was utilized alongside a conventional  low-temperature “in-

helmet” SQUID system. EEG was co-registered during both recordings. Visual inspection

of IEDs in the raw on-scalp MEG data was unfeasible why a novel machine learning-based

IED-detection algorithm was developed to guide IED detection in the on-scalp MEG data.

A total of 24 IEDs were identified visually from the conventional in-helmet MEG session (of

these, 16 were also seen in the EEG data; eight were detected only by MEG). The on-

scalp  MEG  data  contained  a  total  of  47  probable  IEDs  of  which  16  IEDs  were  co-

registered by the EEG, and 31 IEDs were on-scalp MEG-unique IEDs found by the IED

detection algorithm. We present a successful benchmarking study where on-scalp MEG
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are compared to conventional  in-helmet MEG in a temporal  lobe epilepsy patient.  Our

results demonstrate that on-scalp MEG measurements are feasible on epilepsy patients,

and  indicate  that  on-scalp  MEG  might  capture  IEDs  not  seen  by  other  non-invasive

modalities. 

1. Introduction 

Magnetoencephalography (MEG) has played a role in epilepsy care for almost thirty years,

and is today widely regarded as an established clinical tool (De Tiège et al., 2012; Forss et

al.,  2018).  Several  studies  have demonstrated  that  MEG detects  interictal  epileptiform

discharges (IEDs) with unsurpassed sensitivity, detecting them in approximately 70-80% of

all  epilepsy patients as compared to a 60% detection rate in EEG (Knake et al., 2006;

Stefan et al., 2003). MEG also plays a role in EEG-negative epilepsy cases, and adding

MEG to the clinical evaluation of such patients increase the spike detection probability with

almost 20% (Colon et al., 2009; Duez et al., 2016; Luders et al., 2004) . Furthermore, since

MEG source reconstruction is less affected by skull anatomy and conductivity than EEG is,

the localization of an epileptogenic zone is more accurate with MEG than what is possible

with  EEG (Hämäläinen  et  al.,  1993;  Jayakar  et  al.,  2014).  Also,  using  MEG to  guide

intracranial electrode placement increases the likelihood of a successful sampling of the

seizure onset  zone (Jung et al.,  2013;  Knowlton et  al.,  2006;  Sutherling et  al.,  2008) .

Additionally, resection  of  findings localized with  MEG increases the  likelihood of  post-

surgery seizure freedom compared to surgery performed without MEG findings taken into

account (Murakami et al., 2016; Rampp et al., 2019). For the above reasons, MEG has

become a standard part of presurgical evaluation of epilepsy patients (De Tiège et al.,

2017; Forss et al., 2018).

Despite these unique contributions in presurgical epilepsy evaluation, conventional

MEG  systems  exhibit  some  inherent  limitations,  and  addressing  these  might  further

enhance the utility  of  MEG in epilepsy research and clinical  evaluations.  Conventional

MEG (hereafter called in-helmet MEG) sensors are cooled down to approximately 4 K

(−269 °C) using liquid helium, which is why they must be housed behind thick layer of

insulation (Heiden, 1991) within a fixed-size helmet. On adults, this solution results in a 20-

40 mm sensor-scalp distance typically influencing distance to frontal and temporal cortices

the most; the situation is even worse for children (Riaz et al., 2017). This distance has a

detrimental influence on the signal-to-noise ratio of the cortical signal since the magnetic

field strength weakens quickly with distance (Boto et al., 2016; Iivanainen et al., 2017).
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Spatial  resolution depends on the sensor spacing. A smaller sensor-to-sensor distance

results in a better ability to distinguish between neural sources, compared to a greater

sensor-to-sensor  distance  (Boto  et  al.,  2016;  Riaz  et  al.,  2017).  To address  both  the

problems of sensor-cortex distance and that of the fix in-helmet system, as well as improve

both  neuroscientific  and  clinical  applicability  of  MEG,  systems  where  the  sensors  are

flexibly placed directly on the scalp are under development (Borna et al., 2017; Boto et al.,

2018;  Iivanainen et  al.,  2019;  Pfeiffer  et  al.,  2019).  On-scalp  MEG sensors  comprise,

amongst others, optically-pumped magnetometers (OPMs) (Budker and Romalis,  2007)

and high-Tc SQUIDs (Zhang et al., 1993). Both of these on-scalp MEG sensor systems

allow for a significant reduction of the sensor-cortex distance, as well as a rearrangement

of  the  sensor  layout  geometry,  thus  increasing  the  signal-to-noise  ratio  and  spatial

resolution of the recorded neuronal activity (Boto et al., 2016; Iivanainen et al., 2017; Riaz

et al., 2017; Schneiderman, 2014). Furthermore, placing the sensors evenly distributed on

the scalp enables a more even sampling of brain regions. Thus, the development of on-

scalp  MEG sensors  holds  the  promise  of  improving  the  quality  of  non-invasive  MEG

measurements, potentially moving these towards the quality of intracranial registrations.

Potentially, on-scalp MEG sensors could enable better non-invasive characterization of

focal epileptic networks, seizure development and seizure onset zone, which today is only

possible  using invasive intracranial  recordings (Bartolomei  et  al.,  2017;  Jayakar  et  al.,

2016, 2014; Stefan and da Silva, 2013). Improving the spatial resolution of non-invasive

neurophysiological measurements would thus be of great value both for neuroscientific

and clinical applications. 

We present the first-ever measurement on an epilepsy patient using on-scalp MEG

sensors. We aimed to evaluate the potential added value of these sensors compared to in-

helmet  MEG with  focus  on  IED detection.  To this  end,  a  benchmarking  protocol  with

acquisition of both on-scalp and in-helmet MEG and co-registration of EEG from the same

patient was utilized.  

2. Method and material

2.1 Ethical approval

The experiment was approved by the Swedish Ethical Review Authority (DNR: 2018/1337-

31), and was performed in agreement with the Declaration of Helsinki.
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2.2 MEG systems

2.2.1 On-scalp high-Tc-MEG system
The on-scalp high-Tc-MEG system (hereafter referred to as on-scalp MEG) consists of

seven SQUID magnetometers, each with a pickup loop with dimensions 8.6 mm x 9.2 mm.

The magnetometers are positioned with 12.0 mm center-to-center distance in a hexagonal

array enclosed within a cryostat cooled with liquid nitrogen. The distance between the

sensors and the participant’s scalp can be as small as 1 mm. A detailed description of the

system is found in (Pfeiffer et al., 2019).

2.2.2 In-helmet MEG system

For in-helmet MEG recordings, an Elekta Neuromag TRIUX (Elekta Oy, Helsinki, Finland)

with 102 sensor chips, each with one magnetometer with a pickup loop size of 21 mm x 21

mm and two orthogonal planar gradiometers, was used. 

2.3 Patient and experimental procedure

In order for IEDs to be feasibly detected via on-scalp recordings, they need to be focal,

reliably sampled by in-helmet MEG, and frequently occurring. Furthermore, in order to

compare IED properties across MEG/EEG sensors, the IED configuration should be as

simple as possible, preferably distinct, solitary sharp waves or spikes. To identify potential

participants  that  met  these criteria,  scalp  EEG of  ten  adult,  cognitively  intact  epilepsy

patients who had undergone long-term video EEG as part of an epilepsy evaluation at the

department of clinical neurophysiology at the Karolinska University Hospital during 2018

were screened. Six patients diagnosed with focal epilepsy were contacted; three agreed to

be screened for inclusion in the benchmarking study. These three patients subsequently

underwent an in-helmet MEG recording with co-registration of EEG, electrooculography

(EOG), and electrocardiography (ECG).  These recordings were used to identify patients

with IEDs that are clearly visible on MEG. For EEG, a 10-20 montage with 21 channels

was used. During measurements, patients were seated upright and instructed to try to stay

awake. Data was recorded for one hour: 30 minutes with eyes closed and 30 minutes with

eyes open. Two patients with prominent in-helmet MEG detected IEDs were invited to

participate  in  further  measurements  involving  both  in-helmet  and  on-scalp  MEG.  One

patient (female, 45 years old) agreed to further participation. This patient is diagnosed with

left temporal lobe epilepsy and underwent epilepsy surgery in 1996, resulting in only a

short period of seizure freedom. 
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2.4 Benchmarking measurements and analysis

The main measurements involved both in-helmet and on-scalp MEG measurements from

the epilepsy patient and were conducted in accordance with the benchmarking protocol

described  by  Xie  et  al.  (Xie  et  al.,  2017).  In  short,  this  protocol  involves  an  initial

measurement using in-helmet MEG, from which the magnetic fields related to the brain

activities of interest are projected to the scalp to guide the placement of the on-scalp MEG

system, currently having a small and limited scalp coverage.

2.4.1 In-helmet MEG session

2.4.1.1 Measurements.

An initial measurement session of one hour was performed, involving in-helmet MEG with

co-registered EEG, EOG, and ECG. EEG was recorded with the 21 electrodes previously

mentioned,  based  on  the  10-20  placement  system.  A total  of  74  points  of  the  head

including the 21 EEG electrodes were digitized with a Polhemus Fastrak system. During

the session, the patient was asked to rest with closed eyes, while remaining awake during

measurements. Data was sampled at 5000 Hz, online low and high pass filtered at 1650

and 0.1 Hz, respectively. The EEG data was recorded together with the MEG data, using

the TRIUX EEG channels. 

2.4.1.2 Analysis.

In-helmet MEG data was initially pre-processed using MaxFilter (Elekta Neuromag) signal-

space  separation  (Taulu  and  Simola,  2006) (buffer  length  10  s,  cut-off  correlation

coefficient at  0.98).  The EEG signal  and the maxfiltered raw in-helmet MEG data was

filtered using a 1-40 Hz Butterworth bandpass filter in order to allow visual inspection of

the  signal.  IEDs  were  detected  via  visual  inspection  of  the  in-helmet  MEG  and  co-

registered EEG data by a physician (KW) trained in IED detection both in EEG and MEG

data. IEDs were averaged across events and source localization was performed using

software package MNE Python (Gramfort et al., 2013). Minimum norm estimates (MNE)

(Hämäläinen and Ilmoniemi, 1994) was used to localize the IED origin (Fig. 1). To this end,

the patient’s clinical MRI was used to create a full  head and brain segmentation using

FreeSurfer  (Dale  et  al.,  1999;  Fischl  et  al.,  1999).  The  segmentation  was  used  to

determine skin, skull, and brain surface boundaries using the MNE-C software watershed

algorithm (Gramfort  et  al.,  2013).  A source and single compartment  volume conductor

model based upon these were created using MNE-C. The locations of the peak positive
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and negative magnetic fields of the IEDs averaged across events were determined and

plotted  alongside  the  EEG  electrode  positions  on  a  model  of  the  patient’s  head  that

included the EEG cap and 74 digitalization points (Fig. 2). These projections and points

were used to guide the positioning of the on-scalp MEG sensor array at the center of both

the positive and negative peak field positions on the patient’s head.

Figure 1: Source localization of averaged IEDs using MNE (unit: Am). Peak of IED activity

marked by arrow. 
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Figure 2A: Maximum (red) and minimum (blue) peak magnetic fields of averaged IEDs and

digitalized position of EEG electrodes (cyan). Peak of IED activity marked by arrow.

Figure 2B: Schematic layout of  on-scalp MEG sensor system. The cross indicates the

positioning of the sensor at the recording sites. 

2.4.2 On-scalp MEG session

2.4.2.1 Measurements.

Two consecutive one-hour on-scalp MEG sessions were performed with the high-Tc-MEG

central sensor pointing at the center of each peak field position (Fig. 2). The patient was

seated upright with closed eyes and asked to stay awake, similar to the in-helmet MEG

measurements in  Session 1.  For each peak field  position, co-registration of  EEG was

performed  using  the  10-20  system.  During  the  positive  peak  field  registration,  one

electrode  was  removed  and  two  were  slightly  shifted;  during  the  negative  peak  field

registration, three electrodes were removed in order to make room for the on-scalp MEG

system. Data from the on-scalp MEG was acquired through analog channels of the TRIUX.
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On-scalp MEG data and co-registered EEG was sampled and filtered as in the in-helmet

session (see 2.4.1.1, In-helmet MEG session, Measurements)

2.4.2.2 Analysis.

EEG data was preprocessed as in the in-helmet MEG session. From the two on-scalp

MEG  recording  sessions  (one  at  the  maximum  field  peak  projected  from  the  IEDs

registered  in  the  in-helmet  MEG,  one  at  the  minimum field  peak)  only  data  from the

maximum peak  field  recording  was  analyzed.  Data  from the  minimum field  peak was

unfortunately rendered useless due to the removal of EEG electrodes in order to fit the

cryostat,  making  inspection  of  the  EEG  difficult  and  IED  detection  unreliable,  if  not

impossible. Any minimum peak on-scalp findings would hence be impossible to validate

against EEG-recorded IEDs. In the data from the maximum field measurement, one high-

Tc sensor was excluded due to high noise. Internal noise levels of the remaining high-Tc

sensors were typically around 75 fT/Hz1/2 across frequencies 1-40 Hz and sensors. Visual

inspection  of  on-scalp  MEG  epochs  locked  to  IEDs  in  the  EEG  recording  (hereafter

referred to as EEG-positive IEDs) revealed that some of these on-scalp IEDs were sharp,

transient  events  easily  distinguishable  from the  background  activity,  while  some were

obscured by artifacts (Fig.  3-4). Importantly, beyond these EEG-positive on-scalp MEG

IEDs, the on-scalp MEG data contained a large number of high-amplitude events visually

resembling  the  EEG-positive  IEDs (Fig  5),  but  without  any coinciding  IEDs in  the  co-

registered EEG to validate them. Thus, visually distinguishing which of these events that

might  be  EEG-negative,  on-scalp  MEG-positive  IEDs,  and which  might  be  artifacts  or

epilepsy-related, non-IED focal activity was not possible, and an alternative approach to

IED detection in this data was developed. Inspection of the dataset was performed with

bandpass filtering 1-40 Hz and 5-20 Hz. Frequency bands were chosen so as to optimize

visual inspection of IEDs. High-amplitude events were more distinguishable with 5-20 Hz

bandpass filtering. 
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Figure  3:  EEG-positive  IED visible  in  raw data  (bandpass  filtered  1-40  Hz).  On-scalp

sensor numbering refer to the on-scalp MEG system layout.
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Figure 4: EEG-positive IED obscured by artifact  (bandpass filtered 1-40 Hz).  On-scalp

sensor numbering refer to the on-scalp MEG system layout.  
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Figure  5:  High-amplitude  on-scalp  MEG  event  (bandpass  filtered  5-20  Hz).  On-scalp

sensor numbering refer to the on-scalp MEG system layout.   
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2.5 Spike detection

2.5.1 In-helmet MEG session   data

IED detection was performed as described in 2.4.1.2 In-helmet MEG session, Analysis.

2.5.2 On-scalp MEG session   data

In order to reveal whether the on-scalp MEG raw data contained any EEG-negative IEDs,

a detection algorithm based upon inherent data characteristics of the on-scalp MEG data

was needed. However, it  is not initially given what data parameters should be used to

distinguish  on-scalp  IED  events.  Definitions  of  interictal  activity  are  largely  arbitrary

descriptions of scalp EEG-IED morphology, which varies greatly between patients (Kane et

al., 2017). In order to capture their appearance, IED-detection algorithms typically depend

on feature extraction from a large number of IEDs followed by classification, which can be

performed  using  machine  learning,  template  matching,  or  independent  component

analysis,  amongst  others  (Wilson  and  Emerson,  2002).  Here,  we  aimed  to  employ  a

similar approach combined with anomaly detection. Due to the expected difference in on-

scalp and in-helmet MEG data characteristics, in-helmet MEG IEDs could not be used as

templates. The one existing on-scalp recording (our current recording) therefore had to be

used both for parameter extraction and spike detection validation. In order to minimize

overfitting, a genetic algorithm (GA) was used to create artificial data parameter vectors

resembling the corresponding real on-scalp IED data parameters.

First,  on-scalp MEG IEDs time locked to IEDs found by visual  inspection of the

EEG-recording were located. The parameters of Table 1 were extracted from these EEG-

positive on-scalp MEG IEDs creating IED feature vectors. The genetic algorithm was used

to generate artificial IED feature vectors resembling these. Non-IED feature vectors were

obtained by extraction Table 1 parameters from IED-free raw data.  Artificial IED feature

vectors and non-IED feature vectors were used to train a support vector machine (SVM).

Secondly,  the  SVM  was  evaluated  on  the  EEG-positive  on-scalp  MEG  IEDs,  calling

correctly classified ones “true positives”, and incorrectly classified ones “false negatives”.

Third, classification was performed on the remaining on-scalp MEG raw data set. Positive

peaks of each wave constituted the center of an epoch from which a feature vector was

extracted,  and  classification  was  performed upon  these  vectors.  Thus,  on-scalp  MEG

events with similar statistical properties as the EEG-positive on-scalp MEG IEDs will be

found (and called potential IEDs).
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Since it is central to the IED definition that such an activity should stand out against

the background activity, an IED can be considered a time series anomaly (Chandola et al.,

2009; Kane et al.,  2017).  Only potential  IEDs constituting discordant events should be

kept. To this end, changes in the extracted parameters induced by the potential IEDs were

quantified and only events exhibiting an equal or larger change than the smallest change

exhibited by the EEG-positive on-scalp IEDs were kept. These were labeled likely IEDs.

(For details, see Supplementary).

Features extracted from EEG-
positive on-scalp MEG IEDs

Standard deviation

Skewness

Mean

Kurtosis

Sum of points in time series

Maximum value of time series

Minimum value of time series

Range of time series 

Energy of time series

Integral of time series

Duration of peak

Fractal dimension 

Variance

Slope of peak

Table  1:  Features  extracted  from EEG-positive  IEDs used  create  artificial  IED feature

vectors (for details, see Supplementary)
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3. Results

3.1 In-helmet MEG session

3.1.1 EEG data 

From the EEG data co-registered with the in-helmet MEG recording, a total of 16 IEDs

were identified via visual inspection.

3.1.2 In-helmet MEG data

Visual  inspection  of  the  in-helmet  MEG  data  revealed  24  IEDs.  While  16  of  these

coincided with the EEG IEDs, the remaining eight in-helmet MEG IEDs were not visible in

the EEG data. MNE source localization of averaged IEDs placed the epileptic focus of the

MEG IEDs in the left temporal lobe (cf. Fig. 1). Amplitude of averaged IEDs was 2000 fT.

MNE source  localization  and  an  average  of  the  16  EEG-positive  IEDs  (i.e.  the  IEDs

detected both in MEG and EEG data) are found in Figure 6. A corresponding MNE source

localization and averaged data for the EEG-negative IEDs (i.e. the IEDs detected only in

the in-helmet MEG data) are found in Figure 7. 
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Figure 6: Average (A) and source localization (B) of EEG-positive IEDs found in in-helmet

MEG. Source localization performed using MNE (unit: Am). 
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Figure 7: Average (A) and source localization (B) of EEG-negative IEDs found in in-helmet

MEG. Source localization performed using MNE (unit: Am). 
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3.2 On-scalp MEG session

3.2.1 EEG data

From the EEG data co-registered with the on-scalp MEG recording,  a total  of  16 IED

events were detected in left  temporal lobe channels, similarly to in the in-helmet MEG

recording (see Fig. 8 for raw trace examples of IEDs).
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Figure 8: Raw trace of IED from EEG (reference montage) co-registered with on-scalp

MEG.
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3.3 Spike detection algorithm

First, the combined genetic algorithm-support vector machine (GA-SVM) was evaluated on

the 16 EEG-identified IEDs events in the on-scalp MEG data (see Fig. 9 for average, see

Fig. 3-4 for example of raw IEDs). Amplitude of averaged such EEG-identified on-scalp

IEDs was 4000 fT. Of these, 11 events were correctly classified. Inspection of the 5 false

negative epochs revealed that these on-scalp MEG events contained artifacts obscuring

the IED. See Figures 10 and 11 for an average of the true positive and false negative

EEG-positive on-scalp MEG IEDs; see Figure 4 for an example of a raw false negative

event. Second, the GA-SVM was used to detect potential IEDs in the raw on-scalp MEG

data. A total of 4623 epochs were extracted, as described in Supplementary, from the part

of the on-scalp MEG recording on which classification was performed. Out of these,  416

events were classified as potential IEDs. An average of these are found in Figure 12. 

Third, the potential IEDs constituting anomalies (see Supplementary for details) were kept

and considered as likely IEDs. The on-scalp MEG recording contained 31 such likely IEDs

not seen by the co-registered EEG (see Fig. 13 for average of these, and Figs. 14A,B for

examples of such events in raw data). Amplitude of the averaged likely IEDs was 3000 fT. 

Figure 9: Average of all EEG-positive on-scalp MEG IEDs
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Figure 10: EEG-positive IEDs correctly classified as such (true positives)

Figure 11: EEG-positive IEDs incorrectly classified as such (false negatives)
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Figure 12: Average of potential IEDs found by the GA-SVM

Figure  13:  Average  of  likely  IEDs found by  combining  the  GA-SVM and the  anomaly

detector
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Figure 14A-H: Examples of likely IED in raw on-scalp MEG data (bandpass filtered 5-20

Hz). 

4. Discussion

We present the first-ever on-scalp MEG epilepsy study with the aim to investigate whether

the sensor technology could improve non-invasive IED detection. Both on-scalp and in-

helmet MEG, with co-registered EEG, was recorded from the same temporal lobe epilepsy

patient. A novel on-scalp MEG IED-detection algorithm was also developed to help discern

IEDs  from  the  on-scalp  MEG  background  activity.  Below,  the  following  aspects  are

discussed separately: (4.1) the feasibility of benchmarking recordings on epilepsy patients,

(4.2) registration of IEDs, and (4.3) the usefulness of a detection algorithm for on-scalp

MEG data. 

4.1 Benchmarking protocol/on-scalp measurement 

Data  presented  in  this  study  rely  on  an  initial  careful  screening  of  suitable  epilepsy

patients, and the development of a reliable benchmarking protocol. From the perspective

of  a  study  protocol,  we  deem  on-scalp  MEG  recordings  of  epileptogenic  foci  activity

feasible, but for now limited to patients capable of adhering to the benchmarking protocol.

The temporal lobe epilepsy patient included herein exhibits relatively frequent IEDs, which

enables  source  localization  from  the  in-helmet  MEG  recording,  and  thus  accurate

placement of the on-scalp MEG system for sampling of the maximal field generated by the

IEDs. However, epileptogenic foci that are difficult to localize by EEG or in-helmet MEG

would  hinder  such optimal  positioning  of  the  on-scalp  MEG system and  provide  poor

benchmarking data, at least in studies using an on-scalp MEG array with limited coverage

as we do here. A limited-coverage on-scalp MEG system is thus unlikely to be suited for

measurements  on  patients  with  inconclusive  non-invasive  recordings,  thus  requiring

intracranial measurements for localization (Gonzalez-Martinez et al., 2014; Jayakar et al.,

2014). 

4.2 Registration of IEDs

EEG  data  was  co-registered  with  MEG  in  both  the  in-helmet  and  on-scalp  MEG

recordings. From each EEG data set, we could successfully detect 16 IEDs using visual
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inspection, indicating that the occurrence rate of IEDs in the patient were the same during

both recordings. From the in-helmet MEG data, we could independently detect the same

16 IEDs found in the EEG data, plus an additional 8 MEG-positive IEDs. This is in line with

the literature on IEDs in  MEG and EEG, where MEG typically  demonstrates a higher

sensitivity to IEDs (Knake et al., 2006; Stefan et al., 2003).  

While the IEDs in on-scalp MEG data could not be readily discriminated from other

high-amplitude  activities  using  visual  inspection  alone,  we  could  guide  the  visual

identification of the IEDs using the co-registered EEG data to validate on-scalp MEG IEDs.

Leaning on EEG, we could thus identify 16 IEDs also in the on-scalp MEG data. When

averaged,  these  on-scalp  MEG  IEDs  revealed  a  prominent  peak  followed  by

hyperpolarization (Fig. 9), just like those extracted from conventional MEG measurements

(Figs. 6-7). They showed typical characteristics of IEDs once we knew where they were,

but were too difficult to reliably discern from other events in the data using vision alone. To

explore the on-scalp MEG data for additional IEDs, we therefore used an IED detection

algorithm  that  focuses  on  the  abstract  statistical  features  of  IEDs,  rather  than  their

characteristic visual appearance. Using this approach, we could detect EEG-positive IEDs

not obscured by artifacts (cf Fig. 4, Fig. 11 for IEDs with artifact, cf Fig. 5, Fig. 10 for

clearly visible IEDs), plus an additional 31 additional IEDs uniquely registered in the on-

scalp MEG data (Figs. 13-14). 

Inspection of in-helmet MEG IEDs and EEG-positive on-scalp MEG IEDs (cf Fig. 6-

7, Fig. 9) reveal that the field magnitude of these on-scalp MEG IEDs were roughly two

times  larger  than  the  amplitude  of  in-helmet  MEG  IEDs  (4000  fT  and  2000  fT,

respectively). This increase is in accordance with modeling predictions of the field strength

acquired through a one-channel system employing the same type of on-scalp sensor used

here (Xie et al., 2017, 2015). The amplitude of the 31 additional on-scalp MEG IEDs on the

other hand exhibit a lower amplitude (3000 fT, Fig. 13) than do the EEG-positive ones (Fig.

9). These amplitude differences may explain why on-scalp MEG can detect IEDs that are

not identified by EEG. Tao et al. have reported that the majority of IEDs visible on scalp

EEG arise from hypersynchronization of at least 10 cm2 cortex, and no IED originating

from cortical patches smaller than 6 cm2 can be detected with scalp EEG. However, the

majority of IEDs recorded intracranially arise from smaller areas and remain undetected by

scalp EEG (Tao et al., 2005). Indeed, the region capable of generating IEDs, the irritative

zone (Jehi, 2018; Rosenow and Luders, 2001), is organized in subregions which might

independently generate epileptic activity (Janca et al., 2018; Keller et al., 2010; Sabolek et
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al., 2012; Wilke et al., 2011; Zhang et al., 2017). It is thus possible that the additional IEDs

detected in on-scalp MEG arise from such functional subunits of an epileptic network. 

Today, characterization of functional connectivity within a small region is impossible using

EEG or in-helmet -MEG (Schoffelen and Gross, 2009). However, it is possible that the

improved  source  separation  and  neural  signal  amplitude  of  the  on-scalp  MEG

measurement (Boto et al., 2016; Riaz et al., 2017) would allow not only identification of

such subunits, but also characterization of network dynamics. These are of course issues

that  need  to  be  further  explored  in  future  on-scalp  MEG  measurements  on  epilepsy

patients.

4.3 Using algorithm-based IED detection 

Since conventional visual IED identification was unfeasible in the raw on-scalp MEG data,

a SVM based IED detection was employed instead.  To compensate for  having only a

single on-scalp MEG data set, a genetic algorithm was utilized to generate a synthetic

training data set for classification based upon statistical features of the EEG-locked on-

scalp MEG IEDs. The results from the GA-SVM algorithm was first evaluated on the EEG-

locked on-scalp MEG IEDs, successfully classifying all on-scalp MEG IEDs that were not

obscured by high-amplitude artifacts (cf.  Fig.  4.  Fig.  11).  Running the GA-SVM on the

remaining on-scalp MEG dataset resulted in the classification of 416 additional events as

potential IEDs (Fig. 12). However, keeping only events constituting time series anomalies

left  only  31  events  (Fig.  13-14).  In  comparison  to  in-helmet  MEG,  where  MEG  data

showed 8 IEDs in addition to the 16 IEDs also seen by EEG, this demonstrates a potential

increase in IED detection compared to EEG from 50% using in-helmet MEG to almost

200% using on-scalp MEG. Visual inspection of these 31 additional IEDs (Fig. 14) reveal a

striking resemblance with the EEG-positive IEDs, showing that the algorithm-based IED

detection discerns visually convincing IEDs. The resemblance between EEG-positive and

algorithm-detected IEDs indicates a consistency in the statistical features underlying both

categories of IEDs. Our results demonstrate a feasibility in registering and detecting IEDs

in on-scalp MEG data, but also show that the added complexity in on-scalp MEG data

might require assistance from algorithms so pick up on the abstract statistical features of

IED events. In the in-helmet MEG data, the IEDs do not display this type of complexity and

can readily be visually identified, why a GA-based approach is not needed or relevant for

that data set.

26

580

585

590

595

600

605

610

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 8, 2019. ; https://doi.org/10.1101/834275doi: bioRxiv preprint 

https://doi.org/10.1101/834275
http://creativecommons.org/licenses/by/4.0/


4.4 Challenges and limitations

There are several limitations to this study. The ultimate value of on-scalp MEG epilepsy

recordings can be said  to  depend on the  extent  to  which  on-scalp  MEG can acquire

information  that  is  not  available  to  in-helmet  MEG  or  other  existing  non-invasive

technologies.  We  present  a  successful  benchmarking  protocol  that  may  be  used  to

demonstrate the identification of IEDs uniquely detected by on-scalp MEG. However, the

data consist of just one session from a single patient using a relatively small on-scalp MEG

sensor array. 

To further evaluate the potential usefulness of on-scalp MEG in epilepsy, as well as

to  evaluate  the  GA-SVM  approach  for  IED  detection,  further  studies  are  needed:

preferably with larger-coverage (ideally whole-head) on-scalp MEG system, preferably on

several epilepsy patients, and preferably with a higher-density co-registered EEG in both

conventional and on-scalp MEG. The present study demonstrates that such studies are

feasible, both from the perspective of screening suitable patients and from the perspective

of a data recording protocol. 

4.4 Conclusions 

In this study, we present data from measurements on a temporal lobe epilepsy patient,

where both on-scalp MEG data and in-helmet MEG data are obtained and compared.

Using a benchmarking protocol aimed to quantify the amount of IEDs that are captured by

on-scalp  MEG,  as  compared  to  in-helmet  MEG,  we  employed  a  novel  automatic  IED

detection  algorithm  validated  on  the  patient’s  in-helmet  MEG  recording.  The  results

indicate  that  we  were  able  to  find  almost  twice  as  many  IEDs in  the  on-scalp  MEG

recording (42 IEDs: 16 EEG positive IEDs and 31 MEG-only IEDs) as we did in the in-

helmet  MEG measurement  (24:  16  EEG positive  IEDs and  8  MEG-only   IEDs).  It  is

possible that the additional IEDs detected in on-scalp MEG stem from cortical sources that

are too small to be reflected in EEG or in-helmet MEG, potentially indicating that the on-

scalp  MEG  system  can  identify  IEDs  that  are  not  detectable  by  other  non-invasive

methods. Additional studies are needed to further evaluate the potential clinical usefulness

of on-scalp MEG in epilepsy.
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