
Non-Equilibrial Dynamics in Under-Saturated Communities 

Abdel Halloway, Kateřina Staňková, Joel S. Brown 

A. Abstract 

 The concept of the evolutionary stable strategy (ESS) has been fundamental to the 

development of evolutionary game theory. It represents an equilibrial evolutionary state in which 

no rare invader can grow in population size. With additional work, the ESS concept has been 

formalized and united with other stability concepts such as convergent stability, neighborhood 

invasion stability, and mutual invisibility. Other work on evolutionary models, however, shows 

the possibility of unstable and/or non-equilibrial dynamics such as limit cycles and evolutionary 

suicide. Such “pathologies” remain outside of a well-defined context, especially the currently 

defined stability concepts of evolutionary games. Ripa et al. (2009) offer a possible 

reconciliation between work on non-equilibrial dynamics and the ESS concept. They noticed that 

the systems they analyzed show non-equilibrial dynamics when under-saturated and “far” from 

the ESS and that getting “closer” to the ESS through the addition of more species stabilized their 

systems. To that end, we analyzed three models of evolution, two predator-prey models and one 

competition model of evolutionary suicide, to see how the degree of saturation affects the 

stability of the system. In the predator-prey models, stability is linked to the degree of saturation. 

Specifically, a fully saturated community will only show stable dynamics, and unstable dynamics 

occur only when the community is under-saturated. With the competition model, we demonstrate 

it to be permanently under-saturated, likely showing such extreme dynamics for this reason. 

Though not a general proof, our analysis of the models provide evidence of the link between 

community saturation and evolutionary dynamics. Our results offer a possible placement of these 

evolutionary “pathologies” into a wider framework. In addition, the results concur  
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with previous results showing greater evolutionary response to less biodiversity and clarifies the 

effect of extrinsic vs. intrinsic non-equilibrial evolutionary dynamics on a community.  

B. Introduction 

 The development of evolutionary game theory has been critical to understanding the 

manner by which evolution proceeds. Evolutionary game theory is a mathematical framework 

which views the traits of a species as its strategies and the environment in which the species lives 

as the determinant of the rules of the game (Maynard-Smith and Price, 1973; Maynard-Smith, 

1982). Evolutionary game theory has shifted scientists’ understanding of evolution from a simple 

optimization process under which an organism maximizes its fitness against a static, physical 

environment to a more dynamic optimization in which multiple species co-evolve. Furthermore, 

it has given scientists a mathematical framework to describe phenotypic evolutionary changes as 

a complement to population genetics’ description of genotypic changes. 

Critical to analyzing evolution as a game is the concept of the evolutionarily stable 

strategy (ESS). Similar to the Nash equilibrium of classical game theory, it is a solution to an 

evolutionary game, the equilibrial evolutionary state in which a rare strategy cannot invade and 

establish within a population. Also like the Nash equilibrium, an ESS is not merely a single 

strategy but can exist as a mixture of strategies. Under the strategy species concept which defines 

a species by the strategy it uses, the mixed-strategy ESS can be thought of as a specific 

assemblage or community of different species. Because of its simplicity, the ESS concept offers 

a predictable point for the analysis of evolutionary trajectories. Though powerful, it remained an 

open question as to whether evolutionary dynamics would actually drive the strategies of a 

species or group of species to an ESS. Is the ESS achievable? When operating with discrete 
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strategies (i.e., matrix games), it was shown that with replicator dynamics the ESS was an 

attractor (Taylor and Jonker, 1978; Zeeman, 1980; Zeeman, 1981). It seemed that the ESS was 

the eventual endpoint of any evolutionary dynamic. 

Evolutionary game theory was generalized to continuous trait dynamics which led to new 

problems and solution concepts for the ESS (Vincent and Brown, 1984). It was shown that with 

continuous trait dynamics, the ESS would not necessarily be an attractor (Takada and Kigami, 

1991). Instead, situations could arise in which the fitness maximum for a species was not a 

convergent stable (Eshel and Motro, 1981; Eshel, 1983; Abrams et al., 1993; Apaloo et al., 

2009). This coincided with studies showing unstable evolutionary dynamics such as Red-Queen 

dynamics and evolutionary suicide (Rosenzweig et al., 1987; Marrow et al., 1992; Matsuda and 

Abrams, 1994; Dieckmann et al., 1995; Cortez, 2016). The development of other stability 

concepts such as convergence stability, neighborhood invasion stability (NIS), and mutual 

invasability were able to explain some of the results and were incorporated into a larger 

framework along with the ESS (Brown and Pavlovic, 1992; Abrams et al., 1993; Metz et al. 

1995; Gertiz et al., 1998; Apaloo et al., 2009). Other results, particularly those of non-equilibrial 

dynamics, remain unexplained by the new framework. 

A potential resolution may be that the communities analyzed are under-saturated. Ripa et 

al. (2009) in a predator-prey model noted that under-saturated communities showed signs of 

instability but with increasing species number and an approach to the ESS, the system recovered 

stability. Many of the studies on non-equilibrial dynamics are done with only a few species, 

typically 1 or 2, and did not determine whether the species were at or would have gone to an 

ESS. In several of these examples, it may be that there are not enough species for the community 

to be at ESS. The community may simply be under-saturated. If it contained close to or the same 
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number of species as the ESS, the ecological (changes in population sizes) and evolutionary 

dynamics (changes in the frequency of strategies) might lead to a convergent stable evolutionary 

equilibrium. 

To this end, we analyzed three different models of evolutionary dynamics, two models of 

predator-prey dynamics and one model of competitive dynamics, to see if communities farther 

from the ESS in terms of species number are more likely to show unstable evolutionary 

dynamics compared to communities closer to the ESS. By using the full suite of adaptive 

dynamics, we can see how increases in species number change the evolutionary dynamics of the 

system. We use these models for illustrative purposes only with no claim of a general proof. We 

offer a hypothesis and obtain evidence for its feasibility. We hypothesize that non-equilibrial 

evolutionary dynamics are likely for models in which the number of species is below that of the 

ESS and that the unstable dynamics shift to stable evolutionary dynamics as the number of 

species approaches that of the ESS. This result would provide a unified explanation for some of 

the disparate evolutionary dynamics seen for continuous trait, multi-species games such as 

convergent stable dynamics to the ESS, limit cycles and other non-equilibrial dynamics, and 

evolutionary suicide. In what follows, we first examine our hypothesis in two predator-prey 

models of coevolution (Brown and Vincent 1992, Dieckmann et al. 1995) and then in a 

competition model of coevolution (Matsuda and Abrams 1994). 

C. Evolutionary Dynamics in Two Predator-Prey Models 

To determine the link between community saturation and stability of evolutionary 

dynamics, we first analyzed two predator-prey models of co-evolution. Predator-prey systems 

are known to show unstable and non-equilibrial evolutionary dynamics, especially oscillatory 

dynamics as predators evolve to maximize predation while prey evolve to minimize it 
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(Rosenzweig et al., 1987; Marrow et al., 1992; Dieckmann et al., 1995; Cortez, 2016). The first 

model analyzed was from Dieckmann, Marrow, and Law (1995), hereafter referred to the DML 

model. In their paper, the authors analyzed the evolutionary dynamics of a system consisting of 1 

prey species and 1 predator species. They found unstable evolutionary dynamics and they 

determined the conditions that gave rise to them. The second model comes from Brown and 

Vincent (1992), hereafter referred to as the BV model. Unlike the Dieckmann et al., Brown and 

Vincent focused on the number of prey and predator species at the ESS and not on the 

evolutionary dynamics. Through bifurcation analysis, they measured how varying predator 

specialization affects the number of species in the community and the distribution of their traits. 

These models were created and analyzed with different goals in mind. Demonstrating that both 

show the same link between community saturation and unstable evolutionary dynamics would 

reconcile their approaches and results. We hypothesize that the unstable dynamics of the DML 

model result from under-saturated communities and adding species will engender stability in the 

system, and we hypothesize that the BV model will give unstable evolutionary dynamics when 

the number of co-evolving species is less than the number at the ESS. 

We examined the link between stability and community saturation by determining the 

evolutionary stability of communities created by the two models with varying degrees of 

saturation/under-saturation. A community is under-saturated if it has fewer species than the ESS 

(defined in Apaloo et al., 2009). We measure the degree of under-saturation as roughly the 

difference between the community’s current species richness and the species richness of the 

model’s ESS (a greater number indicating a greater degree of under-saturation). We used linear 

stability analysis to determine the asymptotic stability of the evolutionary dynamics (hereafter 

stability refers to asymptotic stability). For the predator-prey models, we can vary the species 
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richness of the community, and then examine the stability properties of the co-evolutionary 

dynamics of the species’ strategy values. By evaluating the Jacobian matrix at a community’s co-

evolutionary equilibrium, we can characterize the dynamics as non-oscillatory stable (attracting 

point), oscillatory stable (attracting cycle), oscillatory unstable (repelling cycle), non-oscillatory 

unstable (repelling point) based on the dominant eigenvalue.  

We are interested in how evolutionary dynamics may become unstable in under-saturated 

communities. Hence, to ensure that any results were not driven by non-equilibrial population 

dynamics, population sizes were set to their equilibrium abundances based on the current 

strategy values found among the species of the co-evolving community. This amounts to a fast-

slow assumption for the ecological and evolutionary dynamics, an assumption is typically made 

in models of adaptive dynamics (Geritz et al., 1998). 

To define the multispecies evolutionary game, we use the G-function notation of Vincent 

and Brown (1987, 2005). The population growth rate of species � is defined as 

 
����� �  ����	, �, �
 �����  � � � 1, … , � (1) 

where ��	, �, �
 is the fitness (as defined by per-capita growth rate) of a focal individual 

with strategy 	, � �  ���, … , ��
 is the vector of strategies found among the � species in the 

community, and � �  ���, … , ��
 is the vector of population sizes for each of � species. This 

fitness generating function, ��	, �, �
, generates the fitness function of species � when 	 is set 

equal to ��. 

By assuming that population sizes are always at their equilibrium, we can set ��	, �, �
 �
0 to find the vector of equilibrium population sizes: ����
  �  ���

���
, … , ��
���

. We only 

consider those species in the community that persist at a positive equilibrium population size. 

Hence, for all � species, ��
���
  �  0. 
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 The strategy dynamics of each species occurs on the adaptive landscape, a plot of � 

versus 	 for the current value of ��, ����

. We let strategies evolve up the fitness gradient 

defined by �	
�,�,
�
���

��
����� for each 	. This fitness gradient is evaluated with respect to how an 

individual’s fitness would change were it to unilaterally change its strategy (the essence of game 

theory). This defines the fitness gradient as how � changes with respect to 	, the strategy of the 

focal individual. The evolutionary rate of change of each species’ strategy can be given as 

(Vincent et al. 1993): 

 
����� � ���
 ���	, �, ����

�	 ����� (1) 

where �	
�,�,
�
���

��
 is the slope of the adaptive landscape and � represents an evolutionary speed 

term which may be relatively constant, e.g. a measure of additive genetic variance as assumed in 

quantitative genetics (Fisher, 1930; Lande, 1982; Falconer and Mackay, 1996), an increasing 

function of mutation rates, or linear in population size as in the canonical equation of adaptive 

dynamics (Dieckmann and Law, 1996). An evolutionary equilibrium for the � species occurs 

when �	
�,�,
�
���

��
� 0 � 	 � �� , � � 1, … , �. The corresponding Jacobian evaluated at this 

evolutionary equilibrium describes the stability of the strategy (evolutionary) dynamics. 

1. Dieckmann, Marrow, and Law 

 We begin our analysis with the DML model and write it as a two G-function system, one 

for the prey species, ��, and one for the predators, ��: 

���	� , �� , �� , ���� , ��
, ���� , ��


 � �� � ��	�
���� , ��
 � ��	� , ��
���� , ��
 (2) 

���	� , �� , �� , ���� , ��


 � ����� , 	�
���� , ��
 � �� (3) 

Under our notational scheme, � and � as subscripts reference the respective term for prey and 
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predator while they refer to the population sizes when written in regular script. 

In the DML model, neither the prey nor the predator experience intraspecific frequency-

dependent selection, and the predators additionally do not experience intraspecific density-

dependence. A predator’s fitness is limited by the population size of the prey and influenced by 

the traits of the prey and the trait of the focal predator individual. The function ��	�
 determines 

the strength of density dependence of the prey while ��	� , 	�
 determines per-capita predation 

rate. The parameters �� and �� give the intrinsic growth rate and death rate of the prey and 

predator respectively, while � is the conversion efficiency of prey consumed into predators. In 

the original paper, the authors selected parameters such that ��	�
 is symmetrical about 	� � 0.5 

and also reaches a minimum at that point; ��	� , 	�
 is broadly a matching strategy where 

predation rate is maximized when 	� � 	�. 

The original authors were interested in how their model generated non-equilibrial 

evolutionary cycling, and as such, only analyzed a community with one prey and one predator. 

The evolutionary dynamics were simulated under a polymorphic stochastic model, a 

monomorphic stochastic model, and a monomorphic deterministic model using the canonical 

equation of adaptive dynamics to derive the evolutionary speed term ���
 (equation 2). 

Furthermore, the authors performed a bifurcation analysis with the monomorphic deterministic 

model to determine the stability of strategy dynamics. The parameters used in the bifurcation 

analysis were the ratio between prey and predator evolutionary speeds !� � ����
 ����
" # and the 

conversion efficiency �. With this last analysis, they showed that unstable dynamics were more 

likely to happen at high conversion efficiencies and a high ratio of evolutionary speeds. 
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For our study, we expand the equations to permit multiple prey and predator species:  

��$	� , �
 , ��, ���
, ��
, ���
 , ��
% � �� � ��	�
 & ����
, ��
��

���

� & � '	� , ���( ����
, ��
��

���

 (4) 

��$	� , �
 , �� , ���
 , ��
% � � & �$���
, 	�%����
, ��
��

���

� �� (5) 

 Here, equation (5) denotes fitness of a prey individual with strategy 	� and equation (6) 

denotes the fitness of a predator individual with strategy 	�. Substituting the strategy of a focal 

prey individual 	� with a the strategy of species � (���
) gives the per-capita growth rate of the �-

th prey species where � � 1, … ��, and substituting the strategy of a focal predator individual 	� 

with a the strategy of species ) (���) gives the per-capita growth rate of the )-th predator species 

where ) � 1, … ��. This generalized form of the model offers not only multispecies dynamics but 

also allows for speciation at evolutionary branching points (Geritz et al., 1998). Such branching 

points occur when natural selection (evolutionary dynamics) drive a species strategy to a 

convergent stable minimum (Brown and Pavlovic, 1992; Abrams et al., 1993) as determined by 

the second derivative of the per-capita growth rate function. With this multi-species extension, 

we too performed bifurcation analyses to examine the stability of the evolutionary dynamics in 

communities that had fewer and/or the same number of prey and predator species as the saturated 

community. Of particular interest is whether the evolutionary cycling observed in DML resulted 

from an under-saturated community. Does the non-equilibrium cycling of strategy dynamics 

disappear with additional prey and predator species? Because we are only interested in the 

effects of community saturation on evolutionary dynamics, we disregarded the changes in the 

evolutionary speed term of DML (given by the canonical equation of adaptive dynamics) by 
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setting them constant and equal ����
 � ����
 � �, i.e. � �  1. We explored the effect of the 

conversion efficiency on the number of prey and predator species at the ESS (saturated 

community), and the nature of the evolutionary dynamics in the saturated and under-saturated 

communities. In our analysis, we let � range along the interval *0,1+ as conversion efficiency was 

defined as a proportion.  

Our analysis of the 1 prey, 1 predator system gives much the same results as Dieckman et 

al.’s analysis (1995). In order to have a non-zero predator population, the conversion efficiency 

must be greater than 5 percent, � � 0.05. Beyond this point, there is a single trait equilibrium 

with both prey and predator at �� � �� �  0.5. At this point the prey species maximizes its 

carrying capacity (minimizes the strength of density dependence) and the predator maximizes its 

fitness by matching the prey’s strategy. As � increases, we move from a fully stable attractor to 

an attractor with asymptotically stable oscillations which occurs just before � � 0.08 (Fig. 12a). 

Moving into greater values of �, we see unstable oscillations when � - 0.107 (Fig. 12b). Above 

� � 0.13, we get two new equilibrium points symmetrically arranged about �� � �� �  0.5. At or 

slightly above � � 0.13, the evolutionary dynamics are visually similar to the Lorenz system as 

the prey species draws near to one of the new equilibrium points before rapidly evolving to the 

other (Fig. 12c). At about � � 0.181, the evolutionary dynamics become a repeller for the 

equilibrium �� � �� � 0.5 but a locally stable oscillator for the other equilibrium points (Fig. 

12d). This holds for � � 1. 
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Figure 1 Four types of evolutionary dynamics for a one prey, one predator community over a range of values for �. Each graph is 
a phase portrait of prey evolution (change in strategy) against predator evolution. Open circles represent the initial point of each 
dynamic with ���, ��� � �0.505,0.5� a) When � � 0.075, the system is stable and returns to the �0.5,0.5� equilibrium. b) When 
� � 0.108, the system is asymptotically unstable with limit cycles. c) When � � 0.177, the system is unstable and shows 
Lorenz-like dynamics around two other equilibria. d) When � � 0.202, the system is unstable with regard to the �0.5,0.5� 
equilibrium and is driven to one of the other equilibria.  
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Examination of the prey’s adaptive landscape is instructive. When plotting �� versus 	� 

for ��  �  ��  �  0.5 and �� and ��, we see a switch from a maximum at 	� � 0.5 on the adaptive 

landscape to a minimum (evolutionary branching point) when � � 0.098. Between 0.05 1 � 1
0.098, �� � �� � 0.5 is a convergent stable ESS, and one prey and one predator species 

represents the saturated community. In DML’s original paper, as prey evolutionary speed 

drastically increases relative to predator evolutionary speed (� goes to infinity), the range of � 

under which there are damped oscillations to a stable equilibrium point (with one prey and one 

predator) asymptotes to the interval �0.098,0.148
. This is noteworthy because the lower bound, 

� � 0.098, occurs at the same value of � where the community becomes under-saturated. 

In the 1 prey, 1 predator system, the prey is at an evolutionary branching point when 

� � 0.098. We can allow speciation to generate a 2 prey, 1 predator system. The 2 predator, 1 

prey system becomes significantly harder to analyze for stability. We can numerically obtain 

strategy equilibria for prey $���

� , ��	

� % � �0.5 � 3, 0.5 4 3
 which are symmetric about the 

predator’s equilibrial strategy values ��
� � �0.5
. We can also obtain an analytic solution for 

predator and prey population equilibrium values, but inputting their equilibrial strategy values 

gives us a divide by 0 error. Without a general solution, we cannot obtain a Jacobian and do 

linear stability analysis (we can obtain a specific solution to the population equilibrium by first 

plugging in the equilibrium strategy values, but this cannot be used to determine the Jacobian). 

Analyzing the adaptive landscapes to determine the stability when the species are off equilibrium 

is also difficult. When a single species is off their strategy equilibrium (the other two species at 

strategy equilibrium), its equilibrial population size is negative. 

Instead, we analyze stability by a different means. We simulate the population and 

strategy dynamics of the community by way of the Runge-Kutta 4th order method (Fig. 13). To 
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decouple population dynamics from evolutionary dynamics, we run just the population dynamics 

for 100 timesteps before running two timesteps of the strategy and population dynamics, 

allowing the species to get close to the equilibrium population values (we also assume an 

evolutionary speed term of � � 0.1 to slow the dynamics further). We see whether, under our 

simulations, evolutionary dynamics converge to their equilibrium point or remain oscillatory 

perpetually. This method is not that extensive (we only simulate for 3 values of 

� � *0.6, 0.665, 0.8+, 1 value of �, and are limited in the specific disturbance from equilibrium) 

but can give us a patchwork of stability from which we may see patterns. When � � 0.6, we see 

damped oscillations and a convergence back to the equilibrium values. When � � 0.8, we see 

damped oscillations but to a limit cycle (we feel our simulation was run long enough that the 

limit cycles represent a long-term state of the system). Crucially, when � � 0.665, we see 

damped oscillations to the equilibrium, similar to when � � 0.6. This is crucial because the 

system becomes under-saturated when � � 0.665 (a new predator species can invade). It suggests 

that the flip from a convergent stable system to a convergent unstable system happens when the 

system is under-saturated. Therefore, it seems that when the community is saturated, it is 

convergent stable and that only when it is under-saturated can there be convergent instability. 

While not a true proof, this result tantalizes at a broader picture. 

When � � 0.665, the predator now exists at a minimum of its adaptive landscape. Being 

at the minimum means the predator can speciate, creating a 2 prey, 2 predator system. The 

irregularities of the 2 prey, 1 predator system no longer exist, the Jacobian can be derived, and 

the 2 prey, 2 predator system can be analyzed through linear stability analysis. We see in this 

system a simple result, that it is saturated and a convergent stable ESS over the rest of the range 

of �. All species exist on the maxima of their adaptive landscape and all dynamics are stable. 
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Figure 2 The evolutionary dynamics of a two prey, one predator system under three values of �. Gold lines are prey strategy and 
blue lines are the predator strategy. For each simulation, 100 timesteps of population dynamics were run before the two timesteps 
of evolutionary dynamics occurred. This was done for 5�10
 timesteps with 1�10
 timesteps of evolutionary dynamics. We only 
show the last 1000 evolutionary timesteps for each run to show the final state of the dynamics. The prey with the smaller strategy 
value was started at a value 0.02 smaller than its equilibrium and the predator was started at a value 0.01 greater than its 
equilibrium for all runs. a) When � � 0.6, the community is at ESS and the dynamics are stable. b) When � � 0.665, the 
community is not at ESS and the dynamics are stable. c) When � � 0.8, the community is not at ESS and the dynamics are 
unstable showing possible limit cycles.  
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A very regular pattern of evolutionary dynamics occurred. At low values for the 

bifurcation parameter � (the conversion efficiency of predators), the ESS community has just one 

prey species and no predator species. The prey’s ESS value of �� � 0.5 is asymptotically stable. 

At increasing values of �, the ESS becomes a 1 prey, 1 predator community. At first, this 

community shows asymptotically stable evolutionary dynamics followed by damped oscillations 

(Fig. 14a). At still higher values of �, the one prey, one predator community is no longer an ESS 

and the prey species is now at a convergent stable minimum (Fig. 14d). At this point, the ESS 

would be a 2 prey, 1 predator comunity. If the community is forced to remain under-saturated, 

the convergent stable minimum gives way to unstable oscillatory evolutionary dynamics at ever 

higher values of � (Fig. 14a). With a 2 prey, 1 predator community, stability is recovered. As 

with the 1 prey, 1 predator community, increasing values of � lead to the community no longer 

being at ESS, this time with the predator at the minimum (Fig. 14d). Once again, though not 

confirmed through analytic results, it seems that forcing the community to remain under-

saturated as � increases leads to instability (Fig. 14b, Fig. 13). As � goes towards its maximal 

value of � � 1, the ESS is a 2 prey, 2 predator s community. From here on, the community is 

always saturated and always stable (Fig. 14c and Fig. 14d). 

Our analyses of the DML model suggest that the unstable evolutionary dynamics result 

from under-saturated communities. In all 3 communities – 1 prey, 1 predator; 2 prey, 1 predator; 

2 prey, 2 predator – stable dynamics were seen when the community was at ESS while unstable 

dynamics only appeared when the community was under-saturated (Fig. 14). 
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Figure 3 The full analysis of the DML model. a) The real parts of the eigenvalues of a one predator, one prey community over 
the full range of �. The community transitions from non-oscillatory stable to oscillatory stable to oscillatory unstable to non-
oscillatory unstable. b) The eigenvalues of the Jacobian for the two prey, one predator system at ecological equilibrium could not 
be solved for. c) The eigenvalues for the two prey, two predator community. It is always non-oscillatory stable. d) The ESS value 
(blue) and maximum of the real parts of the eigenvalue (red) for each respective community. Solid lines are the one predator, one 
prey; dashed lines are the two predator, one prey; and dotted-dashed are the two predator, two prey. We only show when the 
community is saturated, and in all cases for which the eigenvalues could be solved for show stability with the maximum of the 
real parts of the eigenvalues being negative. 
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2. Brown and Vincent 

 We now examine the model from Brown and Vincent (1992). The model was originally a 

discrete time model, but we convert and analyze it as a continuous time model. As noted in 

Vincent and Brown (2005), the ESSs of discrete and continuous time forms of G-functions 

remain the same. Like DML, there is one G-function for the prey species and one for the 

predator species:  

Prey: ����� , ��, ��� � �� 	1 � ∑ 
��� , ���������, �����
��� ����� � �� � ��� , ���� �	���, ���

��

	��

 (6) 

Predator: ����� , ��, ��� � �� 	1 � ∑ �	���, �����
	��

� ∑ ����� , ��������, �����
���

� (7) 

 Unlike the DML model, there is intraspecific frequency-dependent selection among prey 

populations and direct intraspecific density dependence among the predators. Both prey and 

predator trait space (	� and 	�) correspond to the domain of real numbers. In this model, the 

function �$	� , ���
% determines competition between prey species based on trait similarity – the 

more similar the strategies, the greater the competition – 6�	�
 is a unimodal Gaussian function 

which determines the carrying capacity of the prey species based upon its strategy 	�, and 

� '	� , ���( is the capture efficiency of the predator where capture efficiency is maximized when 

the prey and predator strategies match. The term 7 is the conversion factor for prey consumed 

into predator offspring.  

In the original paper, the authors were interested in how varying the degree of predator 

specialization 8�, located in ��	� , ���
, influenced species richness and community structure. 

Therefore, they focused on the saturated communities at their ESS. They evaluated the second 

derivative of the G-functions (7)-(8) with respect to 	� and 	� to determine whether candidate 

solutions are at peaks of the adaptive landscape, a necessary criterion for an ESS.  
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The degree of predator specialization 8� is a bifurcation parameter. As shown in BV, the 

ESSs go from a community with one prey and one predator species at low degrees of 

specialization to successively higher numbers of prey and predator species as the predator 

becomes more specialized. For a given level of predator specialization, the community can have 

� or � 4 1 prey species and � predator species. Brown and Vincent (1992) did not analyze 

strategy dynamics towards or away from these ESS communities. This makes the BV model an 

interesting one for seeing whether evolutionary dynamics are stable in the saturated ESS 

communities and whether non-equilibrial evolutionary cycling of strategy values occurs when 

communities are under-saturated. We analyze the BV model the same way we analyzed the 

DML model to see whether we get similar qualitative results, the results being that evolutionary 

cycling can occur in under-saturated communities and increasing community saturation leads to 

more stable evolutionary dynamics.  

 Deriving the Jacobian for the 1 prey, 1 predator evolutionary systems (population sizes 

set to their equilibrium values for the given strategy values), we get the eigenvalues 

��√� �

�
 where 

9 � 6���:���
� 7 ��

	

��
	 ��� � ��
 � �� '�� 4 ��

��
	

��
	(, ; � <9� � 2��

���
��
	

��
	 ��� 4 26���:���

� 7
, and > �
8�

2 �6� !7:� !
2 4 �"�. Note that the magnitude of 9 is greater than the magnitude of ;, |9| � |;|. 

Therefore, the sign of the dominant eigenvalue is equal to the sign of 9. Looking at 9, it can only 

be positive – and therefore the system unstable – if �� � �� since all parameters are positive. 

 With the eigenvalues derived, we now did bifurcation analyses similar to the DML 

model. We varied 8� from 10 to 0.75, like the original paper, to see how under-saturation affects 

evolutionary dynamics with a few changes to the original parameters. Firstly, the original 

parameter set had �� � �� � 0.25. Under our stability analysis, this system would always be 

stable. Therefore, we increased �� to 0.5. Secondly, even with the increase in ��, we did not see 
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unstable dynamics over the range of 8�. Therefore, we increased conversion efficiency from 

7 � 0.25 to 7 � 1 to give the possibility of unstable dynamics. 

Analysis of the BV system shows the same basic pattern seen in the DML model. Here, 

the evolutionary dynamics became more unstable as 8� was lowered. In the 1 prey, 1 predator 

community, there was only one equilibrium with prey and predator having the same strategy 

�� � �� � 0. With 8� � 10, this equilibrium was a non-oscillatory attractor. The switch to 

oscillatory attractor occurred around 8� � 7.6, to an oscillatory repeller around 8� � 2.65, and to 

a non-oscillatory repeller around 8� � 0.95. The prey also reach an evolutionary branching point 

at 8� � √24 - 4.9. In this case, when the community is at ESS, its dynamics are stable while 

unstable dynamics only happen when the community is not at ESS and the prey strategy is at a 

minimum of the adaptive landscape. When at a minimum, there is a range of 8� for which the 

dynamics are convergent stable. But, as 8� becomes smaller and crosses a threshold value, the 

minimum is not convergent stable and the evolutionary dynamics become unstable. 

 In the 2 prey, 1 predator system, the equilibrium trait value for the predator remains the 

same ��
� � 0 and the prey are now symmetrical around 0, $���

� , ��	

� % � ���
� , ���

� 
. In this 

community, there are no longer any unstable dynamics over the range of 8� though there are still 

oscillatory dynamics with the switch from a non-oscillatory attractor to an oscillator attractor 

occurring at approximately 8� � 2.85. One interesting feature is that even after the switch to an 

oscillator attractor, the dominant eigenvalue pair continues to decline until 8� � 0.9. One would 

expect a tendency towards instability with the pair of eigenvalues at some point increasing as 

was the case for the 1 prey, 1 predator community. This though is only a local phenomenon; 

beyond 8� � 0.9, the values of both conjugate eigenvalues increase until they turn positive at 

8� � 0.45 (see Fig. 28, Appendix C). The switch to an under-saturated community occurs before 
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the switch to an unstable dynamics, occurring at approximately 8� �  2.35. Overall, the pattern 

was maintained: evolutionary stability when 2 prey and 1 predator species represent the saturated 

community and non-equilibrial dynamics only when the saturated community has more than 2 

prey and 1 predator species.  

At 2 prey, 2 predators, we once again see the same pattern. The system is stable over the 

range of 8� with the switch to oscillatory dynamics when 8� � 2.05. Under-saturation occurs 

around 8� � 1.4. It is at this point that we stopped our analysis since the 3 predator, 2 prey 

community could be analyzed neither analytically nor numerically. But, it appears that saturated 

ESS communities give stable dynamics, and that when prey and/or predator species are at a 

minimum of their respective adaptive landscapes non-equlibrial evolutionary cycling becomes 

possible and increasingly likely as the bifurcation parameter is tuned towards increasing species 

richness at the ESS. 
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Figure 4 The full analysis of the BV model. The dynamics are nearly identical to the DML model, the only difference being that 
the two prey and one predator system is analyzed by linear stability analysis (b). 
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D. Evolutionary Dynamics in a Competition Model 

 Our last model derived from Matsuda and Abrams (1994) departs from the previous two. 

It considers just a single G-function with a community of competing species. We can frame the 

MA model into the following multi-species G-function:  

 ���	� , �
 , �
 � �� A1 � ∑ �$	� , ��,�%��
��
��� 6�	�
 C (8) 

This model is similar to the prey competition portion of the BV model but with two key 

differences. Firstly, the carrying capacity function is a lognormal function with respect to 

potential prey strategy values and a lower bound at 0 (only positive strategies allowed). 

Secondly, there is a term � within the competition function which allows for asymmetric 

competition. If � is less than zero, there is a competitive advantage of an individual having a 

slightly smaller strategy than the rest of the population, and intraspecific frequency dependent 

selection drives the population to smaller strategies; if � is positive, then the opposite occurs. 

The original paper showed that when there is only a single species, there is a single 

globally convergent stable equilibrium with the prey’s strategy value at the maximum of the 

carrying capacity function if � � 0. If � is positive but less than a critical value �D, then the 

original strategy equilibrium increases and a new convergent-unstable equilibrium appears at a 

value larger than the original equilibrium. This convergent unstable equilibrium divides the 

strategy space into two domains. If a species has a strategy value less than the convergent-

unstable equilibrium, it will move to the original convergent stable equilibrium; if greater, it will 

increase perpetually to infinity. This leads to evolutionary suicide as the increasing strategy 

values lead to smaller and smaller population sizes and eventually zero as the strategy value 

approaches infinity. As � increases, the two equilibria move closer together until they are equal; 

this occurs when � E �D. When this happens, the species’ strategy will always evolve towards 
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infinity and evolutionary suicide. Here we ask whether this evolutionary suicide is another 

manifestation of under-saturated communities. 

The original paper did not assess whether a community with a single species was at an 

ESS, and hence saturated. Graphically representing the adaptive landscape shows that the single 

species will be at or near an evolutionary branching point regardless of whether it is at the 

convergent stable equilibrium or evolving to infinity (Fig. 16a). This suggests that the one 

species community is indeed under-saturated. In fact, simulating the speciation process shows 

that there can be multispecies communities, each species at a convergent stable equilibrium (Fig. 

16b). Examination of the adaptive landscapes under increasing numbers of species suggests that 

the entire system is permanently under-saturated and could, in fact, be a situation of unlimited 

niche packing (Roughgarden, 1979; Barabas et al., 2012; Cressman et al., 2017). 

To that end, we did a simple exploration of this possibility by constraining the available 

trait space and seeing how many species would exist at maxima of the adaptive landscape. This 

trait space would be bounded between 0 and some positive value. To create this finite trait space, 

we evolutionarily fixed a species at the positive value of trait space. By fixing a species, this acts 

as a block for other species which cannot evolve beyond that point, effectively acting as a 

boundary. We gradually increased the trait space (the fixed species’ strategy) and saw how 

species richness would change as a result. Our results show that as trait space increased, species 

richness also increased (Fig. 16d). In fact, species richness as a function of available trait space is 

super linear as seen by the fact that the span under which a specific species number existed 

decreased (Fig. 16e). We suggest that the MA model is permanently under-saturated and likely 

an unlimited niche packing model. It may be due to this permanent under-saturation that we see 

extreme non-equilibrial dynamics that can lead to evolutionary suicide. 
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Figure 5 Analysis of the MA evolutionary suicide model. For a-c, we plot the adaptive landscapes with a varying number of species. We select � such that there is a domain of 
convergence and a domain of evolutionary suicide. a) Starting with one species, it converges to a stable minimum. b) A new species arises and both coexist stably at minimums. c) 
When a third species is added, it rapidly evolves to higher and higher strategy values, i.e. evolutionary suicide. As it evolves to such extremes, the landscape grows behind it 
allowing for more niche species into which species can invade. The species evolving to evolutionary suicide though is perpetually on the other side of the valley and will never be 
able to access such niche space. For d-e, we see the number of species that exist at maxima given a specific amount of available trait space. Trait space was constrained by fixing a 
species evolutionarily at a specific strategy value. d) The number of species that exist at maxima given the available trait space. e) The gap in trait space to the addition of a new 
species. Each point represents the increase in the amount of trait space needed to get to a certain number of species from the previous number. For example, the first dot indicates 
that it takes an increase of approximately 11 units of trait space to go from a single species at a maximum to two species at maxima. The decline in the gap between species 
suggests that species number is super linear with respect to trait space. 
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E. Discussion 

The ESS concept is an elegant and intuitive solution to an evolutionary game in which no 

individual can improve fitness by unilaterally changing strategy (Maynard Smith and Price, 

1973). By way of the ESS maximum principle, the strategies of the ESS must maximize the 

fitness of an individual given the circumstances which include the strategies of others (Brown 

and Vincent 1987). As such, the strategies of the ESS reside at peaks of their adaptive landscape 

where per capita growth rates are zero if the populations of each strategy have attained 

equilibrium. Subsequent work revealed other important facets of evolutionary stability. For 

attainability of the ESS, and even a minimum of the adaptive landscape, there needs to be 

convergent stability with respect to the eco-evolutionary dynamics (Brown and Pavlovic, 1992; 

Abrams et al., 1993; Metz et al. 1995). NIS provides an even stronger form of convergence 

stability for an eco-evolutionary equilibrium point. In this case, the strategy of the ESS or 

convergent-stable minimum can invade a community that possesses a nearby strategy at its 

equilibrium population size (Apaloo et al., 2009). Finally, an ESS may exhibit the property of 

mutual invasibility, a stronger form of NIS where two species with strategies that straddle the 

ESS can coexist (Geritz et al., 1998). As such a community can possess more coexisting species 

than an ESS community so long as each species is not at an evolutionary equilibrium. These 

three additional stability concepts have formed a cohesive framework for understanding 

equilibria in evolutionary game theory.  

Evolutionary games can also exhibit non-equilibrium strategy dynamics. Games with 

continuous-trait strategies have shown other sorts of such as limit cycles, as noted for variants of 

the rock-scissors-paper game, and evolutionary suicide (Weissing, 1991; You, 2018). While the 

four equilibrial properties of the ESS, convergence stability, NIS, and mutual invisibility are well 
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formalized (Apaloo et al., 2009), these non-equilibrium evolutionary dynamics have thus far 

defied clear context or intuition. They remain evolutionary “pathologies” rather than well-

integrated facets of stability properties in evolutionary games.  

Ripa et al. (2009) saw unstable evolutionary dynamics in a predator-prey model of 

species coexistence and coevolution. Using an extension of the BV model which could produce a 

diversity of competitor species at the ESS even in the absence of predators, they would start with 

one prey and one predator species to model speciation and community structure. Speciation of 

either a predator or prey species would occur so long as the species was either not at ESS or 

showing non-equilibrial dynamics. They noticed that if a community was unstable, it often had 

many fewer species than the number of species at ESS. By gradually adding species, such 

communities would transition from an unstable state to a stable state as species number 

approached that of the ESS. Testing out the Ripa et al., 2009 hypothesis, we examined three 

evolutionary games using a G-function approach. We examined two predator-prey games and 

one game of competition. All three models showed unstable evolutionary dynamics only when 

their communities were under-saturated, and the two models (the predator-prey models) that had 

finite numbers of species at their ESS showed stable evolutionary dynamics when their 

communities were saturated. While this is not a proof of the conjecture, the results are very 

suggestive of a more general phenomenon.  

There are two ways for achieving non-equilibrial dynamics in these evolutionary games. 

First, a community could have non-equilibrial population dynamics. If the optimal strategies are 

density-dependent, then oscillatory or chaotic population dynamics would produce similar 

behaviors in the evolutionary dynamics. We removed this possibility by having a timescale 

separation of fast population dynamics and slow evolutionary dynamics. By setting the species’ 
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population sizes to their equilibrium values given their strategy values, all dynamics were 

evolutionary. Second, increasing the evolutionary speed term ���� in a multi-species evolutionary 

game could destabilize the evolutionary equilibria simply by introducing very fast dynamics. 

While this always remains a possibility for the system, it would be more likely to produce 

instabilities in the saturated ESS community than in the under-saturated communities due to the 

interaction between multiple species. Furthermore, the sign of the eigenvalues in our analyses 

would not change so long as the evolutionary speed term were constant with respect to 

population dynamics; i.e. were simply additive genetic variance. Due to these modifications, we 

could be sure that the effects we were seeing were singly a function of community saturation 

The results from the predator-prey models gave the most support to our conjecture. With 

the two models, we did bifurcation analysis on parameters that governed potential diversity while 

looking at the changes in stability. Both showed that as potential diversity rose while 

communities remained under-saturated, the communities also became more unstable. In addition, 

saturated communities were always stable. These results offer a clear link between community 

saturation and evolutionary stability. This is all the more striking since the two models were 

structured differently with different goals in mind. The authors of the DML model were 

interested in evolutionary oscillations which is reflected in the structure of their model with the 

lack of intraspecific frequency dependence for predators and prey and intraspecific density 

dependence for predators. The authors of the BV model were interested in community structure 

and sought equilibrial dynamics reflected in the inclusion of predator intraspecific density 

dependence. Despite the fact that the models were independently derived and created for separate 

goals, a similar analysis of them converges on the same result. 
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One result of note in the BV model occurred in the 2 prey, 1 predator community. In this 

community, as potentially diversity increased, it became more stable as the dominant eigenvalue 

became more negative. This even as the system transitioned from non-oscillatory stable to 

oscillatory stable. We believe it is due to the fact that the system is driven by the predator. One 

telling fact is that as predator specialization initially increases (�� decreases), the equilibrial 

strategy values for the prey actually move farther apart. The likely explanation is that there is 

little advantage to prey divergence from maximum carrying capacity if predatory niche breadth 

is wide. As predatory niche breadth become smaller though, the advantage of divergence of the 

prey’s strategy values increases and the prey move apart in trait space. This works to the 

advantage of the predator; prey divergence decreases competition between the prey species and 

increases individual and cumulative prey population, which then boosts the predator’s population 

despite decreasing predation rate. Therefore, initial increases in predator specialization benefits 

the predator. This though is only a local phenomenon because as predator specialization 

increases, predation rate, and therefore the predator population drops to 0. This is also reflected 

in the fact that eventually, the dominant eigenvalue rises again and eventually the community 

becomes unstable.  

Evidence from analysis of the MA model also suggests that evolutionary instability 

results from under-saturated communities. This model shows not only unstable but non-

equilibrial evolutionary dynamics under certain conditions. The results of our analysis strongly 

support the idea that communities from the MA model are permanently under-saturated. As the 

various species evolve in strategy values towards infinity, the adaptive landscape grows behind 

them, creating extra niche space available to additional species. Furthermore, species number 

seems to be a super-linear function of trait space width. The fact that any community will always 
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be permanently under-saturated may be a reason why there is perpetual non-equilibrial 

evolutionary dynamics. Because of this permanent under-saturation though, we can never see if 

the community would become evolutionarily stable. Therefore, the evidence from the MA model 

is less suggestive but still points towards our conjecture.  

The MA model seems to have unlimited niche packing (a continuum of an infinite 

number of species) though evolutionary dynamics for a certain finite number of species can 

result in the collapse of the system as some of the species evolve higher and higher strategy 

values resulting in their extinction. It must be noted that this is in contrast to other single function 

competition models of unlimited niche packing (Gyllenberg and Meszéna , 2005; Meszéna et al., 

2005; Szabó and Meszéna, 2006; Parvinen and Meszéna, 2009; Barabas et al., 2012; Barabas et 

al., 2013; Cressman et al. 2017). For example, in the absence of a predator, the BV model 

becomes the Roughgarden model (1979). Starting from a finite number of species with distinct 

strategies, eco-evolutionary dynamics will drive at least some of them to convergent stable 

minima. Allowing for speciation, the number of species begins to multiply indefinitely. As seen 

in Cressman et al. (2017), the Roughgarden model does not show non-equilibrial evolutionary 

dynamics in under-saturated communities. We conjecture the reason for this may have to do with 

the manipulation of the adaptive landscape. A potential reason that predator-prey models are 

much more likely to show evolutionary oscillations is that predators are able independently to 

modify the prey’s adaptive landscape, specifically causing evolutionary minima for the prey. 

These distortions of the adaptive landscape can cause evolution within the prey as they evolve 

away from the minimum. It is likely that the extreme asymmetry of competition in the MA 

model so distorts the adaptive landscape that there is perpetual evolution. Analyzing the 

dynamics of the adaptive landscape and its interaction with the evolution of a species may be the 
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key to broaden the framework of evolutionary game theory that it can incorporate these 

evolutionary “pathologies”. 

As mentioned before, we have offered evidence for a potential resolution between non-

equilibrial evolutionary dynamics and the ESS concept, not a general proof. It remains to be seen 

whether this is a phenomenon that can be generalized and proven. Analysis of alternative models 

with distinct features could add to the robustness of our result. For example, with the parameters 

used for analysis of the BV model, the prey only diversified due to aposematic selection from the 

predators. Changing the parameters could allow for independent diversification within the prey, 

likely enhancing community instability (Roughgarden, 1976; Ripa et al., 2009; Cressman et al., 

2017). Additionally, asymmetric interactions could be added to the predator capture rate and 

prey competition within the predator-prey models. Another type of evolutionary instability not 

analyzed is taxon cycling, the phenomenon in which a species evolves to be later outcompeted 

by another species with a similar strategy (Rummel and Roughgarden, 1983; Rummel and 

Roughgarden, 1985; Taper and Case, 1992). Analyzing these and other additional models may 

bring more evidence for our hypothesis. 

More generally, the relationship between biodiversity and non-equilibrial dynamics has 

received significant attention. Studies have explored the possibility that non-equilibrial dynamics 

allow for the coexistence of species and the maintenance of hyper-diverse communities 

(Huisman and Weissing, 1999; Andersen, 2008). Our results suggest the opposite relationship 

between biodiversity and non-equilibrial dynamics. In our communities, non-equilibrial 

evolutionary dynamics are a function of community structure, not the other way around, with 

less diverse communities showing non-equilibrial dynamics. This concurs with previous work 

that states that biodiversity stalls evolutionary response to environmental change and that rapid 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/834838doi: bioRxiv preprint 

https://doi.org/10.1101/834838
http://creativecommons.org/licenses/by-nc/4.0/


evolution is most associated with marginal and newly colonized habitats (Millien, 2006; 

Mazancourt et al., 2008). This apparent difference is likely due to the nature of the dynamics. 

Non-equilibrial dynamics driven from external sources like environmental stochasticity are likely 

to keep the community off an equilibrium and grant species positive population size that would 

otherwise go extinct. The non-equilibrial dynamics we described though are internally driven, 

resulting in the need for community under-saturation. It is critical that the distinction between 

internally driven and externally driven non-equilibrial dynamics is made.  

Throughout this paper, we have provided evidence that evolutionary instability is a 

function of community saturation. That said, we have not formally proved it to be true. Whether 

this result can be generalized remains an open possibility. We hope this work inspires further 

investigations of the relationship. 
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