
(a)

Cluster Number Cell Count Top DE Genes
0 1280407 Ptn, Tuba1a, Tmsmb10
1 12814 Igfbp7, Cldn5, Ramp2
2 635 Ccl2, Ccl3, Cd83
3 1144 P2ry12, Csf1r, Hexb
4 1738 Tmsb4x, Rgs10, Aif1
5 849 Cd83, Adf3, Zfp36
6 844 Spp1, Igf1, Lpl
7 381 Apoe, Ms4a6c, Rgs1
8 383 Cd52, B2m, Aif1
9 1853 Pfn2, Dbi, Zic1

10 462 Plac8, Lgals3, S100a6
11 221 Ifnb1, Pppr15a, Cxcl10
12 480 Il7r, Tmsb10, Actg1
13 901 Ptn, Col3a1, Lgals1
14 176 Stfa1, S100a8, Gm5483
15 114 Pf4, F13a1, Mrc1
16 115 Hcar2, Ccl3, Crybb1
17 1497 Hba-a2, Hba-a1, Hbb-bs
18 94 Cxcl3, Cxcl2, Cd83
19 221 Rsph1, Mt2, Meig1
20 64 Cd5l, Ctsb, Ftl1
21 58 Ppbp, Gp9, Ctla2a

(b)

’

(c)
(d)

Fig. 3: (a) Louvain clustering on the 5,000-point Hopper sketch of the 1.3 million-cell mouse brain dataset. Each cluster
is numbered, and biologically interesting clusters are annotated with their inferred identity. (b) Table showing the
cell counts per cluster after nearest-neighbor classification on the whole dataset, and the top differentially-expressed
genes in each cluster. (c) Heat maps showing the expression of four different marker genes in a Hopper sketch of 5,000
mouse neurons out of 1.3 million. Elevated CD68 expression in the top half suggests a diverse population of immune
cells. (d) Louvain clusters computed on the entire dataset fail to distinguish any of the cell subtypes identified by
clustering on the sketch (see main text).
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(a)
(b) (c)

(d)

Fig. 4: Grid-based sketches clump at grid intersections. (a) Schematic diagram, assuming the data lies near a one-
dimensional line (red) in two-dimensional space. Where the line meets the grid intersection, four points are sampled,
causing an artificial clump (circled). This effect is compounded in higher dimensions. (b) A sample geometric sketch on
2-D Gaussian data randomly embedded into 100-dimensional space. The 100 sampled points are shown in white, with
the remaining points colored by grid cell. The grids partition the data erratically, and regions near grid intersections
are preferentially sampled. (c) Hopper sketch of the same data, with 100 points colored according to their closest
sampled point. The data is smoothly represented. (d) UMAP visualizations of sketches produced by Hopper, Geometric
Sketching, and by Treehopper with 32 partitions, colored by cell type. Geometric Sketching generates additional
clusters at grid intersections. Hopper and Treehopper avoid this issue.

8

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/835033doi: bioRxiv preprint 

https://doi.org/10.1101/835033
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hopper avoids this issue entirely by not relying on any axis, ensuring that all low-
dimensional substructures are smoothly represented regardless of spatial orientation (Fig-
ure 4c and Figure 4d). Sketches produced with Treehopper using PCA-trees to pre-partition
closely resemble those of Hopper, even with partition sizes less than 5% of the total sample
size (Figure 4d).

We note that the pure-partitioning approach taken by Geometric Sketching does allow
remarkably fast runtimes, and the artificial clumping effect does not occur on all datasets;
indeed, geometric sketches of the 1.3 million mouse neuron dataset closely resemble Hopper
sketches (data not shown). We suspect that the observed defect emerges only when the data
has high intrinsic dimensionality, i.e. lies on a high-dimensional manifold, because this allows
for more high-dimensional intersections between occupied grid hypercubes.

3 Discussion

Hopper leverages the mathematical power of farthest-first traversal to produce sketches
that preserve a sample’s transcriptional diversity and biological meaning. These sketches
are mathematically guaranteed to represent the original data as well as any polynomial-
time algorithm, thus providing a much-needed gold standard. By incorporating the powerful
partition-and-sample approach, it allows tunable scaling to massive-scale single-cell datasets
without excessive computational burden.

We have provided the first 50,000 cells in the far traversal of two super-massive single-cell
RNA-seq datasets. This data requires only a few megabytes of storage, but allows immediate
production of mathematically optimal sketches of any size smaller than 50,000. This allows
the researcher immediate access both to small sketches, which may distill out the rare cell
types, and larger sketches, which may be more comprehensive at the expense of obscuring
rare cell types. Indeed, the position of a cell in the far traversal produced by Hopper may
prove a valuable input to other downstream analyses. For example, one could modify the
Louvain community detection algorithm by weighting vertices according to their traversal
positions, and modifying the modularity-detection step to ensure that both rare and common
clusters are represented.

The experiments in this paper exclusively use Euclidean distance as a measure of dis-
similarity, but the Hopper framework generalizes to any dissimilarity measure. Unlike other
methods, an explicit embedding of the cells is not required - only a method of determining dis-
tance. As demonstrated by kernel SVM, this is a highly desirable property. There are several
existing algorithms for learning discriminative metrics from single cell datasets, which can
be directly fed into the Hopper framework. For example, SIMLR [15] uses machine learning
to jointly predict the clustering and the distance measure. Other possibilities abound, from
established kernels (e.g. polynomial kernels or radial basis functions) to custom-designed ker-
nels which may incorporate prior knowledge about the relevant factors shaping a dataset’s
diversity. Because the distance function can be user-specified, inputting such custom kernels
into the Hopper framework is very straightforward. While we expect most useful kernels to
obey the triangle inequality, and while the fastest version of Hopper assumes that it holds,
Hopper also accommodates arbitrary kernels via a small change in input parameters.
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Hopper offers a flexible, scalable, and mathematically principled workflow for distill-
ing the essence of a single-cell dataset. As these datasets grow larger, such methods will
become increasingly vital for enabling the advanced and computationally-expensive down-
stream workflows that the future of single-cell data undoubtedly holds.
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