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Abstract. Single-cell RNA-sequencing (scRNA-seq) has grown massively in scale since its inception,
presenting substantial analytic and computational challenges. Even simple downstream analyses, such
as dimensionality reduction and clustering, require days of runtime and hundreds of gigabytes of memory
for today’s largest datasets. In addition, current methods often favor common cell types, and miss salient
biological features captured by small cell populations. Here we present Hopper, a single-cell toolkit
that both speeds up the analysis of single-cell datasets and highlights their transcriptional diversity
by intelligent subsampling, or sketching. Hopper realizes the optimal polynomial-time approximation
of the Hausdorff distance between the full and downsampled dataset, ensuring that each cell is well-
represented by some cell in the sample. Unlike prior sketching methods, Hopper adds points iteratively
and allows for additional sampling from regions of interest, enabling fast and targeted multi-resolution
analyses. In a dataset of over 1.3 million mouse brain cells, we detect a cluster of just 64 macrophages
expressing inflammatory tissues (0.004% of the full dataset) from a Hopper sketch containing just
5,000 cells, and several other small but biologically interesting immune cell populations invisible to
analysis of the full data. On an even larger dataset consisting of ∼2 million developing mouse organ
cells, we show even representation of important cell types in small sketch sizes, in contrast with prior
sketching methods. By condensing transcriptional information encoded in large datasets, Hopper grants
the individual user with a laptop the same analytic capabilities as large consortium.
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1 Introduction

Recent improvements in single cell technologies have enabled high-throughput profiling of
individual cells, allowing fine-grained analyses of biological tissues. Droplet-based technolo-
gies have enabled profiling of millions of cells in a single experiment. Even larger datasets,
containing tens or hundreds of millions or even billions of cells, are imminent [1]. For exam-
ple, the Human Cell Atlas project aims to characterize and classify all cells in the human
body [11].

While these large-scale assays have enormous scientific and therapeutic potential, they
present significant computational and analytic challenges. Even the most basic exploratory
analyses – visualization, clustering, and removal of batch effects – require time quadratic or
worse in the size of the input data, which becomes intractable for more than tens of thousands
of cells. Clinically or scientifically-relevant cells are often far outnumbered by common cell
types [6]. Thus, there is a pressing need to produce sketches that reduce the size of single-cell
datasets while preserving their transcriptional diversity.

There are several recent methods with this aim. Dropclust [13] performs Louvain cluster-
ing on an approximate nearest-neighbor network, and uses the resulting clusters as points of
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reference for downsampling. However, clustering itself is a very difficult and computationally
expensive task, with the quality of the resulting sketches depending entirely on the clustering
algorithm. The recently-introduced Geometric Sketching [6] samples evenly across transcrip-
tional space by covering the PCA-reduced dataset with a gapped grid of disjoint axis-aligned
hypercubes, and sampling a point at random from each. Geometric sketching is very fast, and
outperforms DropClust in several key metrics [6]; yet, as we shall show, the fixed gridding
axis can lead to artificial clusters near the grid intersections, potentially negatively effecting
downstream analyses. Moreover, neither of these methods provides mathematical guarantees
as to the mathematical approximation quality of the output sketches.

To address these challenges, we introduce Hopper, a novel toolkit that produces sketches
with mathematical optimality guarantees on the distance from a point in the original data to
the nearest point in the sketch. It achieves this result by implementing farthest-first traversal,
a provably optimal polynomial-time approximation to the k -center problem. Intuitively, this
means that every point in the full dataset X is very close to some point in the sketch S.
Furthermore, unlike prior methods, Hopper allows fast insertion and removal of cells from
the sketch, whilst preserving the strong mathematical guarantees. This enables fast multi-
resolution analyses of large datasets.

While farthest-first traversal is mathematically powerful, its runtime is prohibitive for
large sketches. We introduce two speedups using basic geometry which make the method
feasible even on today’s largest datasets. To accommodate future datasets with tens or
hundreds of millions of cells, Hopper implements a fully tunable pre-partitioning step, which
reduces the runtime by orders of magnitude without significant loss in performance.

The code for Hopper is available at https://github.com/bendemeo/hopper. In addition,
we have provided sketches of size 50,000 of the two largest single-cell datasets, available at
http://cb.csail.mit.edu/cb/hopper/.

2 Results

2.1 Overview of Algorithm

At the core of Hopper is the Farthest-first traversal, an elegant greedy approximation to the
k-center problem. Here to goal is to minimize, for some subset S of size k of a ground set
X, the Hausdorff distance

dH(S,X) = max
x∈X

min
s∈S

d(x, s)

where d is a metric of choice (in our experiments, we use the Euclidean metric).
The algorithm works by sampling an initial point from X at random, and repeatedly

adding the point p that is furthest from any of the previously-sampled points – that is,

p = arg max
x∈X

(min
s∈S

d(x, s)). (1)

Intuitively, we repeatedly add to S the point of X that is least well-represented by S. We
implement this in the hop function of the class Hopper in the Hopper module.
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By design, this method is guaranteed to strictly decrease the Hausdorff distance dH(X,S)
after each step, assuming that the maximum is realized by only one point. In fact, one can
show the following:

Theorem 1. Suppose that S is a k-step farthest traversal of X. Then,

dH(X,S) ≤ 2doptH (X, k)

where doptH (X, k) is the optimal Hausdorff distance realized by any subset of size k.

Thus, farthest-first traversal realizes a 2-approximation to the optimal Hausdorff distance.
The proof of this Theorem is found in [3]. The following theorem, due to [7], shows that we
cannot reasonably hope to do any better:

Theorem 2. Let α < 2. Then, unless P = NP , there is no polynomial time algorithm for
producing a set S satisfying

dH(X,S) ≤ α · doptH (X, k).

Thus, Hopper provides a gold-standard for sketching in the sense that no algorithm can
reliably obtain a better Hausdorff distance, unless P = NP . The output of Hopper is an
ordered collection of x1, x2, ..., xk of cells from X, such that for any ` ≤ k, the subset x1, ..., x`
reaches within a factor of two of the lowest possible Hausdorff distance for any sketch of size
`.

Geometric Speedups. The most computationally expensive aspect of farthest-first traver-
sals is identifying the point p from equation 1. To do so, one must maintain for each x ∈ X
the distance to the nearest point in S. Each time a point is added to S, these distances must
be updated. A näıve approach computes the distance from every x ∈ X to the newly-added
p, and updates the minimum distances accordingly. This requires O(n) time for each point
addition, where n is the size of X. Producing a sketch of size k thus takes O(nk) time, which
can be prohibitive for large sketches of large datasets.

Various speedups have been proposed in the theoretical computer science community (e.g.
[5]), but all scale poorly with the dimensionality of the dataset. Instead, Hopper implements
two simple geometric speedups using the triangle inequality. First, if the newly added point
p has distance r to its nearest representative in S, then by the triangle inequality,

r ≤ d(s, p) ≤ d(s, x) + d(x, p)

for any s ∈ S and x ∈ X. In particular, if d(x, p) ≤ d(s, x), then we must have d(s, x) ≥ r
2
.

Thus, we need only examine those points in X with distance ≥ r
2

to their nearest point in S.
To quickly find these points, the points X are sorted by their distance to the nearest point
of S. Second, for s ∈ S, if d(s, p) ≥ 2r, then if x ∈ X is closest to s, the triangle inequality
gives:

d(s, x) ≥ d(s, p)− d(x, p) ≥ r

so there is no need to update any of the points associated to s. These two observations often
allow significantly fewer than n points to be examined at each iteration. The exact runtime
depends on the dimensionality and geometry of the dataset, but in practice the speedup is
noticeable, especially for the first few thousand cells (Figure 2).
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Pre-partitioning for even faster runtimes: the Treehopper class. As demonstrated
by Geometric Sketching [6], spatial partitions can be used to very quickly generate sketches.
The Treehopper class leverages this finding to further speed up sketch generation via pre-
partitioning. The dataset X is first partitioned into subsets X1, ..., Xd, using a method of
the user’s choice. A Hopper object Hi is instantiated in each partition Xi, beginning a far
traversal Si of Xi. These Hoppers are sorted according to their Hausdorff distance dH(Si, Xi).
At each step, the Hopper with highest Hausdorff distance hops, adding a point to Si, and
adjusting its position in the sorted list of Hoppers. The final sketch is the union of all the
sub-traversals Si.

Using a fast heap implementation, this achieves an average hop time of O(n
d
) instead of

O(n). Within each partition, the traversals Si realize the optimality bound of Theorem 1,
but this bound may not be achieved globally. This tradeoff between time and performance is
fully tunable. If d = 1, we achieve optimal polynomial-time performance in O(nk) worst-case
time. On the other extreme, if d = n, a random subsample is produced in O(k) time. For
d-values in the tens to hundreds, these methods produce drastic speedups with little loss in
accuracy (Figure 2)

In contrast with Geometric Sketching, where the partitions are all hypercubes of the same
size and a point is drawn from each, Treehopper allows partitions to occupy variable-sized
regions of transcriptional space, and draws variable numbers of points from the partitions
according to their individual geometries. Thus, Treehopper bridges the gap between the very
fast partition-and-sample approach and the slower, but mathematically optimal, farthest-first
traversal approach. The choice of partition is entirely flexible; in our experiments, we use
Principal Component Trees (PC-trees), which repeatedly split into equal halves along the
leading principal component [14]. For the best possible performance, the partitions should
be spatially separate and contain roughly equal numbers of points.

2.2 Experimental Results

Hopper better approximates biological datasets. We assessed our method’s perfor-
mance on two of the largest published single-cell RNA-seq experiments: A set of 1.3 million
mouse neurons from 10X genomics, and a set of sim2 million mammalian organogenesis
cells [2]. Each dataset underwent standard normalization and feature selection protocols,
and was projected to the its 100 Independent Components (ICs). Consistent with our math-
ematical guarantees, Hopper obtained Hausdorff distances significantly lower than any prior
sketching technique, proving quantitatively that all cells in the dataset are better-represented
(Figure 1). These improvements remained significant even when Treehopper was used with
as many as 256 pre-partitions, suggesting that pre-partitioning does not substantially reduce
performance. In contrast with Geometric Sketching, Hausdorff distance decreases smoothly
as the number of points increases, likely because our methods are highly sensitive to indi-
vidual outliers.

As expected, Hopper and Treehopper run approximately linearly in the dataset size,
with slopes depending on the number of pre-partitions (Figure 2). Geometric Sketching
shows variable time performance between the two tested datasets. We suspect that because
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(a)
(b)

Fig. 1: Hausdorff distances and runtimes for various Hopper routines, with Geometric Sketching for comparison, on
(a) ∼1.3 million mouse neurons and (b) ∼2 million developing organ cells. The plain Hopper routine produces the
lowest Hausdorff distance obtainable in polynomial time, with the faster Treehopper routines nearly realizing the
optimum. All significantly outperform Geometric Sketching, and show more consistent Hausdorff performance.

(a)
(b)

Fig. 2: Runtimes for various sketching routines on the two tested datasets. All Hopper routines are linear in the sketch
size, and add approximately one cell per 5 milliseconds, per thousand cells in each partition. Geometric sketching
performs variably depending on the dataset’s geometry.
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Geometric Sketching relies on a binary search to select the correct grid size, performance is
heavily impacted by the number of search iterations needed, which is in turn influenced by
the geometry of the data. Because even small sketch sizes may require several iterations, this
leads to slower performance for small sketch sizes. On the other hand, the runtime is far less
dependent on the sketch size, and may be faster for larger sketches (Figure 2b).

Hopper reveals novel clusters of immune cells in mouse brain data. Clustering
is a key step in the analysis of single-cell data, allowing identification of known cell types,
and discovery of new cell types, in a sample. Hopper facilitates this by representing rare
clusters even with small sketches. To show this, we used Hopper to order the first 5,000 cells
(about 0.4 %) of the 1.3 million neuron dataset, and clustered the resulting cells using Lou-
vain community detection. These cluster labels were then propagated to the full dataset via
nearest-neighbor classification. The detected clusters, plotted and annotated in Figure 3a,
reveal several small but interesting cellular populations. For example, one of the clusters,
consisting of a mere 64 cells, showed elevated expression of the Cd5l gene, which is expressed
by macrophages in inflamed tissues [12] (Figure 3a). Another cluster consisted of just 114
cells with elevated expression of Pf4 and F13a1, marker genes for activated platelets [10]
(Figure 3a; Figure 3c). Another, consisting of just 221 cells, showed elevated expression the
Interferon-β gene Ifnb1, expressed in fibroblasts and monocytes in response to viral infec-
tion [8]. Clusters 2-4 express canonical microglial markers, highlighting the transcriptional
diversity of this group [4, 9]. Figure 3c shows expression heatmaps for each of these genes.
Considering the role of the immune system in modulating disease states, these clusters are
likely clinically important despite their small size.

Table 3b lists all clusters, together with their sizes and differentially expressed genes
relative to the total. Remarkably, almost all of the clusters computed from the Hopper sketch
are extremely small relative to the full dataset size, indicating that miniscule populations can
account for a large proportion of the dataset’s transcriptional diversity. These populations are
completely invisible to any analysis of the full dataset. For example, the Louvain clustering
produced by scanpy [16] on the full dataset lumps all of the immune cell clusters into a
single relatively small cluster of 8,856 cells, obscuring their true diversity (Figure 3d).

Hopper samples smoothly across low-dimensional substructures. Geometric Sketch-
ing, the prior state of the art, covers the data with a gapped grid of axis-aligned boxes and
samples a point from each box. This is a well-motivated approach that works very well on
many datasets. However, we have observed that axis-aligned grid hypercubes do not always
represent the data evenly, especially where the local low-dimensional structure of the data
aligns poorly with the gridding axis. As demonstrated schematically in Figure 4a , this re-
sults in more points near the grid square intersections, an effect which is compounded with
an increase in the ambient dimension D, since as many as 2D hypercubes may meet. As a
result, we observe clumping even when the underlying data is Gaussian (Figure 4b). On the
mouse organogenesis dataset, this manifests as additional clusters not present in the Hopper
sketches (Figure 4d).
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(a)

Cluster Number Cell Count Top DE Genes
0 1280407 Ptn, Tuba1a, Tmsmb10
1 12814 Igfbp7, Cldn5, Ramp2
2 635 Ccl2, Ccl3, Cd83
3 1144 P2ry12, Csf1r, Hexb
4 1738 Tmsb4x, Rgs10, Aif1
5 849 Cd83, Adf3, Zfp36
6 844 Spp1, Igf1, Lpl
7 381 Apoe, Ms4a6c, Rgs1
8 383 Cd52, B2m, Aif1
9 1853 Pfn2, Dbi, Zic1
10 462 Plac8, Lgals3, S100a6
11 221 Ifnb1, Pppr15a, Cxcl10
12 480 Il7r, Tmsb10, Actg1
13 901 Ptn, Col3a1, Lgals1
14 176 Stfa1, S100a8, Gm5483
15 114 Pf4, F13a1, Mrc1
16 115 Hcar2, Ccl3, Crybb1
17 1497 Hba-a2, Hba-a1, Hbb-bs
18 94 Cxcl3, Cxcl2, Cd83
19 221 Rsph1, Mt2, Meig1
20 64 Cd5l, Ctsb, Ftl1
21 58 Ppbp, Gp9, Ctla2a

(b)

’

(c)

Louvain clusters on full data

(d)

Fig. 3: (a) Louvain clustering on the 5,000-point Hopper sketch of the 1.3 million-cell mouse brain dataset. Each cluster
is numbered, and biologically interesting clusters are annotated with their inferred identity. (b) Table showing the
cell counts per cluster after nearest-neighbor classification on the whole dataset, and the top differentially-expressed
genes in each cluster. (c) Heat maps showing the expression of four different marker genes in a Hopper sketch of 5,000
mouse neurons out of 1.3 million. Elevated CD68 expression in the top half suggests a diverse population of immune
cells. (d) Louvain clusters computed on the entire dataset fail to distinguish any of the cell subtypes identified by
clustering on the sketch (see main text).
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(a)
(b) (c)

(d)

Fig. 4: Grid-based sketches clump at grid intersections. (a) Schematic diagram, assuming the data lies near a one-
dimensional line (red) in two-dimensional space. Where the line meets the grid intersection, four points are sampled,
causing an artificial clump (circled). This effect is compounded in higher dimensions. (b) A sample geometric sketch on
2-D Gaussian data randomly embedded into 100-dimensional space. The 100 sampled points are shown in white, with
the remaining points colored by grid cell. The grids partition the data erratically, and regions near grid intersections
are preferentially sampled. (c) Hopper sketch of the same data, with 100 points colored according to their closest
sampled point. The data is smoothly represented. (d) UMAP visualizations of sketches produced by Hopper, Geometric
Sketching, and by Treehopper with 32 partitions, colored by cell type. Geometric Sketching generates additional
clusters at grid intersections. Hopper and Treehopper avoid this issue.
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Hopper avoids this issue entirely by not relying on any axis, ensuring that all low-
dimensional substructures are smoothly represented regardless of spatial orientation (Fig-
ure 4c and Figure 4d). Sketches produced with Treehopper using PCA-trees to pre-partition
closely resemble those of Hopper, even with partition sizes less than 5% of the total sample
size (Figure 4d).

We note that the pure-partitioning approach taken by Geometric Sketching does allow
remarkably fast runtimes, and the artificial clumping effect does not occur on all datasets;
indeed, geometric sketches of the 1.3 million mouse neuron dataset closely resemble Hopper
sketches (data not shown). We suspect that the observed defect emerges only when the data
has high intrinsic dimensionality, i.e. lies on a high-dimensional manifold, because this allows
for more high-dimensional intersections between occupied grid hypercubes.

3 Discussion

Hopper leverages the mathematical power of farthest-first traversal to produce sketches
that preserve a sample’s transcriptional diversity and biological meaning. These sketches
are mathematically guaranteed to represent the original data as well as any polynomial-
time algorithm, thus providing a much-needed gold standard. By incorporating the powerful
partition-and-sample approach, it allows tunable scaling to massive-scale single-cell datasets
without excessive computational burden.

We have provided the first 50,000 cells in the far traversal of two super-massive single-cell
RNA-seq datasets. This data requires only a few megabytes of storage, but allows immediate
production of mathematically optimal sketches of any size smaller than 50,000. This allows
the researcher immediate access both to small sketches, which may distill out the rare cell
types, and larger sketches, which may be more comprehensive at the expense of obscuring
rare cell types. Indeed, the position of a cell in the far traversal produced by Hopper may
prove a valuable input to other downstream analyses. For example, one could modify the
Louvain community detection algorithm by weighting vertices according to their traversal
positions, and modifying the modularity-detection step to ensure that both rare and common
clusters are represented.

The experiments in this paper exclusively use Euclidean distance as a measure of dis-
similarity, but the Hopper framework generalizes to any dissimilarity measure. Unlike other
methods, an explicit embedding of the cells is not required - only a method of determining dis-
tance. As demonstrated by kernel SVM, this is a highly desirable property. There are several
existing algorithms for learning discriminative metrics from single cell datasets, which can
be directly fed into the Hopper framework. For example, SIMLR [15] uses machine learning
to jointly predict the clustering and the distance measure. Other possibilities abound, from
established kernels (e.g. polynomial kernels or radial basis functions) to custom-designed ker-
nels which may incorporate prior knowledge about the relevant factors shaping a dataset’s
diversity. Because the distance function can be user-specified, inputting such custom kernels
into the Hopper framework is very straightforward. While we expect most useful kernels to
obey the triangle inequality, and while the fastest version of Hopper assumes that it holds,
Hopper also accommodates arbitrary kernels via a small change in input parameters.
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Hopper offers a flexible, scalable, and mathematically principled workflow for distill-
ing the essence of a single-cell dataset. As these datasets grow larger, such methods will
become increasingly vital for enabling the advanced and computationally-expensive down-
stream workflows that the future of single-cell data undoubtedly holds.
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