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Abstract. RNA structures possess multiple levels of structural organi-
zation. Secondary structures are made of canonical (i.e. Watson-Crick
and Wobble) helices, connected by loops whose local conformations are
critical determinants of global 3D architectures. Such local 3D struc-
tures consist of conserved sets of non-canonical base pairs, called RNA
modules. Their prediction from sequence data is thus a milestone toward
3D structure modelling. Unfortunately, the computational efficiency and
scope of the current 3D module identification methods are too limited
yet to benefit from all the knowledge accumulated in modules databases.
Here, we introduce BayesPairing 2, a new sequence search algorithm
leveraging secondary structure tree decomposition which allows to reduce
the computational complexity and improve predictions on new sequences.
We benchmarked our methods on 75 modules and 6380 RNA sequences,
and report accuracies that are comparable to the state of the art, with
considerable running time improvements. When identifying 200 modules
on a single sequence, BayesPairing 2 is over 100 times faster than its
previous version, opening new doors for genome-wide applications.

Keywords: RNA structure prediction · RNA 3D modules · RNA mod-
ules identification in sequence.
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1 Introduction

RNAs use complex and well organized folding processes to support their many
non-coding functions. The broad conservation of structures across species high-
lights the importance of this mechanism [35,14]. RNAs can operate using folding
dynamics [25] or hybridization motifs [2]. Yet, many highly specific interactions
need sophisticated three dimensional patterns to occur [15,11,13].

RNAs fold hierarchically [36]. First, Watson-Crick and Wobble base pairs are
rapidly assembled into a secondary structure that determine the topology the
RNA. Then, unpaired nucleotides form non-canonical base pairs interactions [16],
stabilizing the loops while shaping the tertiary structure of the molecule. These
non-canonical base pairing networks have thus been identified as critical com-
ponents of the RNA architecture [4] and several catalogs of recurrent networks
along with their characteristic 3D geometries are now available [10,7,27,28,30,12].
They act has structural organizers and ligand-binding centers [8] and we call
them RNA 3D modules.

In contrast to well-established secondary structure prediction tools [20,22],
we are still lacking efficient computational methods to leverage the information
accumulated in the module databases. Software such as RMDetect [8], JAR3D [34]
and our previous contribution BayesPairing 1 [32] have been released, but their
precision and scalability remains a major bottleneck.

The significance of a module occurrence is typically assessed from recurrence:
substructures that are found in distinct RNA structures are assumed to be func-
tionally significant [30]. Based on this hypothesis, three approaches have been
developed so far for the retrieval and scoring of 3D modules from sequence. The
first one, RMDetect, takes advantage of Bayesian Networks to represent base
pairing tendencies learned from sequence alignments. Candidate modules found
in an input sequence are then scored with Bayesian probabilities. However, while
showing excellent accuracy, RMDetect suffers from high computational costs, and
minimal structure diversity among modules predicted [32]. Another option is
JAR3D [34], which refined the graphical model-based scoring approach introduced
by RMDetect and represents the state of the art for module scoring. However, it
was not designed to maximize input sequence scanning efficiency and is limited
in module diversity, only being applied to hairpin and internal loops. Finally,
BayesPairing 1 [32], a recently introduced tool combining the Bayesian scoring
of RMDetect to a regular expression based sequence parsing, is able to identify
junction modules in input sequences and showed improved computational costs
compared to RMDetect, which it was inspired from. Unfortunately, none of the
aforementioned software can be used for the discovery of many RNA 3D modules
in new sequences at the genome scale.

In this paper, we present BayesPairing 2, an efficient tool for high-throughput
search of RNA modules in sequences. BayesPairing 2 analyzes the structural
landscape of an input RNA sequence through secondary structure stochastic
sampling and uses this information to identify candidate module insertion sites
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Fig. 1: The BayesPairing 2 workflow addresses the identification of non-
canonical 3D modules, i.e. arrangements of canonical and non canonical base
pairs that are essential to the 3D architecture of RNAs. It takes as input either an
RNA transcript or a multiple sequence alignment, possibly supplemented with
a (shared) secondary structure, and returns an ordered list of occurrences for
candidate modules. Its key idea is to match predicted secondary structure loops,
highly likely to occur in thermodynamically-stable models, against a database
of local modules learned from sequence data filtered for isostericity [19]. In this
figure, we show the identification pipeline for one module on one structure of
the ensemble. This is then repeated for all modules, for all structures.

and select modules occurring in a favorable structural context. This pre-scoring
stage enables us to dramatically reduce the number of putative matches and
thus to (i) simultaneously search for multiple modules at once and (ii) eliminate
false positives. BayesPairing 2 shows comparable performance to the state of
the art while scaling gracefully with the number of modules searched. It also
supports alignment search, a feature of RMDetect which could not be integrated
in the BayesPairing 1 framework. All these improvements support potential
applications at the genome scale.

2 Methods

Concepts and model. A non-canonical 3D module consists in a set of
non-canonical base pairs [17]. Modules occur within a secondary structure
loop, consisting of one or several stretches of unpaired positions within an RNA
transcript, also called regions, delimited by classic Watson-Crick/Wobble base
pairs.

At the thermodynamic equilibrium, an RNA sequence w is expected to
behave stochastically and adopt any of its secondary structure S, compati-
ble with w with respect to canonical Watson-Crick/Wobble base pairing rules,
with probability proportional to its Boltzmann factor [23]. The Boltzmann
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Fig. 2: An RNA 3D module (2a), here the three-way junction of the TPP ri-
boswitch, represented in green, drawn in its structural context. Dashed and
dotted lines respectively represent non-canonical base pairs and stacking inter-
actions. A tree decomposition (2b) of the module represents the dependencies
between the module positions, leading to conditional probabilities (2c), esti-
mated from available sequence data

probability of a secondary structure S for an RNA sequence w is then

P(S | w) =
e−ES,w/RT

Zw

where ES,w represents the free-energy assigned to the (S,w) pair by the exper-
imentally established Turner energy model [37], Zw =

∑
S′ e−ES′,w/RT is the

partition function [23], R is the Boltzmann constant and T the absolute temper-
ature. By extension, the Boltzmann probability of a given loop to occur within
a sequence w is simply defined as

P(loop | w) =
∑

S compatible with w
loop∈S

P(S | w).

In the current absence of thermodynamic data for non-canonical base-pairs
and modules, we adopt a probabilistic approach, and model the sequence prefer-
ences associated with a module statistically as a Bayesian network, following
Cruz et al [8]. The structures of Bayesian networks are systematically derived
from the base pairs occurring within recurrent 3D motifs [30]. Such motifs
are typically mined within available 3D RNA structures in the PDB [5], and
clustered geometrically.

Networks are then decomposed in a way that minimizes direct dependencies
between individual positions of the module, while transitively preserving the
emission probabilities. As illustrated in Figure 2, we use a tree decomposi-
tion [6] of the network to minimize the maximum number of prior observations
at each position, a strategy shared by instances of the junction tree methods [3].
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Maximum likelihood conditional emission probabilities are then learned for each
module using pseudo-counts.

The emission probability for the positions of a module m to be assigned
to a nucleotide content A is then given by

P(assignment A | module m) =
∏
i∈m

P(pi = Ai | pj = Aj ∧ pj′ = Aj′ ∧ . . .). (1)

where pj , pj′ , . . . represent the content of positions j, j′, . . ., the positions condi-
tioning the content pi of position i, as derived using the tree decomposition,
and Ai represents the content of the i-th position in A. Using Bayes The-
orem while assuming uniform priors for both assignments and modules (i.e.
P(m) = 1/|M|,P(A) = 1/4|m|), we obtain

P(module m | assignment A) =
P(A | m)× P(m)

P(A)

=
4|m|

∏
i∈m P(pi = Ai | pj = Aj ∧ . . .)

|M|
.

where M represents the set of admissible modules.

The final match log-odds score MS associated with a motif m being em-
bedded within a given loop (i.e. at a given position) for an RNA sequence w is
given by

MS = λ log
(
P(loop | w)

)
+
∑
i∈m

log
(
P(pi = Ai | pj = Aj ∧ . . .)

)
+|m| log 4− log (|M|)

(2)

where λ is a term that allows to control the weight of the structure and local
sequence composition.

Algorithmic considerations and complexity. On an algorithmic level, for
given sequence w and module m, we remark that it suffices to optimize for the
first two terms of the above equations, the others being constant for a given
module. A list of loops having highest Boltzmann probability P(loop | w) is first
estimated from a statistical sample, generated using (non-redundant) stochastic
backtrack [9,24,31]. The second term, i.e. the probability of the module content,
is only evaluated for the loops that are compatible with the size constraints of
the module, with tolerance for a size mismatch of up to one base per strand
(−∞ otherwise). Its evaluation uses conditional probabilities, learned from a
tree-decomposition of the module, as described in Figure 2. Matches featuring
scores higher than a cut-off α are then reported as candidates.

The overall complexity of the method, when invoked with a module m
and a transcript w of length n is in O(n3 +kn log n+ min(k, n2h(m))×n×|m|)),
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3D Module Identification with BayesPairing 2 5

where k denotes the number of sampled secondary structures and h(m) is the
total number of helices in m. It follows a sequence-agnostic precomputation in
O(4w(m)+|m|×D), where w(m) represents the tree-width of m, and D represents
the overall size of the dataset used for training the model.

Remark that, while our reliance on sampling formally makes our method
a heuristic in the context of optimizing the objective in Equation (2), it must
be noted that sampling provides a statistically consistent estimator for the
probabilities of loops. Moreover, the probabilities associated with all possible
loops could be computed exactly using constrained dynamic programming in
time O(n3+2h(m)) [20].

Implementation. Secondary structures are non-redundantly sampled from the
whole ensemble if the structure is not provided in the input, using RNAsubopt

for a single sequence, or RNAalifold for a set of pre-aligned sequences [20,24,31].
Tree decompositions of modules are computed by the htd library [21] and con-
ditional probabilities are learned using pgmpy [1]. BayesPairing 2 is freely avail-
able as a downloadable software at (http://csb.cs.mcgill.ca/BP2).

Positioning against prior work. Using stochastic sampling in BayesPairing 2

allows to efficiently score all modules of a dataset in a single sequence search,
unlike the previous version, which requires multiple regex searches on the se-
quence for each module. While searching structure-first improves the sensitivity,
especially on modules without a strong sequence signal, it can add potential
false positives, especially for small modules which appear a lot in secondary
structures. This translates into more candidates scored, but scoring a candidate
is much faster than scanning a sequence. Thus, BayesPairing 2 is much more
more efficient when searching for many modules. In addition, the ability to sam-
ple with RNAalifold allows BayesPairing 2 to take full advantage of aligned
sequences.

3 Results

3.1 Rna3Dmotif dataset

In order to assess the performance of BayesPairing 2 on its own and in con-
text with that of BayesPairing 1, we assembled a representative sequence-based
dataset of local RNA 3D modules. We ran Rna3Dmotif on the non-redundant
RNA PDB structure database [18]. Identified modules were then matched to
Rfam family alignments via 3D structure positions. Sequences from these align-
ments were filtered to remove poorly aligned sequences, using isostericity substi-
tution cutoffs ensuring that the extracted sequences could adopt their hypoth-
esized structure. Modules matched to at least 35 sequences were added to the
dataset. 75 modules, totaling 20 125 training sequences, were collected. To assess
the presence and potential impact of false positives (FP) and true negatives
(TN), a negative dataset was assembled. To build this dataset, each sequence
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6 R. Sarrazin-Gendron et al.

in the true positive dataset was shuffled while preserving its dinucleotide distri-
bution. We assume motif occurrences to be homogeneous in length.

3.2 Validation on the Rna3Dmotif dataset

Validating searches on sequences with known structure. A first aspect
to validate is the ability of our method to retrieve the module when the native
secondary structure is provided, ensuring the availability of a suitable loop for
the module. For this test, the sequences were obtained from the positive dataset,
and the structures accommodating their respective modules were generated with
RNAfold hard constraint folding. As expected, structure-informed BP2 recovers
every existing module.

Joint prediction of secondary structure loops and module occurrences.
To assess the performance of BayesPairing 2 on sequences of unknown struc-
ture, we performed two-fold cross-validation on 100 randomly sampled unique
sequences (or on all sequences when fewer were available), for each module,
amounting to a total of 6380 sequences. For each sequence-module pair, the
candidate with highest score S through 20000 sampled structures was consid-
ered a true positive (TP) if its match score MS was above the score cutoff
T = −2.16, and if its predicted position matched its real three-dimensional struc-
ture location. A sequence containing a module on which no accurate prediction
was called above the cutoff was considered a true negative (TN). We tested
all λ values between 0 and 1 and cutoff values between −10 and 10, and found
dataset-dependent optimal values of λ = 0.35 and a cutoff of −2.16 for this
dataset. For the top 5 scores sensitivity, any correct prediction within the top 5
candidates could be considered a TP, whereas the top score test only accepted
the highest score output. We also report the F1 score, the Matthews correla-
tion coefficient (MCC), and the false discovery rate (FDR) associated with this
cutoff. Formaly the equations of those scores are:

F1 =

(
TP/(TP + FP)

)(
TP/(TP + FN)

)(
TP/(TP + FP)

)
+
(
TP/(TP + FN)

) FDR =
FP

TP + FP

MCC =
TP× TN− FP× FN√

(TP + FP) (TP + FN) (TP + FP) (TN + FN)

F1 score MCC FDR
Sensitivity
(top score)

Sensitivity
(top 5 scores)

BayesPairing 2

performance
0.932 0.863 0.061 0.745 0.855

Table 1: BayesPairing 2 module identification accuracy on Rna3Dmotif dataset
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Prediction score distribution and false discovery rate. We executed the
same two-fold cross-validation experiment on the shuffled sequences described
in section 3.1. BayesPairing 2 found no hit on 92% of the 6380 sequences. It
should be noted that it is not impossible for a shuffled sequence to contain a
good hit for a module.

We obtained distributions of true and false hit scores from the cross-validation
dataset. The score distributions, presented in Figure 3a, are clearly distinct, and
a score cutoff of −2.16 produced a false discovery rate of 0.061, as reported along
with other common metrics in Table 1.

20 10 0 10 20
log odds score

Ground truth
True
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BayesPairing2 log odds score on true and false hits

(a) Identification probabilistic scores out-
put by BayesPairing 2 for 4500 true hits
and 4500 false hits
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Fig. 3: Evaluating BayesPairing 2 scores and accuracy.

3.3 Validation on known module alignments from Rfam

Sequence search. To complement our cross-validation experiments, we also
tested BayesPairing 2 on Rfam alignments of the kink-turn and G-bulged inter-
nal loop modules. In these experiments, the modules were associated with their
respective families through the Rfam motif database, then trained on one family
and tested on the other. The results, for BayesPairing 1 and BayesPairing 2,
are displayed in Tables 2a and 2b. We used standard parameters and selected
the cutoffs associated to the same false discovery rate of 0.1 for both methods.

As observed in section 3.2, BayesPairing 2 is slightly weaker at identify-
ing modules with a strong sequence signal than BayesPairing 1, but consid-
erably stronger when there is significant sequence variation as its signal ap-
pears to be more robust. This is particularly well illustrated by the capacity of
BayesPairing 2 to identify the ribosomal kink-turn module on SAM riboswitch
sequences. While the considerable sequence difference between the ribosome and
riboswitch causes a sharp drop of 47% in BayesPairing 1 accuracy when pre-
dicting off-family, BayesPairing 2 only loses 25%.
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Trained Identified on/with

Family RF00162 RF02540 RF02541
Software BP1 BP2 BP1 BP2 BP1 BP2
RF00162 0.96 0.97 0.47 0.83 0.66 0.73
RF02540 0.30 0.99 0.99 0.91 0.67 0.89

(a) Kink-Turn

Trained Identified on/with

Family RF02540 RF02541
Software BP1 BP2 BP1 BP2
RF02540 0.98 1.0 0.91 0.98
RF02541 0.82 0.99 0.93 0.99

(b) G-bulged

Table 2: Rfam cross-family results for kink-turn (left) and G-bulged (right)
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Number of modules searched
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BayesPairing2 execution time scaling
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1 3 6
Number of modules searched in 15 seq. (len 200)

100

101

102

tim
e(

s)

BayesPairing execution time

BP2 with structure
BP2
BP1

Fig. 4: Execution time of BayesPairing 2, as a function of numbers of modules
and sequences (left), and compared to BayesPairing 1 (right)

Alignment search improvement. Despite positive results in module identifi-
cation on sequences taken from Rfam, sequence-based methods cannot fully take
advantage of the common structure of an alignment. We show the relevance of
including module identification on alignments in BayesPairing 2 by improving
the results presented in section 3.3. If, instead of parsing individual sequences for
modules, we parse randomly sampled sub-alignments, the predictions rise with
the size of the sub-alignment until they reach 100%, up from 50 to 95% with
sequence predictions by both software tools. Despite very low sample size (500
secondary structure sampled with RNAalifold), the alignment quickly outper-
forms the sequence predictions for all modules, on all tested families, as shown
in Figure 3b.

3.4 Time benchmark

The execution time of BayesPairing 2 was measured on 15 sequences (av-
erage size of ∼ 200 nucleotides) containing a module each, with 5 hairpins, 5
internal loops and 5 multi-branched loops. We searched for 1, 3, 9 and 15 mod-
ules, and the execution time as a function of the sequence length and number
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F1 score MCC FDR
Sensitivity
(1 candidate)

Sensitivity
(5 candidates)

BP1 0.715 0.510 0.178 0.219 0.348
BP2 0.932 0.863 0.061 0.745 0.855

Table 3: Performances of BayesPairing versions on Rna3Dmotif dataset

of modules is displayed in Figure 4. While the software typically requires 2-3
seconds to identify a module in a sequence of length 200, increasing the number
of modules searched by a factor of fifteen only doubles its execution time.

Tests were executed on an Intel(R) Xeon(R) CPU E5-2667 @ 2.90GHz,
Ubuntu 16.0.4 with 23 cores, with a total physical memory of 792 gigabytes.

3.5 Comparison to the state of the art.

The first software to tackle the specific task of identifying 3D motifs in full
RNA sequences was RMDetect (2011) [8], which showed good accuracy but was
severely limited in the variety of motifs it could identify. BayesPairing 1 im-
proved on this method by adding more flexibility and improving its search effi-
ciency [32]. Another method, JAR3D, does not undertake full sequence searches
but scores hairpin and internal loops against a database of models from the RNA

3D Motif Atlas. BayesPairing 2 can be adapted to fulfill the same task, and
their purposes are close enough to be comparable. Because BayesPairing 1 has
been shown to be a clear improvement on RMDetect, we focus our comparison
on the former and JAR3D.

The good performances of BayesPairing 1 [32] relies on the assumption that
the structural motif searched has a strong sequence signal. Indeed, the tool identi-
fies motif location candidates through regular expressions. Thus, BayesPairing 1
struggles with motifs trained on a large number of distinct sequences with no
dominant sequence pattern.

While it performed well on structure-based datasets with high sequence con-
servation, our Rfam-based dataset, with an average of 268 sequences from mul-
tiple Rfam families for each module, appears challenging for the method and is
clearly outperformed by BayesPairing 2 on the dataset described in section 3.1,
as shown in Table 3. We also show in Figure 4 that BayesPairing 2 scales much
better in the number of modules searched.

JAR3D was also shown to outperform RMDetect in the identification of new
variants of RNA 3D modules [40]. However, it does not perform a search on the
input sequence, but only takes loops as input. As such, it executes a task that
only accounts for a small proportion of BayesPairing 2’s execution time. Indeed,
scoring a loop against a model is very rapid, and both tools can score 10, 000 mod-
ule candidates in less than 10 seconds, while the total runtime of BayesPairing 2
when searching for motifs in a single sequence of length 200 is greater than ∼ 40
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seconds. Therefore, we focus our comparison between BayesPairing 2 and JAR3D

on true positive rate and false discovery rate, which contribute to the overall per-
formance of both software.

In order to compare the software, we isolated the scoring component of
BayesPairing 2, a function which takes as input a loop and a module and re-
turns a match score between the two, the same input and output as JAR3D.
We trained BayesPairing 2 on 51 motifs from the RNA 3D Motif Atlas, in-
cluding 28 internal loops and 33 hairpin loops. Motifs which constituted full
loops and only had occurrences of the same size, the two core assumptions of
BayesPairing 2, were selected. Then, internal loops with fewer than three oc-
currences, and hairpin loops with fewer than 5 occurrences were removed from
the dataset. True positive rates (TPR) were computed from predictions on RNA

3D Motif Atlas sequences. False discovery rates (FDR) were estimated from
averaged predictions on 100 random sequences per true positive sequences (total
49000). Each random sequence was generated from the nucleotide distribution
of the true positive sequences for that module. Default cutoffs were used. For
BayesPairing 2, a cutoff of 3.5 was obtained by repeating the process presented
in Section 3.2 after setting the weight of the secondary structure to 0, as the
secondary structure is only considered in the context of the full sequence which
is not part of the input for this specific task. The results are presented in ta-
ble 4. While the two software present comparable sensitivities, BayesPairing 2
achieves this high sensitivity with higher specificity.

4 Discussion

Applications The most obvious application for an efficient and parallelizable
motif identification framework is to parse sequences for local 3D structure signal.
Modular approaches for RNA 3D structure construction like RNA-MoIP [29] have
been shown to successfully take advantage of local tertiary structure informa-
tion. In particular, RNA-MoIP leverages 3D module matches to select the most
stable secondary structures to use as a scaffold for the full structure. Indeed,
secondary structures that can accommodate known 3D modules are often more
predictive of the real structure than those who cannot [8]. To this day, RMDetect,
BayesPairing 1 and BayesPairing 2 are the only known full sequence proba-
bilistic module identification tools to be able to identify hairpins, internal loops

Software Average Identification TPR and FDR on RNA 3D Motif Atlas

Loop type Hairpin Loops Internal Loops
Software TPR FDR TPR FDR

BayesPairing 2 0.9819 0.0020 1.00 0.0016
JAR3D 0.9685 0.0509 0.957 0.0205

Table 4: BayesPairing 2 and JAR3D performances on hairpins (363 seq. in 33
loops), and internal loops (127 seq. in 28 loops) from the RNA 3D Motif Atlas.
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and junctions, which are key components of many well-known structures, namely
several riboswitches. Of the three, BayesPairing 2 is the most scalable. This
scalability is essential as many datasets include hundreds of modules [27,30],
and this number will keep increasing as more structures are crystallized and
mining methods improve.

While the tertiary structure signal encodes information that can be lever-
aged to build a full 3D structure, its implied functional significance can be taken
advantage to refine tasks like sequence classification. Traditional methods for se-
quence classification include k-mer based techniques [38], as well as sequence and
structure motifs [39], but those only use the sequence and secondary structure
signals. 3D modules are highly complementary to those methods.

Identifying multi-branched loops in sequences; applications to ribo-
switch discovery. One of the distinctive characteristics of BayesPairing 2 is
its ability to identify multi-branched loops. These motifs happen to be very com-
mon in riboswitches, in which they are often closely related to function, namely
in the tyrosine pyrophosphate (TPP) riboswitch, the Cobalamin riboswitch, and
the S-adenosyl methionine I (SAM-I) riboswitch [33]. We can use sequences from
Rfam riboswitch families to train 3D module models, and then use those models
to label new sequences as putative riboswitches.

The software also provides insight on the role of those of 3D modules in the
folding dynamics of the riboswitch. Because BayesPairing 2 searches secondary
structure ensembles for loops matching known structural modules, it can be used
to observe, within the assumptions of the RNAfold library, how easily riboswitch
sequences appear to fold into their junction. For instance, the TPP riboswitch’s
junction is very present in its Boltzmann ensemble, as its small (13 bases) three-
way junction was correcetly identified by our software on 81% of the sequences
from the TPP Rfam family.

Because we could hypothesize the frequency of identification of a specific loop
to be correlated with its size, it could be expected that the SAM-I riboswitch
four-way junction, which counts 28 bases, would be identified less frequently.
This is indeed the case as it was identified on 35% of the sequences of its family
with a similar pipeline.

The much smaller (17 bases) cobalamin riboswitch junction would then be
expected to be found with a frequency somewhere in between 35% and 81%,
based on this size assumption. Surprisingly, it was only successfully identified on
3.5% of the Rfam cobalamin family sequences.

However, interestingly, identifying small structural modules (two hairpins and
one internal loop) around the junction with a first run of BayesPairing 2 and
then using the position of those modules as constraints for a second run raises
the frequency of identification of the multi-loop to 32%. The more adjacent
motifs are found, the higher the identification confidence was observed to be.
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Fig. 5: The cobalamin riboswitch four-way junction (in yellow) in PDB structure
4GXY [26]. The adjacent structural motifs used to refine the structural search
are highlighted. Bases within 3 Angstrom of the cobalamin molecule in the bound
structure are indicated in bright red. Other colors highlight distinct modules.

In contrast, applying the same method to the SAM riboswitch, or on shuffled
cobalamin riboswitch sequences, does not leave to a significant improvement.

This difference in behavior between riboswitches could be rooted in different
factors like co-transcriptional folding, RNA-RNA and RNA-protein interactions
and/or the intrinsic difficulty of predicting riboswitch structural element with
models learned from bound structures. However, the contrast between the con-
strained and unconstrained results in the cobalamin riboswitch tends to indicate
that some, but not all multi-branched structure are strongly correlated with
surrounding loops conformations.

Limitations and Future Work Our approaches presents two main limitations.
First, the assumption that motif occurrences have a consistent size is not a trivial
one to make. For small modules, it is a reasonable assumption that the vast
majority of occurrences will have the same size since adding or removing a base
would have a large impact on the local 3D structure. However, for larger motifs,
and especially junctions, the size constraint can prevent us from identifying some
variants. This is something we alleviate in BayesPairing 2 by allowing imperfect
matches, with a tolerated difference of up to one base per strand, but further
work remains to be done to fully identify motifs bigger than 20 bases, for which
this fuzzy matching might not be sufficient.
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Second, a consequence of searching secondary structures before sequence is
that in the rare cases when the sequence is better conserved than its secondary
structure, the accuracy of the tool will suffer. It could however be argued that not
overfitting to currently known sequences could be worth losing a bit of accuracy,
although this can only be evaluated quantitatively as new structures and module
occurrences become available, since the current structure datasets do not show
sufficient sequence variability.

Interestingly, a large majority of the modules that cannot be predicted from
sequence only by BayesPairing 2 occur in secondary structures that are never
generated by RNAsubopt. In many of those cases, a base pair stacking was re-
moved to allow the insertion of the module, at a considerable energy cost. We
hypothesize that those small modifications, although not energetically favorable
at the secondary structure level, are stabilized by 3D interactions which can-
not be inferred from sequence. Going further with this hypothesis, differences in
performances are then indicative of the stabilizing effect of non-canonical mod-
ules. This assumption could be tested in the future using coarse-grain molecular
dynamics to correlate those two metrics.

The other notable limitation of the method is that the loop-based module
definition used in our study does not allow the prediction of pseudoknots, nor
canonical helices.

5 Conclusion

We presented BayesPairing 2, a software for efficient identification of RNA
modules in sequences and alignments. BayesPairing 2 strictly outperforms its
previous version in execution time, search on provided secondary structures, and
sequence search accuracy. It also appears to have complementary strengths to
JAR3D, the state of the art for scoring. Finally, its structure-based approach
brings a perspective on the place of the motif in the sequence’s Boltzmann en-
semble. This added context helps improve identification accuracy, but also the
interpretation of the results, and can provide additional information about the
role of a module in the folding process. Moreover, the time complexity improve-
ment opens new doors for genome-wide sequence mining for local 3D structure
patterns. As new RNA structures and sequences become available, more mod-
ules will be discovered, and BayesPairing 2 is fast enough to take advantage of
its customizability to contribute to filling the gap between secondary and ter-
tiary structure prediction tool by associating a wide selection of RNA modules
of interest to those new sequences.
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20. Lorenz, R., Bernhart, S.H., Höner Zu Siederdissen, C., Tafer, H., Flamm, C.,
Stadler, P.F., Hofacker, I.L.: ViennaRNA package 2.0. Algorithms Mol Biol 6,
26 (Nov 2011). https://doi.org/10.1186/1748-7188-6-26

21. mabseher: A small but efficient c++ library for computing (customized) tree and
hypertree decompositions., https://github.com/mabseher/htd

22. Mathews, D.H.: RNA secondary structure analysis using RNAstruc-
ture. Curr Protoc Bioinformatics Chapter 12, Unit 12.6 (Mar 2006).
https://doi.org/10.1002/0471250953.bi1206s13

23. McCaskill, J.S.: The equilibrium partition function and base pair binding
probabilities for rna secondary structure. Biopolymers 29, 1105–1119 (1990).
https://doi.org/10.1002/bip.360290621
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29. Reinharz, V., Major, F., Waldispühl, J.: Towards 3D structure prediction of
large rna molecules: an integer programming framework to insert local 3D mo-
tifs in RNA secondary structure. Bioinformatics 28(12), i207–14 (Jun 2012).
https://doi.org/10.1093/bioinformatics/bts226
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