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Abstract

Many recent advancements in single molecule localization microscopy exploit the
stochastic photo-switching of fluorophores to reveal complex cellular structures be-
yond the classical diffraction limit. However, this same stochasticity makes counting
the number of molecules to high precision extremely challenging. Modeling the photo-
switching behavior of a fluorophore as a continuous time Markov process transitioning
between a single fluorescent and multiple dark states, and fully mitigating for missed
blinks and false positives, we present a method for computing the exact probability
distribution for the number of observed localizations from a single photo-switching
fluorophore. This is then extended to provide the probability distribution for the
number of localizations in a dSTORM experiment involving an arbitrary number of
molecules. We demonstrate that when training data is available to estimate photo-
switching rates, the unknown number of molecules can be accurately recovered from
the posterior mode of the number of molecules given the number of localizations.
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Single molecule localization microscopy (SMLM) approaches, such as photoactivated

localization microscopy (PALM) [1, 8] and stochastic optical reconstruction microscopy

(STORM) [7, 17], form some of the most celebrated advances in super-resolution mi-

croscopy. Using a fluorophore with stochastic photo-switching properties [6, 19] can provide

an imaging environment where the majority of fluorophores are in a dark state, while a

sparse number have stochastically switched into a transient photon-emitting state, from

here on referred to as the On state. This results in the visible fluorophores being sparse

and well separated in space. With the use of a high-performance camera the individual

fluorophores in the On state can be identified and localized with nanometer scale precision

by fitting point spread functions [14, 18].

One of the most common avenues to SMLM is direct STORM (dSTORM). As with the

original implementation of STORM, dSTORM uses conventional immuno-staining strate-

gies to label the cells with fluorophores i.e. the use of small molecule dyes and antibodies

against the protein of interest. In dSTORM, imaging of isolated fluorophores is made

possible by placing the majority of the dye molecules into a very long lived dark state

e.g. a radical state or a very long lived triplet state. This is the purpose of the STORM

buffer, of which there are many recipes, usually containing reducing and oxygen scavenging

components. The dye is initially emissive but when rapidly excited by very high intensity

excitation lasers, soon enters a dark state which is much longer lived than the emissive

state, thus rendering the majority of fluorophores off. The dyes then cycle between dark

and On states until photobleaching occurs, rendering the dye permanently off.

A key challenge that has persisted since the first SMLM methods were developed has

been the characterization and quantification of this photo-switching behavior [4]. In par-

ticular, being able to accurately count the number of fluorescently labelled molecules from

the recorded localizations would allow much greater insight into the cellular structures and

processes under observation. This is a notoriously difficult task as deriving the probability

distribution for the number of localizations per fluorophore is highly non-trivial due to

complex photo-switching models and imperfect imaging systems.

Methods exist for recovering the number of imaged molecules in SMLM, however, these

have primarily focused on photoactivated localization microscopy (PALM) and are not
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wholly applicable or adaptable for counting molecules that are imaged via dSTORM. For

instance, the PALM methods of [5, 10, 13, 16] assume a four state kinetic model (inactive,

photon-emitting/On, dark and bleached) for the photoactivatable fluorescent protein (PA-

FP). Each PA-FP begins in the non-emissive inactive state before briefly moving into

the photon-emitting On state. Then, there is the possibility of a small number of repeat

transitions between this and a temporary dark state, before finally bleaching to a permanent

off state. This kinetic model is inappropriate for dSTORM in which all fluorophores start

in the On state, before stochastically moving back and forth between this and one or more

transient dark states, before permanent bleaching. The analysis of [12] is applicable for

dSTORM, however, it assumes the fluorophores can occupy only three states (On, dark and

bleached), when in fact empirical evidence supports the existence of multiple dark states

[11, 15].

Importantly, common to [5, 10, 12, 13] is the assumption that all blinks (transitions

to the On state followed by a return to a dark state) are detected and hence the data

is uncorrupted for statistical inference. In fact missed blinks occur in two different ways;

(i) a PA-FP or fluorophore briefly transitions from the On state into a dark state and

back again within a single camera frame; this transition will not be detected as a separate

blink; (ii) a PA-FP or fluorophore may briefly transition from a dark state to the On

state for such a short time that the number of emitted photons is insufficient to detect the

event above background noise. Accounting for these missed transitions is key for precise

molecular counting. Missed transitions will result in fewer blinks being recorded than

actually occurred, which in turn will lead to fewer molecules being predicted than are in fact

present. We note that in the four state PALM setting, [16] attempts to mitigate for missed

transitions, however, to do so requires the exact extraction of dwell times from time-traces.

This is not suitable for dSTORM, particularly in densely labeled environments, since the

nuanced photo-switching behavior means we cannot be certain of a specific fluorophore’s

photo-kinetic state at any one time.

The method of molecular counting presented in this paper utilizes the photo-switching

and observation model developed in [15]. Similar to [5, 10, 12, 13, 16], a continuous time

Markov process is used to characterize the underlying photo-switching property of fluo-
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rophores in dSTORM. However, this model is very general; allowing any number of dark

states which can either be set by the user or inferred via a model selection method (BIC).

Furthermore, both missed blinks and false positives are fully accounted for in the mod-

elling, something which has been absent from molecular counting methods thus far. By

performing counting using just the localization count, it is highly scalable, being able to

count thousands of molecules with computational ease.

We first summarize key statistics of the photo-switching fluorophore. In particular, we

derive the exact form of the probability mass function for the number of localizations a

single fluorophore produces during an imaging experiment. This distribution is specific to

this application and highly non-standard, therefore we provide expressions for its mean

and variance as derived via the probability generating function. This distribution, and

its moments, is fully characterized by the unknown photo-switching imaging parameters,

which are estimable through the PSHMM fitting method described in [15]. We then extend

this distribution to give the probability mass function of the cumulative number of localiza-

tions obtained from M molecules, and demonstrate its validity through simulations. Using

training data to estimate unknown photo-switching rates, we can compute the posterior

distributions over the unknown number of fluorescing molecules, which is shown to recover

M with high accuracy. We finally demonstrate the validity of our method on Alexa Fluor

647 data, providing both maximum a posteriori estimates of M from the resulting poste-

rior distributions and their associated 95% credible intervals (a Bayesian interpretation of

confidence intervals).

Problem Setup and Methods Overview

Modeling photoswitching kinetics

Following [15], we model the stochastic photo-switching behavior of a fluorophore as a

continuous time Markov process {X(t) : t ∈ R≥0} that moves between a discrete, finite

set of states. In order to accommodate for the varying effects of different photo-physical

models, it allows {X(t)} to transition between an On state 1, d+1 dark states 00, 01, . . . , 0d

(where d ∈ Z≥0 denotes the number of multiple dark states), and a photo-bleached state 2.
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As commonly referred to under the widely assumed d = 0 model consisting of a single dark

state, we denote the state 00 as state 0 . The general model, as is illustrated in Figure 1,

allows for transitions from the On state to multiple dark states through the first dark state

0, and further allows the photo-bleached state to be accessed by any other state. The state

space of {X(t)} is SX = {0, 01, . . . , 0d, 1, 2}. Under this Markovian model, the holding time

in each state is exponentially distributed and parameterized by the transition rates. These

are denoted as λij for the transition rate from state i to j (i, j = 0, 01, . . . , 0d, 1), and µi for

the photo-bleaching rate from state i to 2 (i = 0, 01, . . . , 0d, 1). These rates are summarized

by the generator matrix for {X(t)}

G =



−σ0 λ001 0 0 0 0 . . . λ01 µ0

0 −σ01 λ0102 0 0 0 . . . λ011 µ01

0 0 −σ02 λ0203 0 0 . . . λ021 µ02

...
...

...
...

...
...

. . .
...

...

0 0 0 0 0 . . . −σ0d λ0d1 µ0d

λ10 0 0 0 0 0 . . . −σ1 µ1

0 0 0 0 0 0 . . . 0 0


(1)

where σ0d = λ0d1 + µ0d , σ1 = λ10 + µ1 and when d > 0, σ0i = λ0i0i+1
+ λ0i1 + µ0i , for i =

0, . . . , d− 1. In particular, for any t ≥ 0, the transition probabilities P(X(t) = j|X(0) = i)

can be recovered as the ith, jth elements of the matrix exponential eGt. The Markov process

is further parameterized by νX :=
(
ν0 ν01 . . . ν0d ν1 ν2

)>
with

∑
j∈SX νj = 1, which

defines the probability distribution of X(0) (the starting state of the Markov chain) over

the possible states and is referred to as the initial probability mass of {X(t)}.

Modeling localizations from a fluorophore

The imaging procedure proceeds by sequentially exposing the fluorophore over NF frames,

each of length ∆. Following [15], the discrete time observed localization process {Yn : n ∈

Z>0} takes values in the set SY = {0, 1}, indicating either no observation or a localization

of the fluorophore within the time interval [(n−1)∆, n∆). This observed process is formally
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Figure 1: General d + 3 state (d ∈ Z≥0) model of a fluorophore transitioning between an

On state (1), d+ 1 temporary dark states (0, 01, . . . , 0d) and a photo-bleached state (2).

defined as

Yn = 1[δ,∆)

(∫ n∆

(n−1)∆

1{1}(X(t)) dt

)
,

where 1A(·) is the indicator function such that 1A(x) = 1 if x ∈ A and is zero otherwise.

This construction of {Yn} accounts for noise and the imaging system’s limited sensitivity. A

localization of a molecule in frame n is typically only recorded (Yn = 1) when its continuous

time process {X(t)} reaches and remains in the On state for long enough to be detected.

This minimum time is given by the unknown noise parameter δ ∈ [0,∆).

The photo-switching hidden Markov model (PSHMM) is presented in [15] as a means

of estimating the unknown parameters of the continuous time Markov process {X(t)}. By

collecting observations of {Yn} from a known number of M individually identifiable fluo-

rophores, the transition rates, initial probability mass and noise parameter δ can be esti-

mated via a maximum likelihood procedure. In order to handle this complicated stochastic

structure and mitigate for missed state transitions, the authors define transmission ma-

trices B
(0)
∆ , B

(1)
∆ ∈ R(d+3)×(d+3). These characterize the probability of its hidden state and

localizing a fluorophore at the end of a frame given its state at the beginning of a frame.

These will play a key part in deriving the distribution for the number of localizations. For

i, j ∈ SX and l ∈ SY , its elements are defined by

B
(l)
∆ (i, j) := P(Y0 = l, X(∆) = j|X(0) = i),

B
(l)
∆ (2, 2) = 1{0}(l).
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These are deterministic functions of the unknown photo-switching parameters G and δ. A

procedure for computing them is given in Algorithm 3 of Section 1.4 in Appendix 1.

Incorporating false positives

Crucially, as well as accounting for missed transitions, this set-up also accounts for the

random number of false positive localizations that occur during an experiment. Specifically,

if α ∈ [0, 1] denotes the probability of falsely observing a fluorophore in any given frame

(assumed independent of the observation process), then the updated transmission matrices

take the form

B
∗(0)
∆ = (1− α)B

(0)
∆

B
∗(1)
∆ = B

(1)
∆ + αB

(0)
∆ .

When incorporated into the model, α can also be estimated with the PS-HMM procedure

in [15]. An algorithm to compute transmission matrices B
∗(0)
∆ , B

∗(1)
∆ adapted from [15], can

be found in Algorithm 3 of Section 1.4 in Appendix 1.

Distribution of localizations

Given an unknown number of M independently fluorescing molecules, each with localization

process {Yn,m} (m = 1, ...,M), we now use this model to characterize the distribution of

Nl =
M∑
m=1

NF∑
n=1

Yn,m, (2)

the cumulative number of localizations obtained over an experiment of length NF frames.

In order to do so, we will firstly explicitly derive the density of Nl when M = 1 and

explain how this can be used to computationally recover the density for when M > 1. We

will then use this density, which will be seen as a function of M and the parameter set

θd := {G, δ,νX , α} to derive the posterior mass function of M given Nl and θd, thereby

constructing a suitable approach to estimating M via its mode.

We define {Sn : n ∈ Z>0} to be the non-decreasing discrete time series process denot-

ing the cumulative number of localizations obtained from a single fluorophore up to and
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including frame n ≤ NF . This process takes values in the set SSn = {0, 1, ..., n} and is

formally defined as

Sn =
n∑
i=1

Yi,

where the sum is taken over the values Y1, . . . , Yn from the observed localization process

{Yn}. Ultimately, we will be looking to find the probability mass function for SNF when

imaging is conducted over a known number of NF frames.

For any n ≥ 1, Proposition 1 outlines a method for computing the probability mass

function for Sn recursively. Furthermore, an algorithm specifying the relevant steps for its

implementation when n = NF , is shown in Algorithm 5.

Proposition 1. Fix n ∈ Z>0. For k ∈ SSn, define M(k, n) ∈ R1×(d+3) to be the vector(
M(0, k, n) . . . M(0d, k, n) M(1, k, n) M(2, k, n)

)
,

whereby for each j ∈ SX

M(j, k, n) := Pθd(X(n∆) = j, Sn = k). (3)

By recursively computing

M(k, 1) = ν>XB
∗(k)
∆ k ∈ {0, 1}

M(0, n) = M(0, n− 1)B
∗(0)
∆ n > 1

M(k, n) = M(k, n− 1)B
∗(0)
∆

+ M(k − 1, n− 1)B
∗(1)
∆ 1 ≤ k < n

M(n, n) = M(n− 1, n− 1)B
∗(1)
∆ k = n,

the probability mass function of Sn follows

pθd(Sn = k) := Pθd(Sn = k) = M(k, n)1d+3 k ∈ SSn . (4)

Proof. See Section 1.1.1 of Appendix 1.

Figure 2(a) presents the exact distributions pθd(SNF = k) for k ∈ Z≥0 when compared

with histograms for the simulated data under three photo-switching models, d = 0, 1, 2.

The shape of the densities can be seen to be determined by d, the dwell times in dark
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Algorithm 1 Compute probability mass function (PMF) for SNF
function PMF S(θd,∆, NF )

Compute B
∗(0)
∆ and B

∗(1)
∆ from θd,∆ . Via Algorithm 2 (SI)

A0, A1 ← 0NF+10
>
d+3

A0[1, :]← ν>XB
∗(0)
∆

A0[2, :]← ν>XB
∗(1)
∆

for n = 2 to NF do

A1[1, :]← A0[1, :]B
∗(0)
∆

for k = 2 to n do

A1[k, :]← A0[k, :]B
∗(0)
∆ + A0[k − 1, :]B

∗(1)
∆

A1[n+ 1, :]← A0[n, :]B
∗(1)
∆

A0 ← A1

p← A01d+3 . p[i] = Pθd(SNF = i− 1) for i = 1, . . . , NF + 1

return p . Probability mass function for SNF

states and the photo-bleaching rates. Moreover, as is to be expected, the average number

of localizations decreases as the number of dark states d increases. In particular, the slow

growth to the mode of each distribution is related to the presence of the photo-bleached

state, as seen in Figure 2(b), which compares the mass functions under the d = 1 model

with µ0 = 0 when µ1 varies. When µ1 is close to zero (the expected time to move into

the bleached state is long), a bell shaped curve is observed. This is sharply in contrast

to when µ1 is large and photo-bleaching is much more likely to occur at the beginning

of the experiment, giving rise to a geometric decay. For values in between, a mixture of

these two properties is detected. These simulations therefore provide strong evidence that

photo-kinetic models incorporating a photo-bleached state are likely to give rise to mixture

distributions (that are potentially multi-modal) for the number of localizations recorded

per molecule.

The moments of the distribution pθd(Sn = k) are fully characterized by its probability

generating function (pgf) GSn(z) = Eθd(z
Sn), which can be shown to take the form given

in (1) of Lemma 1 of Section 1.1 in Appendix 1. In particular, the expected value of Sn,
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Figure 2: Figure (a) shows the theoretical and histogram estimate (from 106 simulations)

of pθd(SNF = n) under 3 photo-switching models: d = 0 (blue), d = 1 (red) and d = 2

(green). In all simulations, µ1 > 0, µ0 = · · · = µ0d = 0, NF = 1000, ν0 = ν1 = 0.5, ∆ = 1
30

,

δ = 10−3 and α = 10−6; rates chosen (where appropriately zero) are λ001 = 0.35, λ01 =

1, λ0102 = 0.2, λ011 = 0.3, λ021 = 0.1, λ10 = 2.3, µ1 = 0.05. Figure (b) shows the theoretical

and histogram estimate (from 106 simulations) of pθd(SNF = n) when d = 1 with µ1 = 0.5

(blue), µ1 = 0.2 (red) and µ1 = 0.05 (green).
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denoted Eθd(Sn) = G′Sn(1) and variance Varθd(Sn) = G′′Sn(1) + Eθd(Sn) − E2
θd

(Sn) can be

explicitly determined (see Proposition 2) by differentiating this pgf.

Proposition 2. The expected value Eθd(Sn) and variance Varθd(Sn) of Sn are given as

Eθd(Sn) = νTX

[
n∑
i=1

eG∆(n−i)B
∗(1)
∆ eG∆(i−1)

]
1d+3 (5)

Varθd(Sn) = G′′Sn(1) + Eθd(Sn)− E2
θd

(Sn), (6)

where

G′′Sn(1) = ν>X

(
n−1∑
i=1

n−i∑
j=1

eG∆(n−i−j)B
∗(1)
∆ eG∆(j−1)B

∗(1)
∆ eG∆(i−1)

+
i∑

j=1

eG∆(n−i−1)B
∗(1)
∆ eG∆(i−j)B

∗(1)
∆ eG∆(j−1)

)
1d+3,

and eG denotes the matrix exponential of the generator G defined in [1].

Proof. See Section 1.1.3 of Appendix 1.

When M independent molecules are imaged, the total number of localizations Nl (which

can take a minimum value of 0 and a maximum value of MNF ) can be written as

Nl =
M∑
m=1

SNF ,m =
M∑
m=1

NF∑
n=1

Yn,m,

where SNF ,m denotes the total number of localizations made by the mth fluorophore over

an experiment consisting of NF frames. Specifically, the density of Nl follows

pθd,M(Nl) =
∑

k1,...kM
:k1+···+kM=Nl

M∏
i=1

pθd(SNF = ki), (7)

which can be readily obtained by applying M convolutions of the mass function for SNF .

This is most efficiently achieved via the Fast Fourier Transform (see Algorithm 4 of Sec-

tion 1.4 in Appendix 1). The expected number and variance of total localizations are

Eθd,M(Nl) = MEθd(SNF ) and Varθd,M(Nl) = MVarθd(SNF ), which can be computed using

[5] and [6].
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Inference

The task of interest is to estimate M , the unknown number of molecules in a dSTORM

experiment, from Nl, the number of localizations recorded across NF frames. Our method

first requires the use of training data to obtain at estimate of the photoswitching parameters

θd = {G, δ,νX , α}. This training data consists of a set of observations of the localization

process {Yn} from a known number of molecules. Here, we estimate θd via the method of

[15], however other methods exist [e.g. 11]. Once an estimate for θd is obtained, inference

on M can proceed for the dSTORM experiment under analysis.

After plugging in the estimate for θd into pθd,m(Nl), the posterior distribution of M

given Nl localizations follows as

pθd,m(M = m|Nl) ∝ pθd,m(Nl)πM(m), (8)

where πM(m) := P(M = m) denotes a suitable prior distribution on M . We here elect to

use a uniform prior restricted to Mmin ≤ m ≤ Mmax. A discussion on choosing Mmin and

Mmax can be found in Section 1.3 of Appendix 1. An efficient algorithm for computing

pθd,m(Nl) can be found in Algorithm 4 of Section 1.4 in Appendix 1. Subsequently, the

estimate M̂ of the number of molecules is found by locating the mode of the posterior

pθd,m(M = m|Nl), known as the maximum a posteriori (MAP).

Under this inference mechanism, 95% credible interval or highest density region (HDR)

[9] can also be obtained. The upper and lower bounds of this credible interval inform

us that M (under this distribution) lies within this region with probability 0.95, and is

therefore a useful tool in analyzing the potential number of molecules that are truly imaged.

Specifically, this region is chosen to be I = {m : pθd,m(m|Nl) ≥ k0.05}, where k0.05 is the

largest value such that

pI :=
∑
m∈I

pθd,m(M = m|Nl) ≥ 0.95.

We provide a detailed algorithm, which uses this method of inference to obtain pθd,m(M =

m|Nl) in Algorithm 5 of Section 1.4 in Appendix 1.
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Parameter d λ001 λ01 λ0102 λ011 λ021 λ10 µ1 ∆−1 δ α ν0 ν1 M NF

Study

1 (SLOW) 0 0.3162 1 0.0333 30 0.0033 10−5 0.2 0.8 100 104

2 (MEDIUM) 0 1 3.162 0.1054 30 0.0033 10−5 0.2 0.8 100 104

3 (FAST) 0 3.162 10 0.333 30 0.0033 10−5 0.2 0.8 100 104

4 (SLOW) 1 0.15 0.3 0.1 0.8 0.01 30 0.0033 10−5 0.2 0.8 100 104

5 (MEDIUM) 1 0.35 1 0.3 2.3 0.1 30 0.0033 10−5 0.2 0.8 100 104

6 (FAST) 1 2 10 0.7 10 0.333 30 0.0033 10−5 0.2 0.8 100 104

7 (SLOW) 2 0.15 0.3 0.05 0.1 0.001 0.8 0.05 30 0.0033 10−5 0.2 0.8 100 104

8 (MEDIUM) 2 0.8 4 0.1 0.4 0.005 8 0.1 30 0.0033 10−5 0.2 0.8 100 104

9 (FAST) 2 2 10 0.2 0.7 0.01 10 0.333 30 0.0033 10−5 0.2 0.8 100 104

Table 1: Global parameter values for the stimulation studies conducted in this section.

Validation

We validate our method on both simulated and Alexa Fluor 647 data to demonstrate its

precision and accuracy in counting molecules.

Validation with simulated data

Here we provide posterior estimates of M from nine simulation studies highlighting slow,

medium and fast switching scenarios under photo-switching models with d, the number of

dark states, equalling 0, 1 and 2. For each simulation study, 104 independent datasets, each

containing 350 molecules were simulated. From this, the localizations from 250 molecules

were used to estimate θd. The number of localizations from the remaining 100 molecules

were used to estimate M through the posterior mode of [8]. The true parameter values for

each study can be found in Table 1, and in each case we use a uniform prior (πM(m) ∝ 1).

Figures 3a - 5c show histograms of posterior modes M̂ under each study and show that our

estimation method can recover the true (M = 100) number of molecules from simulated

data.

Validation with experimental data

The data analysed in this section is taken from [11], in which detailed methods can be

found. The original study examined the effect of laser intensity on the photo-switching rates

of Alexa Fluor 647. Across a total of 27 experiments, 8 different laser intensities using 2

different frame rates were explored (see Table 2 for details). In each experiment, antibodies
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Figure 3: Simulation results from studies 1-3 in Table 1. Histograms represent counts of

M̂ under the slow (Figure 3a), medium (Figure 3b) and fast (Figure 3c) scenarios when

d = 0, from 104 independently generated datasets with M = 100 and NF = 104. For each

estimate, θ0 was determined using a training data set with M = 250 and NF = 104.
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Figure 4: Simulation results from studies 4-6 in Table 1. Histograms represent counts of M̂

under the slow (Figure 4a), medium (Figure 4b) and fast (Figure 4c) switching scenarios

when d = 1, from 104 independently generated datasets with M = 100 and NF = 104. For

each estimate, θ1 was determined using a training data set with M = 250 and NF = 104.

labeled with Alexa Fluor 647 at a ratio of 0.13-0.3 dye molecules per antibody were imaged

by total internal reflection fluorescence (TIRF) microscopy. The photo-emission time trace

of each photo-switchable molecule detected was extracted. These were then used to estimate

the photo-switching rates.

Here, we use these data for the purpose of validating the theory and counting method

presented in this paper. In each experiment, the number of fluorophores present is known

and therefore acts as a ground truth against which our estimate can be compared. For

each dataset (labelled 1 - 27), each photo-switchable molecule detected has its discrete

observation trace {Yn} extracted. 70% of these traces (the number of which we denote

Mtr) are then used to create a training set with which to identify model parameters θd.
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Figure 5: Simulation results from studies 1-3 in Table 1. Histograms represent counts of M̂

under the slow (Figure 5a), medium (Figure 5b) and fast (Figure 5c) switching scenarios

when d = 2, from 104 independently generated datasets with M = 100 and NF = 104. For

each estimate, θ2 was determined using a training data set with M = 250 and NF = 104.

The remaining 30% (the test set) are used to validate the inference method outlined in this

paper. Here, M (known) is the 30% of molecules that remain, and Nl is the number of

localizations recorded from these M molecules. The d = 2 photo-kinetic model is assumed,

as reasoned in [15].

For each experiment, the posterior modes (MAP values) M̂ given Nl, along with the

true values of M and corresponding 95% credible intervals are shown in Figure 6. With

this are shown two examples of the posterior distribution of M given Nl (see [8]). The

remaining figures can be found in Figure 7 of Section 1.6 in Appendix 1. The values of

the laser intensity, frame rate ∆−1, number of molecules in each dataset (Mtr,M), the

number of frames over which they were imaged (NF ), the total number of localizations

(Nl), the posterior mode M̂ , its 95% credible interval (I) and its corresponding value pI

is summarized in Table 2. The maximum likelihood estimates θ̂2 used for each study is

presented in Table 3 of Section 1.5 in Appendix 1.

The plots show that the modes of the posterior distributions (M̂) can be used to accu-

rately estimate the true number of imaged molecules, with all studies’ 95% credible intervals

containing the true values of M . Furthermore, the inference method shows a consistently

strong performance, both in the MAP estimate and the width of the credible intervals,

across the range of laser intensities and frame rates. This demonstrates its robustness to

different experimental conditions and photo-switching rates.
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Dataset Laser ∆−1 Mtr M NF Nl M̂ I pI

intensity

1 1.0 200 192 81 49796 4340 77 [62, 91] 0.951

2 1.9 200 180 77 49533 5300 81 [67, 94] 0.950

3 3.9 200 234 100 49815 2443 106 [87, 125] 0.955

4 3.9 200 295 110 39758 2834 112 [94, 130] 0.956

5 7.8 200 238 102 39721 2679 106 [88, 123] 0.954

6 7.8 800 171 72 29418 4648 75 [63, 87] 0.953

7 7.8 800 159 67 29257 4251 66 [54, 77] 0.956

8 7.8 800 121 51 29438 2760 54 [43, 65] 0.961

9 16 800 304 129 29467 3538 126 [108, 144] 0.953

10 16 200 201 86 39703 1609 89 [73, 104] 0.953

11 16 800 213 90 29074 3309 88 [74, 101] 0.952

12 16 800 201 85 29145 2977 84 [71, 97] 0.951

13 31 800 425 181 29059 4050 177 [157, 197] 0.955

14 31 800 374 159 29778 2845 156 [137, 174] 0.954

15 31 800 360 153 29179 3431 156 [136, 175] 0.954

16 31 800 343 147 29400 3013 140 [122, 158] 0.957

17 31 800 317 135 29071 4616 137 [120, 153] 0.950

18 62 800 385 164 29327 3160 165 [147, 183] 0.955

19 62 800 309 132 29107 2728 132 [116, 148] 0.950

20 62 800 294 126 29551 1935 124 [107, 141] 0.956

21 62 800 298 127 29426 3022 132 [116, 148] 0.952

22 62 800 279 119 28989 2842 121 [106, 136] 0.951

23 97 800 315 135 29191 1579 136 [117, 154] 0.955

24 97 800 307 131 29198 1659 138 [120, 156] 0.955

25 97 800 304 129 29270 2120 132 [115, 148] 0.954

26 97 800 295 126 29295 2280 124 [107, 140] 0.953

27 97 800 287 123 29218 1351 126 [106, 145] 0.954

Table 2: A description of the Alexa Fluor 647 datasets, with reference to the laser intensities

in kW/cm2 and frames sampled per second (or ∆−1) measured in s−1 used to characterize

each of the 27 experiments. For each dataset, a training set of size Mtr was used to find

the maximum likelihood estimate θ̂2. A hold out test set of size M was used validate the

inference procedure.

Discussion

We have derived the distribution of the number of localizations per fluorophore and for an

arbitrary number of fluorophores is a dSTORM experiment. This has allowed us to present

an inference procedure for estimating the unknown number of molecules, given an observed

number of localizations. These results have been successfully validated on both simulated

and experimental data across a range of different imaging conditions, thus demonstrating a

robust and precise new tool for the quantification of biological structures and mechanisms

imaged via SMLM methods.

This method separates out the rate estimation (training) procedure from the counting

procedure. While the training procedure requires a separate experiment to estimate fluo-
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Figure 6: (a) Posterior distributions of Mte given θ̂2 and Nl for the Alexa FLuor 647

datasets 1 and 2 (descriptions of which can be found in Table 3). For each study, M̂ is given

by the corresponding posterior mode plotted in cyan, with the true values of Mte shown

in magenta (dotted). 95% credible intervals for each M̂ are shown in black (dotted).(b)

Posterior estimates of Mte given θ̂2 and Nl for the 27 Alexa FLuor 647 datasets (descriptions

of which can be found in Table 2) with varying laser intensities (kw/cm2). For each study,

M̂ is given by the corresponding posterior mode plotted in blue (circle), with the true

values of Mte shown in red (crosses) and 95% credible intervals for each M̂ are shown by

blue error bars.

rophore switching rates, it does mean that the counting process is computationally cheap

and therefore highly scalable. This method can count several thousand molecules from tens

of thousands of localizations with relative computational ease. In the PALM setting, [16]

attempts to count and do rate estimation simultaneously. While having a single procedure

avoids the problem of a separate training experiment, the computational burden of such a

procedure is extreme and drastically limits the numbers of molecules that can be counted at
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any one time. Furthermore, it requires careful extraction of the time traces from crowded

environments which is in itself problematic and challenging.

The counting procedure presented here assumes that localizations are acquired sparsely.

In fact, if two or more molecules, within close enough proximity that their point spread

functions sufficiently overlap, are in the On state simultaneously then it could be that only

a single localization is obtained or the localization algorithm ignores them all together.

This phenomenon is discussed in detail and quantified in [3]. They relate the frequency

at which this occurs to the resolving capabilities of the algorithm used, the photo-kinetics

of the fluorophores, and the unknown density and spatial distribution of the molecules

being imaged. Incorporating this uncertainty in the density and spatial distribution of

the molecules into this counting procedure is highly non-trivial and outside the scope of

this paper. However, it is worth noting that [3] shows an imaging environment designed

to minimise the number of fluorophores simultaneously in the On state can exponentially

reduce this effect. Furthermore, recent developments in localization algorithms [e.g. 2]

move ever closer to a satisfactory solution to this multi-emitter problem.
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1 Appendix

In Section 1.1 we first detail proofs of Propositions 1 and 2. In Section 1.2, we describe the

mathematical details needed to derive the probability mass function of the total number

of localisations. In Section 1.3, we describe how to obtain the posterior distribution of M

given Nl. In Section 1.4, we provide the necessarry algorithms required to compute this

posterior. In Section 1.5, we provide a table with the parameters used when analysing the

Alexa Fluor 647 data. In Section 1.6, we provide plots of these results.

1.1 Proofs

In this Section, we give detailed proofs of Propositions 1 and 2. Proposition 1 provides

a method of computing the probability mass function of Sn, the cumulative number of

localizations produced by a single molecule across n frames. Proposition 2 details its first

and second moments, which uses the result of its probability generating function (pgf)

derived in Lemma 1.

1.1.1 Proof of Proposition 1

Proof. Let M be as defined in equation (3).

Initializing with n = 1, we have (for k ∈ {0, 1}) that

M(j, k, 1) =
∑
i∈SX

Pθd(X(∆) = j, Y0 = k|X(0) = i)Pθd(X(0) = i)

=
∑
i∈SX

B
∗(k)
∆ (i, j)Pθd(X(0) = i).

=⇒ M(k, 1) = ν>XB
∗(k)
∆ .

For arbitrary n > 1, and for k = 0 we have

M(j, 0, n) =
∑
i∈SX

Pθd(X(n∆) = j, Sn = 0|X((n− 1)∆) = i, Sn−1 = 0)M(i, 0, n− 1)

=
∑
i∈SX

B
∗(0)
∆ (i, j)M(i, 0, n− 1).

=⇒ M(0, n) = M(0, n− 1)B
∗(0)
∆ .
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For 1 ≤ k < n we have

M(j, k, n) =
n∑

x=k−1

∑
i∈SX

Pθd(X(n∆) = j, Sn = k|X((n− 1)∆) = i, Sn−1 = x)M(i, k − x, n− 1)

=
1∑

x=0

∑
i∈SX

B
∗(x)
∆ (i, j)M(i, k − x, n− 1).

=⇒ M(k, n) = M(k, n− 1)B
∗(0)
∆ + M(k − 1, n− 1)B

∗(1)
∆ .

And finally for k = n, we have

M(j, n, n) =
∑
i∈SX

Pθd(X(n∆) = j, Sn = n|X((n− 1)∆) = i, Sn−1 = n− 1)M(i, n− 1, n− 1)

=
∑
i∈SX

B
∗(1)
∆ (i, j)M(i, n− 1, n− 1).

=⇒ M(n, n) = M(n− 1, n− 1)B
∗(1)
∆ .

Now since

Pθd(Sn = k) =
∑
j∈SX

Pθd(X(n∆) = j, Sn = k),

we obtain

pθd(Sn = k) := Pθd(Sn = k) = M(k, n)1d+3 k ∈ SSn .

1.1.2 Probability generating function (pgf)

In order to prove Proposition 2, we need a preliminary Lemma which derives the probability

generating function (pgf) of Sn for n ∈ Z>0, since this result will be used in the main proof.

Lemma 1. For any n ∈ Z>0, the probability generating function (pgf) of Sn, GSn(z) =

Eθd(z
Sn) is given by

GSn(z) = ν>X(B
∗(0)
∆ + zB

∗(1)
∆ )n1d+3. (9)

Proof. By defining the vector quantity GSn(z) :=
∑n

i=0 M(i, n)zi, we have GSn(z) =

GSn(z)1d+3. We therefore need to equivalently show that GSn(z) = ν>X(B
∗(0)
∆ + zB

∗(1)
∆ )n.
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The statement in [9] is true for n = 1, since

GS1(z) = P(S1 = 0) + zP(S1 = 1)

= (ν>XB
∗(0)
∆ + zν>XB

∗(1)
∆ )1d+3

= ν>X(B
∗(0)
∆ + zB

∗(1)
∆ )1d+3.

Assuming that [9] is true for n = k, consider n = k + 1:

GSk+1
(z) =

k+1∑
i=0

P(Sk+1 = i)zi

=

(
k+1∑
i=0

M(i, k + 1)zi

)
1d+3

=

(
M(0, k)B

∗(0)
∆ +

(
k∑
i=1

(M(i, k)B
∗(0)
∆ + M(i− 1, k)B

∗(1)
∆ )zi

)
+ M(k, k)B

∗(1)
∆ zk+1

)
1d+3

=

((
k∑
i=0

M(i, k)zi

)
B
∗(0)
∆ + z

(
k∑
i=0

M(i, k)zi

)
B
∗(1)
∆

)
1d+3

= GSk(z)(B
∗(0)
∆ + zB

∗(1)
∆ )1d+3

= ν>X(B
∗(0)
∆ + zB

∗(1)
∆ )k+11d+3.

1.1.3 Proof of Proposition 2

Proof. The expected value of Sn, denoted Eθd(Sn) = G′Sn(1) and variance Varθd(Sn) =

G′′Sn(1) + Eθd(Sn) − E2
θd

(Sn) can be explicitly determined by differentiating the pgf in (9)

from first principles.

In the following, we utilize the following expansion

(Cz + hB
(1)
∆ )n = Cn

z + hCn−1
z B

(1)
∆ + hCn−2

z B
(1)
∆ Cz + . . .+ hB

(1)
∆ Cn−1

z +O(h2),

which holds for the two square matrices Cz and B
(1)
∆ .
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From the definition of a derivative, we have

GSn(z) = ν>X(B
∗(0)
∆ + zB

∗(1)
∆ )n1d+3.

dGSn

dz
= lim

dz→0

1

dz

[
νTX(B

∗(0)
∆ + (z + dz)B

∗(1)
∆ )n1d+3 − νTXC

n
z 1d+3

]
= νTX lim

dz→0

(B
∗(0)
∆ + (z + dz)B

∗(1)
∆ )n − Cn

z

dz
1d+3

= νTX lim
dz→0

(Cz + dzB
∗(1)
∆ )n − Cn

z

dz
1d+3

= νTX lim
dz→0

Cn
z + Cn−1

z dzB
∗(1)
∆ + Cn−2

z dzB
∗(1)
∆ Cz + · · · − Cn

z

dz
1d+3

= νTX

[
Cn−1
z B

∗(1)
∆ + Cn−2

z B
∗(1)
∆ Cz + Cn−3

z B
∗(1)
∆ C2

z + · · ·+ CzB
∗(1)
∆ Cn−2

z +B
∗(1)
∆ Cn−1

z

]
1d+3

≡ νTX

[
n∑
i=1

Cn−i
z B

∗(1)
∆ Ci−1

z

]
1d+3,

defining Cz := B
∗(0)
∆ + zB

∗(1)
∆ .

When z = 1, C1 = B
∗(0)
∆ +B

∗(1)
∆ = eG∆, giving

Eθd(Sn) = νTX

[
n∑
i=1

eG∆(n−i)B
∗(1)
∆ eG∆(i−1)

]
1d+3.

Defining D :=
∑n−1

j=1 C
n−1−j
z B

∗(1)
∆ Cj−1

z , we can now derive G′′Sn(1) as follows

d2GSn

dz2
= νTX lim

dz→0

1

dz

n∑
i=1

[
Cn−i
z+dzB

∗(1)
∆ Ci−1

z+dz − C
n−i
z B

∗(1)
∆ Ci−1

z

]
1d+3

= νTX

[
DB

∗(1)
∆ + lim

dz→0

1

dz

n−1∑
i=2

Cn−i
z+dzB

∗(1)
∆ Ci−1

z+dz − C
n−i
z B

∗(1)
∆ Ci−1

z +B
∗(1)
∆ D

]
1d+3

= νTX

[
DB

∗(1)
∆ +

n−1∑
i=2

(
n−i∑
j=1

Cn−(i+j)
z B

∗(1)
∆ Cj−1

z B
∗(1)
∆ Ci−1

z +

i∑
k=2

Cn−i
z B

∗(1)
∆ Ci−k

z B
∗(1)
∆ Ck−2

z

)
+B

∗(1)
∆ D

]
1d+3.
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This gives

G′′Sn(1) = νTX

(
n−1∑
i=1

n−i∑
j=1

eG∆(n−i−j)B
∗(1)
∆ eG∆(j−1)B

∗(1)
∆ eG∆(i−1)+

i∑
j=1

eG∆(n−i−1)B
∗(1)
∆ eG∆(i−j)B

∗(1)
∆ eG∆(j−1)

)
1d+3,

so that Eθd(S
2
n) = G′′Sn(1)+Eθd(Sn) and therefore Varθd(Sn) = G′′Sn(1)+Eθd(Sn)−E2

θd
(Sn).

1.2 Deriving the probability distribution of the total number of localizations

We defined the total number of localizations Nl detected from M fluorophores during an

experiment (consisting of NF frames) to be

Nl =
M∑
m=1

SNF ,m,

where SNF ,m denotes the cumulative number of localizations made by the mth fluorophore.

The distribution SNF (for a single fluorophore) is carefully derived in Proposition 1, with

Algorithm 1 providing the user with a scheme to computationally compute it given photo-

switching parameters θd. Here, we describe how this can now be used to recover the

probability mass function for Nl, given M .

Firstly, for any u ∈ R, we define the characteristic function γSNF (u) of the random

variable SNF to be

γSNF (u) := Eθd(e
iuSNF ) =

∞∑
s=0

Pθd(SNF = s)eius

=

NF∑
s=0

pθd(SNF = s)eius,

where i =
√
−1. The characteristic function for Nl =

∑M
m=1 SNF ,m is then

Eθd,M(eiuNl) = Eθd,M

(
eiu(SNF ,1+···+SNF ,M)

)
= Eθd,M

(
eiuSNF ,1 . . . eiuSNF ,M

)
=

M∏
m=1

Eθd

(
eiuSNF ,m

)
(since SNF ,1, . . . , SNF ,M are independent)

= γMSNF
(u) (since SNF ,1, . . . , SNF ,M are identically distributed). (10)
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For any N ≥ 0, we can define tN := 2π
N+1

and uN = −tNk, where k can take any value in

the set {0, . . . , N}. When N = NF , this enables

Fs→k(pθd(SNF )) := γSNF (−uNF ) =

NF∑
s=0

pθd(SNF = s)e−itNF ks

to be seen as the Discrete Fourier Transform (DFT) of the probability mass pθd(SNF = s),

where Fs→k(·) denotes the discrete Fourier operator. The inverse DFT can then recover

the probabilities via

F−1
k→s(γSNF (−tNF k)) =

1

NF + 1

NF∑
k=0

γSNF (−tNF k)eitNF ks

≡ pθd(SNF = s).

Using the characteristic function of Nl from [10], it now follows that probability mass

pθd,M(Nl = s) := Pθd,M(Nl = s) (where Nl takes values in the set {0, . . . ,MNF}), can be

recovered via

pθd,M(Nl = s) =
1

MNF + 1

MNF∑
k=0

γMSNF
(−tMNF k) eitMNF

ks, (11)

so that pθd,M(Nl = s) = F−1
k→s(γ

M
SNF

(−tMNF k)) = F−1
k→s(FMs→k(pθd(SNF ))). It should be

noted here that a computational implementation would require one to apply the DFT to

the MNF + 1 vector of probabilities p, whose (s+ 1)th element is defined as pθd(SNF = s).

The first NF + 1 elements of p are therefore those outputted by Algorithm 1 and the

remaining NF (M−1) elements are zeros. Algorithm 4 of this supplement provides the user

with a scheme to compute the probability distribution of Nl using this reasoning.

1.3 Deriving the posterior distribution of M

We defined the posterior distribution of M given the number of observed localizations Nl

in test data Dte = {Nl,∆, NF} and θd the set of photo-switching parameters learned from

training data Dtr.

We choose Mmin = max
(⌈

Nl
NF

⌉
, 1
)

and while it should be clear that Mmax = ∞, one

may choose to pre-specify a large value for Mmax to avoid unnecessarily large computations.

For example, we let m̂ =
⌈

Nl
Eθd

(SNF )

⌉
and Mmax = m̂+

⌈
4
√
m̂Varθd(SNF )

⌉
and consider the
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range [Mmin,Mmax] suitable for inference. Here, Eθd(SNF ) and Varθd(SNF ) can be computed

using equations (5) and (6). For the studies conducted, we chose Mmin and Mmax using

this reasoning. For a given prior distribution πM , Algorithm 5 computes pθd,m(M = m|Nl)

using this described method.
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1.4 Algorithms

In this Section, we provide two additional algorithms to supplement the material presented

in this paper. Firstly, Algorithm 3 presents the algorithm to compute transmission matrices

B
∗(0)
∆ and B

∗(1)
∆ given any parameter set θd. This algorithm has been taken from [15],

and presented here for convenience. Secondly, we provide an algorithm to compute the

probability mass function (distribution) of the total number of localizations Nl as previously

described and in equation (11).

A small note on the notation used in Algorithm 3. We denote 0n and 1n to be the n×1

vectors of zeros and ones respectively and In to be the n × n identity matrix. Moreover,

epn denotes the pth canonical (standard) basis vector of Rn. We denote A[i1 : i2, j1 : j2] to

be the matrix filled with rows i1 to i2 and columns j1 to j2 of any matrix A, and A[i1, j1]

to be the (i1, j1)th entry of A. We use the � notation to denote the Hadamard (element

wise) product between two matrices. Moreover, the Laplace transform of a scalar-valued

function qij(k, t) with respect to its arguments i, j ∈ Z>0,k ∈ Rn and t ≥ 0, is defined as

Lt→s[qij(k, t)](s) =: fij(k, s) =
∫∞

0
e−stqij(k, t)dt. The Laplace operator on a matrix-valued

function is applied element wise to create a matrix output of the same dimension as the

input.
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Algorithm 5 Compute posterior distribution pθd,m(M = m|Nl)

function Compute posterior(Dtr,Dte, πM)

Use Dtr to obtain θd . E.g. via the method in [15]

p← PMF S(θd,∆, NF ) . From Algorithm 1

Compute Eθd(SNF ),Varθd(SNF ) . From (5) and (6)

Mmin ← max
(⌈

Nl
NF

⌉
, 1
)

m̂←
⌈

Nl
Eθd

(SNF )

⌉
Mmax ← m̂+

⌈
4
√
m̂Varθd(SNF )

⌉
p∗ ← 0Mmax

for i = Mmin to Mmax do

p2 ← PMF NL(p, i) . From Algorithm 4

p∗[i]← p2[Nl + 1]πM(i)

p∗ ← p∗

p∗1Mmax
. Normalize probabilities

return p∗ . p∗[m] = Pθd,m(M = m|Nl)
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Algorithm 3 Compute transmission matrices B
∗(0)
∆ and B

∗(1)
∆

1: function COMPUTE TRANSMISSION MATRICES(θd,∆)

2: Compute G from θd using equation (1)

3: GS,R0 ← 0d+20
>
d+2

4: GS ← G[1 : d+ 2, 1 : d+ 2] . To avoid numerical overflow in the computation of

inverse Laplace transforms, one can (for some small tolerance ε > 0), replace all such

(G)p,p with (G)q,q, when |(G)p,p − (G)q,q| < ε; p 6= q = 1, . . . , d+ 2.

5: µ← G[1 : d+ 2, d+ 3]

6: σ1 ← −G[d+ 2, d+ 2]

7: σ ← −diag(G[1 : d+ 1, 1 : d+ 1])

8: for i = 1 to d+ 1 do

9: GS,R0 [i, d+ 2]← GS[i, d+ 2]

10: GS,R̄0 ← GS −GS,R0

11:

12: . //Compute initializations for transmission matrices

13: A1 ←

 −G>S,R̄0 Id+2

0d+20
>
d+2 −G>S,R̄0


14: A2 ←

 GS,R̄0 Id+2

0d+20
>
d+2 0d+20

>
d+2


15: A←

 A1 02(d+2)0
>
2(d+2)

02(d+2)0
>
2(d+2) A2


16: Q0

∆(0)← eGS,R̄0∆

17: Q̄0
∆(0)← eA∆[i1 : i2, i2 + 1 : i3]µ . i1 = 2d+ 5, i2 = 3(d+ 2) and i3 = 4(d+ 2)

18: c← 1−e−σ1δ

1−e−σ1∆

19: Ξ0
∆(0)←

[
1d+11

>
d+1 c1d+1

]>
20: Ξ1

∆(0)← 1d+21
>
d+1 − Ξ0

∆(0)

21: Ξ̄0
∆(0)←

[
1>d+1 c

]>
22: Ξ̄1

∆(0)← 1d+2 − Ξ̄0
∆(0)

23: B
(0)
∆ ←

(Q0
∆(0))(1:d+2),(1:d+1) � Ξ0

∆(0) 0d+2 Q̄0
∆(0)� Ξ̄0

∆(0)

0>d+1 0 1
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24: B
(1)
∆ ←

(Q0
∆(0))(1:d+2),(1:d+1) � Ξ1

∆(0) [0>d+1 e−σ1∆]> Q̄0
∆(0)� Ξ̄1

∆(0)

0>d+1 0 0


25: k ← 1 . //Start convergence of transmission matrices via computations of

different k

26: while B
(0)
∆ and B

(1)
∆ have not converged do

27: Q0
∆(k)← L−1

s [(sId+2 −GS,R̄0)−1
(
GS,R0(sId+2 −GS,R̄0)−1

)k
](∆) . Compute

inverse Laplace transform matrix

28: Q̄0
∆(k)←

(∫ ∆

0
Q0
s(k)ds

)
µ

29: for i = 1 to d+ 1 do

30: for j = 1 to d+ 1 do

31: . Υ ∼ Erlang(k, σ1) and FΥ(u, k, σ1) = P(Υ ≤ u)

32: Ξ0
∆(k)[i, j], Ξ̄0

∆(k)[i]← FΥ(δ,k,σ1)
FΥ(∆,k,σ1)

33: Ξ1
∆(k)[i, j]← 1− (Ξ0

∆(k))[i, j]

34: Ξ̄1
∆(k)[i]← 1− Ξ̄0

∆(k)[i]

35: Ξ0
∆(k)[d+ 2, j], Ξ̄0

∆(k)[d+ 2]← FΥ(δ,k+1,σ1)
FΥ(∆,k+1,σ1)

36: Ξ1
∆(k)[d+ 2, j]← 1− Ξ0

∆(k)[d+ 2, j]

37: Ξ̄1
∆(k)[d+ 2]← 1− Ξ̄0

∆(k)[d+ 2]

38: B
(0)
∆ ← B

(0)
∆ +

Q0
∆(k)[1 : d+ 2, 1 : d+ 1]� Ξ0

∆(k) 0d+2 Q̄0
∆(k)� Ξ̄0

∆(k)

0>d+1 0 0


39: B

(1)
∆ ← B

(1)
∆ +

Q0
∆(k)[1 : d+ 2, 1 : d+ 1]� Ξ1

∆(k) 0d+1 Q̄0
∆(k)� Ξ̄1

∆(k)

0>d+1 0 0


40: for i = 1 to d+ 2 do

41: Find all vectors k =
(
k0 k1 . . . kd

)>
that belong to the set C0i−1

k .

C0i−1

k :=
{
k : k>1d+1 = k, ki−1 > 0, k0 ≥ . . . ≥ ki−1 − 1 ≥ . . . ≥ kd − 1

}
42: C0d+1

k ← C0
k

43: For each k, f0i−11(k, s)← λ10

s+σ1

∑d
p=0

λ0p1
∏p−1
q=0 λ0q0q+1∏p

q=0(s+σ0q )
f0i−11

(
k−

∑p
r=0 er+1

d+1, s
)

. Compute f0i−11(k, s) recursively via the initializations f0i−11(0d+1, s) =
1{d+2}(i)

s+σ1
,

f0p1(ep+1
d+1, s) =

λ0p1

(s+σ0p )(s+σ1)
for p = 0, . . . , d, and f0d+11(e1

d+1, s) = λ10λ01

(s+σ0)(s+σ1)2 .

44: For each k, compute q1
0i−11(k,∆) = L−1

s (f0i−11(k, s))(∆) . Compute inverse

Laplace transforms
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45: ξ1
0i−11(0,k,∆)← FΦ(∆|k,σ)−FΦ(∆−δ|k,σ)

FΦ(∆|k,σ)
. FΦ(φ|k,σ) = P(Φ ≤ φ), where

Φ =
∑m

p=0 Wp, Wp
indep∼ Erlang(kp, σ0p)

46: ξ1
0d+11(0,k,∆)← ξ1

01(0,k,∆)

47:

48: B
(0)
∆ [i, d+ 2]← B

(0)
∆ [i, d+ 2] +

∑
k∈C

0i−1
k

q1
0i−11(k,∆)ξ1

0i−11(0,k,∆)

49:

50: B
(1)
∆ [i, d+ 2]← B

(1)
∆ [i, d+ 2] +

∑
k∈C

0i−1
k

q1
0i−11(k,∆)(1− ξ1

0i−11(0,k,∆))

51: k ← k + 1

52:

53: . //Include the addition of false positives to transmission matrices

54: B
∗(0)
∆ ← (1− α)B

(0)
∆

55: B
∗(1)
∆ ← B

(1)
∆ + αB

(0)
∆

56: return B
∗(0)
∆ , B

∗(1)
∆ . Output transmission matrices

Algorithm 4 Compute probability mass function (PMF) for Nl from M fluorophores

1: function PMF Nl(p1,M) . p1 ← PMF S(θd, NF ) from Algorithm 1

2: p2 ← [p>1 0>NF (M−1)]
>

3: f ← F(p2) . Apply Discrete Fourier Transform (DFT) to p2 to get f

4: fM ← fM . fM [i] = f [i]M for i = 1, . . . ,MNF + 1

5: p← F−1(fM) . Apply inverse DFT to fM to get p, where p[i] = Pθd,M(Nl = i− 1)

for i = 1, . . . ,MNF + 1

6: return p . Probability mass function for Nl
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1.5 Tables

In this Section, we provide a Table to detail the imaging parameters θ2 used when deriving

the posterior distribution of Mte given θ2 for the 27 Alexa FLuor 647 datasets studied. As

explained, for each study, a training set of size NF ×Mtr from the whole dataset was used

to determine θ2 via the PSHMM method [15]. A model with d = 2 was used when learning

θ2, further reasoned in [15]. Table 3 provides the number of each study, the Laser intensity

used, ∆, Mtr, Mte, NF and the maximum likelihood parameter estimates in θ2.

1.6 Figures

In this section, we provide the posterior distributions of M given Nl from the Alexa Fluor

647 datasets studied in Section . Speficially, Figure 7 shows the posterior distributions

of M given Nl, along with the true values and MAP estimates from the 27 experiments.

Moreover, each distribution’s 95% credible interval (under a uniform prior on M) is given.
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Dataset Laser ∆−1 Mtr Mte NF λ001 λ01 λ0102 λ011 λ021 λ10 µ1
δ
∆

α νX

intensity × × × ×10 ×104 × ×102 ×105

∆ ∆ ∆ ×∆ ×∆ ∆ ×∆

1 1.0 200 192 81 49796 0.10 0.55 0.01 0.22 1.24 0.65 1.04 0.78 1.48 (0.21, 0.00, 0.65, 0.13, 0)

2 1.9 200 180 77 49533 0.23 0.73 0.02 0.46 1.43 0.92 1.37 0.32 1.13 (0.00, 0.46, 0.34, 0.20, 0)

3 3.9 200 234 100 49815 0.12 0.46 0.02 0.21 0.58 0.55 2.44 0.65 0.80 (0.10, 0.07, 0.70, 0.13, 0)

4 3.9 200 295 110 39758 0.28 0.67 0.03 0.42 1.22 0.55 2.53 0.69 0.98 (0.02, 0.12, 0.61, 0.24, 0)

5 7.8 200 238 102 39721 0.14 0.39 0.02 0.14 1.42 0.55 2.98 0.57 0.27 (0.10, 0.06, 0.72, 0.12, 0)

6 7.8 800 171 72 29418 0.03 0.15 1.35 6.08 1.39 0.52 0.65 0.56 1.17 (0.52, 0.00, 0.00, 0.47, 0)

7 7.8 800 159 67 29257 0.25 0.58 0.02 0.47 1.12 0.81 0.61 0.37 1.60 (0.50, 0.03, 0.00, 0.47, 0)

8 7.8 800 121 51 29438 0.13 0.40 0.01 0.23 0.68 0.54 0.00 0.66 0.09 (0.71, 0.00, 0.00, 0.29, 0)

9 16 800 304 129 29467 0.38 0.70 0.02 0.57 0.81 0.59 1.18 0.77 0.72 (0.23, 0.03, 0.00, 0.74, 0)

10 16 200 201 86 39703 0.19 0.42 0.01 0.08 1.25 0.57 3.10 0.73 0.83 (0.00, 0.01, 0.46, 0.53, 0)

11 16 800 213 90 29074 0.21 0.46 0.03 0.37 0.73 0.54 0.00 0.64 0.48 (0.54, 0.00, 0.00, 0.46, 0)

12 16 800 201 85 29145 0.12 0.35 0.02 0.19 0.72 0.57 0.00 0.61 0.00 (0.13, 0.00, 0.00, 0.87, 0)

13 31 800 425 181 29059 0.21 0.41 0.03 0.28 0.75 0.58 0.01 0.72 0.93 (0.33, 0.07, 0.04, 0.56, 0)

14 31 800 374 159 29778 0.25 0.50 0.04 0.30 0.71 0.70 0.01 0.75 0.95 (0.26, 0.00, 0.00, 0.74, 0)

15 31 800 360 153 29179 0.13 0.32 0.02 0.11 0.70 0.61 0.00 0.63 0.34 (0.50, 0.00, 0.09, 0.41, 0)

16 31 800 343 147 29400 0.17 0.38 0.03 0.20 0.68 0.65 0.00 0.67 0.35 (0.25, 0.00, 0.00, 0.75, 0)

17 31 800 317 135 29071 0.21 0.47 0.03 0.34 0.75 0.59 0.00 0.68 1.18 (0.09, 0.00, 0.00, 0.91, 0)

18 62 800 385 164 29327 0.22 0.37 0.04 0.21 0.87 0.69 0.17 0.61 1.35 (0.26, 0.00, 0.00, 0.73, 0)

19 62 800 309 132 29107 0.25 0.47 0.04 0.26 0.87 0.69 0.23 0.66 1.10 (0.54, 0.00, 0.00, 0.46, 0)

20 62 800 294 126 29551 0.18 0.36 0.03 0.15 0.60 0.75 0.00 0.63 1.20 (0.14, 0.04, 0.00, 0.81, 0)

21 62 800 298 127 29426 0.16 0.39 0.03 0.14 0.77 0.65 0.05 0.67 1.68 (0.06, 0.00, 0.00, 0.94, 0)

22 62 800 279 119 28989 0.17 0.37 0.03 0.16 0.85 0.67 0.00 0.60 1.35 (0.39, 0.00, 0.00, 0.61, 0)

23 97 800 315 135 29191 0.21 0.36 0.04 0.19 0.95 0.79 3.50 0.60 0.75 (0.45, 0.00, 0.00, 0.55, 0)

24 97 800 307 131 29198 0.17 0.30 0.02 0.08 0.75 0.77 1.10 0.67 1.11 (0.36, 0.00, 0.00, 0.64, 0)

25 97 800 304 129 29270 0.30 0.48 0.04 0.27 1.17 0.75 2.47 0.61 1.97 (0.00, 0.00, 0.00, 1.00, 0)

26 97 800 295 126 29295 0.18 0.42 0.02 0.10 1.04 0.62 1.35 0.82 1.14 (0.17, 0.00, 0.00, 0.82, 0)

27 97 800 287 123 29218 0.26 0.51 0.04 0.34 0.96 0.71 4.22 0.79 0.93 (0.51, 0.00, 0.00, 0.48, 0)

Table 3: A description of the Alexa Fluor 647 datasets, with reference to the laser intensities

in kW/cm2 and frames sampled per second (or ∆−1) measured in s−1 used to characterize

each of the 27 experiments. For each dataset, a training set of size NF × Mtr (train)

was used to find the maximum likelihood estimate θ2 via the PSHMM (estimated values

shown). A hold out test set of size NF ×Mte (test) was used in the posterior computations

of M .
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Figure 7: Posterior distributions of Mte given θ̂2 and Nl for the 27 Alexa FLuor 647

datasets (descriptions of which can be found in Table 3). For each study, M̂ is given by

the corresponding posterior mode plotted in cyan, with the true values of Mte shown in

magenta (dotted). 95% credible intervals for each M̂ are shown in black (dotted).
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