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Abstract 24 

Background 25 

Recent advances in image-based plant phenotyping have improved our capability to study vegetative stage 26 

growth dynamics. However, more complex agronomic traits such as inflorescence architecture (IA), which 27 

predominantly contributes to grain crop yield are more challenging to quantify and hence are relatively less 28 

explored. Previous efforts to estimate inflorescence-related traits using image-based phenotyping have been 29 

limited to destructive end-point measurements. Development of non-destructive inflorescence phenotyping 30 

platforms could accelerate the discovery of the phenotypic variation with respect to inflorescence dynamics 31 

and mapping of the underlying genes regulating critical yield components. 32 

Results 33 

The major objective of this study is to evaluate post-fertilization development and growth dynamics of 34 

inflorescence at high spatial and temporal resolution in rice. For this, we developed the Panicle Imaging 35 

Platform (PI-Plat) to comprehend multi-dimensional features of IA in a non-destructive manner. We used 36 

11 rice genotypes to capture multi-view images of primary panicle on weekly basis after the fertilization. 37 

These images were used to reconstruct a 3D point cloud of the panicle, which enabled us to extract digital 38 

traits such as voxel count and color intensity. We found that the voxel count of developing panicles is 39 

positively correlated with seed number and weight at maturity. The voxel count from developing panicles 40 

projected overall volumes that increased during the grain filling phase, wherein quantification of color 41 

intensity estimated the rate of panicle maturation. Our 3D based phenotyping solution showed superior 42 

performance compared to conventional 2D based approaches. 43 

Conclusions 44 

For harnessing the potential of the existing genetic resources, we need a comprehensive understanding of 45 

the genotype-to-phenotype relationship. Relatively low-cost sequencing platforms have facilitated high-46 

throughput genotyping, while phenotyping, especially for complex traits, has posed major challenges for 47 

crop improvement. PI-Plat offers a low cost and high-resolution platform to phenotype inflorescence-48 

related traits using 3D reconstruction-based approach. Further, the non-destructive nature of the platform 49 

facilitates analyses of the same panicle at multiple developmental time points, which can be utilized to 50 

explore the genetic variation for dynamic inflorescence traits in cereals. 51 
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Background 57 

With increasing world population, climatic variability and declining arable land resources, the need to 58 

increase global food production is paramount [1–3]. Two components that are essential for achieving global 59 

food security involve precise agronomic management and genetic improvement of major crops such as rice, 60 

wheat, and maize. Integral to both components is the development of data-driven tools that increase 61 

precision in implementation and enhance predictive capabilities. Moreover, strategic selection and 62 

adaptation of yield-related traits to maximize agricultural production holds the key to achieve sustainable 63 

food security [4–6]. Inflorescence architecture (IA) is an important phenotypic feature that ultimately 64 

contributes to most of the grain crop yield components such as grain number, size, and weight [7–9]. 65 

However, the complexity of IA, especially in cereals, is a limiting factor for accurate determination of yield 66 

traits. Estimating the yield-related traits by conventional methods is subjective, laborious, and error-prone 67 

[10]. Also, the scope of the detectable yield-related traits is limited by manual measurements, which 68 

increases the chances of damaging the inflorescence.  69 

Advances in automation of plant phenotyping technologies, mainly in reference to image-based 70 

phenotyping, have increased the depth and the scale of measuring vegetative traits [11–19]. However, only 71 

a few studies have used the phenotyping platform to screen IA [16, 20–22]. Some platforms have utilized 72 

machine-vision-based approaches to estimate inflorescence-related parameters [23–26]. In addition, two-73 

dimensional (2D) imaging platforms have been employed, for example, Tassel Image-based Phenotyping 74 

System (TIPS) quantifies morphological traits from freshly harvested maize tassels, while PAnicle 75 

STructure Analyzer for Rice (PASTAR/PASTA), Panicle TRAit Phenotyping (P-TRAP), and PANorma 76 

analyze rice panicle length and branching [20, 21, 27, 28]. Both P-TRAP and PANorma have been used for 77 

genome-wide association studies (GWAS) with respect to rice panicle traits [27, 29–31]. Recently, Zhou et 78 

al [22] developed Toolkit for Inflorescence Measurement (TIM) to estimate sorghum panicle volume 79 

derived from two planar imaging data. The derived panicle-related traits of sorghum were used for GWAS 80 

to facilitate gene discovery.  81 

Most of these 2D image-based IA approaches have discussed only the mature or end-point traits 82 

and do not capture the growth dynamics of developing inflorescence. Furthermore, biplanar images can 83 

only provide 2D projections of a 3D structure, thus accounting for substantial loss of spatial information 84 

[32]. 3D imaging has started to gain momentum to circumvent limitations of 2D imaging [33]. Different 85 

3D imaging methods, for example time of flight (ToF), laser scanning, stereovision among others, have 86 

been applied for remote sensing or field-based phenotyping platforms In addition, depth cameras are also 87 

widely used for capturing an entire plant or large plants parts [34]. Stereovision, which considers object 88 

images from different angles to reconstruct 3D surfaces, offers an inexpensive, accurate and efficient 89 

method for on-site 3D plant imaging [32, 35, 36]. The recent introduction of freely available software – 90 
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Multi-View Environment (MVE) offers an end-to-end 3D reconstruction solution [37]. MVE combines the 91 

multi-view stereo (MVS) and structure-from-motion (SfM) algorithms to generate dense point clouds for 92 

3D object reconstruction [37]. The MVS-SfM approach has been used to reconstruct 3D meshes of leaves, 93 

canopy or whole plant [38–41]. However, this approach has not been used to characterize IA.  Here, we 94 

present the results from characterizing rice panicles using the 3D reconstruction-based approach. The main 95 

objectives of our study were to (a) capture multi-dimensional, high-resolution images of ‘panicle on plant’ 96 

after the fertilization to reconstruct 3D plant cloud of inflorescence, (b) use 3D point clouds to derive 97 

inflorescence-related traits, and (c) use the derived traits to monitor growth dynamics of developing 98 

inflorescence and distinguish inherent genetic and morphological diversity in crop species.  99 

However, it is challenging to perform 3D reconstruction of rice panicles to achieve our objectives. 100 

First, a rice panicle is often occluded by other plant components such as leaves and other panicles. 101 

Therefore, the existing solutions by moving cameras [42] are not entirely suitable to generate un-occluded 102 

images for a panicle. Second, a panicle is non-rigid and typically is not located in the center of a plant, 103 

making it difficult to apply the existing solutions based on plant rotation [42]. Third, rather than destructive 104 

methods [22], non-destructive methods are needed to keep a panicle alive, as the growth dynamics of a 105 

panicle is of interest in this study. Fourth, the size of a panicle is relatively marginal, and the depth-camera 106 

based solutions [34] may not provide sufficient resolutions to capture the 3D details of a panicle.  107 

To address these challenges, we developed an in-house Panicle Imaging Platform (PI-Plat) to 108 

capture the dynamics of developing panicles in rice from a range of genetically diverse rice genotypes. A 109 

panicle is isolated to generate un-occluded images in a non-destructive manner. In addition, a panicle stays 110 

still at the center in the PI-Plat and cameras rotate around it, thus minimizing the vibration and allowing 111 

generation of a more stable 3D point cloud. The resolution of the cameras is ensured to capture details of a 112 

panicle in 2D images, leading to high-resolution 3D reconstruction results. A total of 11 genotypes, indica 113 

and japonica sub-populations were selected. Post fertilization, primary panicles were imaged on a weekly 114 

basis (week 1, 2, and 3) by using the PI-Plat. The captured images were used for 3D reconstruction to 115 

extract digital phenotypic attributes: voxel count and color intensity. We reported increased sensitivity  in 116 

panicle trait prediction from 3D reconstruction when compared to direct end-point measurements of yield 117 

components. Although the PI-Plat is designed for rice panicles, it can be extended for other small plant 118 

components such as new branches or leaves for cereals. 119 

 120 
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Material and methods 122 

Plant material  123 

Surface-sterilized seeds of 11 rice accessions were germinated on half strength Murashige and Skoog media 124 

for 3 days in dark, followed by a day in light (list of the genotypes used in the study; Additional File 1). 125 

Initially, two uniformly germinated seedlings were transplanted to a 4-inch square shaped pot filled with 126 

pasteurized field soil. Throughout the growing season, the pots were maintained in standing water. After 127 

10 days of transplanting, seedlings were thinned to retain one plant per pot per genotype.  128 

 129 

Temperature treatment 130 

Plants were grown under control conditions (16-hour light and 8-hour dark at 28±1˚C and 23±1˚C) till 131 

anthesis. One day after 50% of the primary panicle completely fertilized, half of the plants from each 132 

genotype were transferred to greenhouse having high night-time temperature (HNT; 16-hour light and 8-133 

hour dark at 28±1˚C and 28±1˚C). HNT treatment was maintained until maturity. Two or three replicates 134 

per treatment per genotype from the current set were used to establish image-based phenotyping workflow 135 

(Figure 1). 136 

 137 

PI-Plat: Panicle Imaging Platform 138 

We constructed a low-cost Panicle Imaging Platform (PI-Plat) to capture the growth parameters of rice 139 

panicles after flowering (Additional File 2). The PI-Plat is comprised of three main parts: (i) a customized 140 

wooden chamber with black interior, (ii) a rotating imaging system, and (iii) color checkerboards. 141 

 142 

Customized wooden chamber and rotating imaging system 143 

To host the PI-Plat, a wooden chamber (height: 75-inch, width: 52.5-inch, length: 55-inch) was customized 144 

(Additional File 2). The interior of the chamber was painted black to reduce the light interference and 145 

increase the quality of image segmentation during the image processing procedure. Inside the chamber, a 146 

circular wooden board (diameter: 37-inch) having an aperture at its center was fixed at a height of 52.5-147 

inch. The top surface of the circular wooden board was painted black as well. For imaging, plants wer e 148 

placed under the circular wooden board, and the panicle of interest (primary panicle) was gently passed 149 

through the aperture. To adjust for variable plant height, we used an electric scissor lift table (Additional 150 

File 2). A metal hook attached to the ceiling of the circular wooden chamber was adhered to top of the 151 

panicle for stabilizing the panicle (Additional File 2).  152 

Also, a rotary double-ring apparatus having an inner and an outer ring is fixed on top of the circular 153 

wooden board (Additional File 2). A 24-inch aluminum-based outer ring with snow-ball bearings is used 154 

to hold two Sony α6500 cameras for imaging and LED lights (ESDDI PLV-380, 15 Watt, 5000 LM, 5600K) 155 
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for light source, which undergo a 360° rotation around the panicle. The rotation is controlled by an electric 156 

motor system. The rotary double-ring apparatus has three major parts: (a) a toothed wheel connected to the 157 

electric motor, (b) a small smooth pulley and a cylindrical sleeve used to adjust tension in the belt, and (c) 158 

a rotatable ring apparatus that rotates the cameras where the outer ring is covered with a toothed belt. Our 159 

camera selection is based on high sensitivity and high stabilization to reduce image distortion during camera 160 

motion. The camera also supports customized applications for remote-controlled imaging. We utilized the 161 

camera’s time-lapse feature to capture multiple images at the rate of one image per second. Sixty images 162 

were captured by each camera per minute, and in total 120 images were taken for each panicle for ea ch 163 

time-point and treatment. For labeling, we used quick response (QR) codes as plant identifiers (IDs), which 164 

were tagged to the primary panicle. Plant IDs were generated from the images of during the later imaging 165 

processing stage. The PI-Plat were constructed mostly using commercial off-the-shelf components at a 166 

comparably low cost.  167 

 168 

Color checkerboards 169 

Color checkerboards printed on white letter-size papers were pasted on all four sides of wooden chamber 170 

and on the top surface of the circular wooden board (Additional File 2). Each checkerboard included 20 × 171 

20 squares (1 cm2) with colors that were randomly generated in the RGB color space. Color checkerboards 172 

were used to provide additional feature points in the 3D reconstruction process. These feature points were 173 

used to recover camera parameters, which included the intrinsic calibration (i.e., radial distortion of the lens 174 

and the focal length) and the extrinsic calibration (i.e., the position and orientation of the camera) [37]. 175 

These additional feature points were important for generating a stable 3D point cloud because the panicle 176 

itself had a relatively uniform color and similar patterns, which might not provide enough feature points for 177 

the 3D reconstruction without a color checkerboard.  178 

 179 

Image Acquisition 180 

The supplementary video shows image acquisition process using the PI-Plat (Additional File 3). To capture 181 

the growth dynamics of panicles, we performed non-destructive imaging of primary panicle corresponding 182 

to control and HNT treated plants at one (W1), two (W2) and three-weeks (W3) post-fertilization.  183 

 184 

Image Processing 185 

3D point cloud reconstruction 186 

For 3D point cloud reconstruction, we used the MVE pipeline [37]. First, we converted all the RGB (red, 187 

green, and blue) images into the HSV (hue saturation value) space. Then, the background in all images (i.e., 188 

the part corresponding to the walls and the circular wooden board) was segmented [43] and removed using 189 
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the same threshold. With the removal of the background, the amount of feature points in the 3D 190 

reconstruction process, as well as the computation time, was reduced. Since all images were taken in the 191 

PI-Plat chamber with a constant light, the same threshold worked optimally for all the panicles. Multiple 192 

tests using the ‘colorthresholder’ application in Matlab showed that the background can be effectively 193 

removed if hue, saturation, and value were controlled in the ranges of 0.2-0.5, 0.5-1, and 0.2-0.7, 194 

respectively. After background removal, denoising on the images was performed and the components that 195 

did not belong to a panicle (e.g., the turntable ring, the residues of checkerboards, etc.) were considered as 196 

noise and removed. These pre-processed images were used to reconstruct the 3D point clouds for each 197 

panicle at a given time-point. For this, the corresponding feature points in images were detected and 198 

matched to form a sparse point cloud in an incremental SfM process. Then, depth maps were reconstructed 199 

for each view and merged into a dense point cloud.  200 

 201 

Trait extraction using 3D point cloud 202 

Once a point cloud at each time point was generated, we were able to extract traits of interest from the 203 

reconstructed 3D structure of panicles from these time-varying point clouds. First, each point cloud was 204 

segmented into different components (such as a panicle, the color checkboards, and the rotary double-ring 205 

apparatus) by leveraging their distinct positions or colors. For example, the color checkboards were 206 

approximately located on the boundaries (i.e., the locations of walls and the top surface of the circular 207 

wooden board) of a point cloud, and the metal hook was located at the top of the point cloud and has a gray 208 

color. Second, the point clouds need to be scaled and aligned, as different point clouds may have different 209 

scales and orientations after reconstruction. In this work, the geometries of the color checkboards and the 210 

rotary double-ring apparatus were constant during imaging acquisition. Thus, we scaled and aligned the 211 

color checkboards and the apparatus across the point clouds. In this way, the rest of the point clouds were 212 

scaled and aligned as well, such that panicles in different point clouds can be compared at the same scale 213 

[44].  Third, each point cloud was voxelized for volume quantification [45]. The same bounding box was 214 

employed to enclose each point cloud. The bounding box was cube-shaped and aligned across the point 215 

clouds with respect to the color checkboards and the apparatus. Then, an equivalent discrete voxel -based 216 

grid was generated. The grid size was obtained by dividing each edge of the bounding box by 1000. Thus, 217 

a volume with a resolution of 1000 × 1000 × 1000 was generated to sample the 3D space. Finally, the 218 

points not belonging to a panicle were removed. Therefore, some voxels were filled with a group of panicle 219 

points and the other voxels were empty. For each filled voxel, we computed the average color (i.e., RGB) 220 

intensity of the points contained in the voxel. Subsequently, the following features were extracted from a 221 

volume: (a) voxel count: the number of the filled voxels, and (b) color intensity: the sum of color intensities 222 

of all filled voxels. 223 
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 224 

2D pixel count extraction from multi-view images of developing panicles  225 

For a comparison purpose, conventional 2D based image analysis of panicles was also employed. 226 

Specifically, the total pixel count of a panicle was calculated from its corresponding 120 images captured 227 

from multiple views. To achieve this, first, each pre-processed image was segmented using the 228 

‘colorthresholder’ application in Matlab. This resulted in a set of separated regions. Second, because the 229 

checkerboards used in our experiment had green squares whose color was similar to a panicle, the square-230 

shaped regions were detected using solidity. For each region, its solidity is defined as the ratio of the 231 

region’s area to the region’s convex hull area. The solidity of each region was calculated using the 232 

‘regionprops’ function in Matlab. We did not account for regions that had solidity values larger than 0.7. 233 

In addition, given the relatively marginal size of a panicle, a region larger than certain pixels (800 pixels in 234 

our study) was filtered out. Therefore, only the pixels of the panicle remained, and the pixel count of the 235 

panicle in an image was calculated. We summed the pixel count obtained from each of the 120 multi-view 236 

images of the panicle as the total pixel count.  237 

 238 

Scanning of Mature Panicles using Flatbed Scanner 239 

Next, we analyzed mature primary panicle to gain ground truth and derive features, which were compared 240 

with the developing panicle.  For this, the primary panicles were harvested, and scanned images were 241 

obtained using an Epson Expression 12000 XL scanner (600 dpi resolution). Branches on primary panicles 242 

were carefully spread out to avoid overlaps in the scanned images. These scanned images were used to 243 

extract the following traits: projected surface area of the primary panicle, projected seed count of the 244 

primary panicle, average of major (seed length) and minor (seed width) axis, and area of the individual seed 245 

on the primary panicle. In this set of images, the panicles were placed over black background. We 246 

segmented the panicles from the background using color thresholding and obtained the binary images. As 247 

a panicle was mostly yellowish in color and the background was black, an image was transformed in the 248 

HSV color space to segment the panicle (setting for range: hue 0-0.3, saturation 0.2-1, and value 0.5-1). In 249 

principle, a harvested mature panicle has all the seeds attached to the rachis. Therefore, we first used 250 

morphological opening [46] to process the images. As the branches were relatively thin and the seeds were 251 

relatively thick, most regions of the seeds were disconnected from each other after morphological opening 252 

by removing the branch pixels. As the seeds have an oval shape, the regions that were too thin were 253 

removed. The remaining regions corresponded to seeds. The length, width, and area of a seed was calculated 254 

from its region using the ‘regionprops’ function in Matlab.  255 

 256 

 257 
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Manual Phenotyping of the Mature Panicle 258 

Next, we manually measured the yield traits on mature primary panicle after harvesting. For this, we 259 

collected data for (a) total seed weight, (b) total seed number, (c) weight per seed, and (d) number of fertile 260 

and sterile seeds to calculate percentage fertility.  261 

 262 

Correlation Analysis 263 

For pairwise correlation analysis, the 3D reconstruction-based features (voxel count and color intensity) 264 

and the total pixel count (2D) derived from the multi-view images of developing panicle were compared 265 

with end-point measurements at maturity. For the end-point measurements, the traits derived from flatbed 266 

scanned images as well as manual measurements from the primary panicle at maturity were considered. 267 

These traits were collected from 11 rice genotypes with two to three replicates per genotype and per 268 

treatment (control and HNT). A total of 55 observations were used for Pearson correlation analysis. The 269 

correlation analysis was performed using R v. 3.4.3 [47] and RStudio v.1.1.419 [48]. Correlation matrices 270 

containing Pearson correlation coefficients and p-values were obtained using the `rcorr` function in 271 

“Hmisc” package [49]. Matrix displaying correlation between selected traits was plotted using 272 

`chart.Correlation’ in the “PerformanceAnalytics” package [50]. Both the raw data and the complete 273 

correlation matrix are provided (Additional File 4 and 5). 274 

 275 

Data Accessibility 276 

The text-based raw data generated from 3D reconstruction-based approach, flatbed scanner, and manual 277 

measurements for this work is provided as additional files with this submission. Raw image data is large 278 

and hence only part of them is shared for user testing on a UNL Box repository 279 

(https://unl.box.com/s/g0bof1mpfp33hn66b2qabrk9kiwmhbzv).  280 

 281 

  282 
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Results 283 

Workflow of PI-Plat  284 

Evaluation of inflorescence-related parameters is limited by traditional phenotyping methods. Advances in 285 

plant phenotyping methodology have enhanced our understanding of vegetative organs and overall plant 286 

structures. However, we still need to capitalize on the technological advancement in optics, computer 287 

vision, and software design, to capture complex plant structures. In this study, we developed a Panicle 288 

Imaging Platform (PI-Plat) to understand yield-related parameters by reconstructing 3D space to derive 289 

digital traits (Additional File 2). 290 

For method validation, we used 11 rice genotypes, from the indica and japonica rice sub-291 

populations (Additional File 1). Once 50% of primary panicle underwent flowering, a subset of plants was 292 

maintained under control conditions and the rest were moved to a greenhouse with high night temperature 293 

(HNT) condition [51]. The motivation for HNT treatment is to explore the phenotypic variation in rice 294 

germplasm as rice grain development is known to be sensitive to HNT [52–54]. The primary panicles from 295 

each plant and treatment were imaged three times on a weekly basis (week 1, 2, and 3) using the PI-Plat. 296 

For imaging, two visible cameras, held at two different positions, were employed on a rotating imaging 297 

system.  Sixty images per camera, corresponding to an image clicked every six degrees, aided in capturing 298 

multiple views covering 360° of the panicles (Additional File 3). In total, 19,800 images were captured for 299 

the 11 genotypes. Each panicle image was segmented and used to reconstruct 3D point clouds which were 300 

used to extract phenotypic traits such as (i) voxel count and (ii) color intensity (Figure 1 and Table 1).  301 

 302 

Phenotyping Analysis method Traits extracted Description  

Developing 

Panicle 

(week 1, 2 

and 3 post-

fertilization) 

Reconstruction of 

3D point cloud from 

multi-view images 

Voxel count Total number of points in 3D 

reconstructed point cloud, which 

can be used to estimate the overall 

volume  

Color sum – R, G, B  sum of color intensities of signals 

from R, G, and B channels. 

Color intensity –  

ratio of R to G 

Ratio of intensity in red channel and 

the intensity in green channel 

Multi-view 2D 

image analysis  

Pixel count Total pixel counts to estimate 2D 

surface area of the panicle 

Mature  

Panicle 

Single-view 

conventional 2D 

scanning  

Projected seed count Estimation of total number of seeds  

Projected surface area Estimation of total surface area  

Seed area Mean area of all seeds  

Seed major and minor 

axis length 

Mean major and minor axis length 

of all seeds  

Manual 

measurement 

Yield-related traits Total number of seeds, total seed 

weight, fertility and weight per seed 

Table 1: Overview of the phenotyping methodology and trait derived from the corresponding methods in the study. 303 
R, Red; G, Green; B, Blue. n, normalized. 304 
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 305 

 306 

Figure 1: Multi-view image analysis of developing panicle using PI-Plat. (A) Flowchart and (B) graphical 307 
representation of the multi-view image analysis using 3D reconstruction and 2D approach.  308 
 309 

Correlation between traits derived from multi-view images of developing panicle and yield related 310 

components at maturity 311 

First, we aimed to determine if the traits derived from 3D reconstruction of the developing panicle correlate 312 

with the yield related components at maturity. For this, the 3D reconstruction-based point cloud features 313 

derived from multi-view images (voxel count, color intensity) were compared to end-point measurements 314 

of the mature panicle (Additional File 5). The end-point measurements correspond to (i) flatbed scanned 315 

images (projected surface area at the panicle level, projected seed count, and morphometric measurements 316 

at individual seed level; seed area, seed length and width) and (ii) manual measurements (total seed weight, 317 

seed number, weight per seed, and fertility) of the mature panicle. Among all the traits derived from 3D 318 

reconstruction, only voxel count of developing panicle exhibited significant positive correlation with 319 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/835306doi: bioRxiv preprint 

https://doi.org/10.1101/835306
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

projected surface area (rw1, rw2, rw3; 0.64, 0.55, 0.82), total seed weight (rw1, rw2, rw3; 0.48, 0.50, 0.74) and 320 

seed number (rw1, rw2, rw3; 0.67, 0.61, 0.70) at maturity (Figure 2, Additional File 5). The correlation of the 321 

voxel count with projected surface area (rW1= 0.64) and total seed weight was relatively low at week 1 (rW1: 322 

0.48) and increased with later weeks, week 2 and 3 (rW1 < rW2 < rW3; Figure 2). On the other hand, the 323 

correlation between the voxel count of a developing panicle and the seed number at maturity remained 324 

stable (Figure 2). Notably, the color intensity derived from 3D reconstruction did not exhibit meaningful 325 

correlation with any of the endpoint measurements (Additional File 5). 326 

 327 

 328 

Figure 2: Correlation of traits derived from 3D reconstruction, 2D scanning and manual 329 
measurements of inflorescence-related traits. Using PI-Plat, developing panicles were imaged on weekly 330 
basis (week 1, 2, and 3). For a respective panicle, multi-view images were used for 3D reconstruction to 331 
extract voxel count. Also, 2D pixel count was estimated for developing panicle. Phenotypic traits from 332 
mature panicle were analyzed by flatbed scanner (projected surface area and seed count), and manual 333 
measurements (seed number and weight). Pearson correlation analysis for traits of primary interest is 334 
represented. Similar analysis for other extracted traits is listed in Additional File 4. Histograms and red line 335 
represent the distribution of each trait. p-value for significant correlation is shown in red (*** p < 0.001, ** 336 
p < 0.01, * p < 0.1), n = 55.  337 
 338 
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 Next, the multi-view images were also used to perform the conventional 2D image analysis to 339 

extract the total pixel count of a developing panicle for week 1, 2 and 3 (Figure 1). Then, the derived traits 340 

at each week were compared with the end-point measurements (Additional File 5). Consequently, the total 341 

pixel count showed a positive correlation with all the traits derived from flatbed scanned images and manual 342 

measurements at maturity. The correlation between the total pixel count and the projected surface area as 343 

well as the total seed weight was unstable. Surprisingly, these correlations at week 3 were lower than the 344 

correlations at week 1 (Figure 2). 345 

 346 

Voxel count – an estimate for grain-filling rate 347 

Grain filling rate is the major determinant of mature crop yield. However, evaluating seed weight dynamics 348 

usually requires destructive phenotyping methods. In our study, we estimated voxel count from the 3D 349 

reconstruction of developing panicles, which represents the overall volume of a panicle, and thus accounts 350 

for grain-filling rate. In general, we observed a temporal trend of progressive increase in voxel count over 351 

three weeks during the post-fertilization period (Figure 3A). Under control conditions, voxel counts at W2 352 

and W3 were significantly higher than the one at W1, while no significant difference was observed between 353 

W2 and W3 (Figure 3A). These results indicate that substantial gain in overall seed volume occurs before 354 

W2. Interestingly, plants treated with HNT, possessed significantly higher voxel count at W1 compared to 355 

control. These differences dissipated at W2 and W3, as no significant differences between control and HNT 356 

treated plants were observed (Figure 3A).  357 

Next, we evaluated the weekly voxel count for individual genotypes grown under control and HNT 358 

stress conditions (Figure 3B and C). We performed hierarchical clustering based on voxel count for control 359 

condition panicles (Figure 3B). The analyses grouped 11 genotypes into four distinct clusters (Figure 3B 360 

and D).). Cluster I was comprised of 301341, 301052, and 301220, cluster II: 301183, 301105, 301278, 361 

301279, and 301221, cluster III: 301260 and 301262, and, while cluster IV constituted only one genotype, 362 

301261 (Figure 3C). Interestingly, the 4/5 genotypes in Cluster II (301183, 301105, 301221, 301279) 363 

showed a significant gain in voxel count between W1 and W2 (Figure 3C). For genotypes in Clusters I, III, 364 

and IV, the voxel count trend did not show any significant difference between W1, W2 and W3 (Figure 365 

3C).). This could be because these genotypes may have already gained their potential seed size by W1, and 366 

thereby only incremental changes occur afterwards. 367 

 368 
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 369 

Figure 3: Estimation of voxel count. Voxel count derived from 3D point cloud represents overall volume 370 
of developing panicle. (A) Average voxel counts from all genotypes for a respective treatment (control and 371 
HNT) and time-point (week 1, 2, and 3) is shown. Box plot represents range, median and mean (red triangle) 372 
for the same. Means connected with similar letter are not significantly different from each other (Student’s 373 
t-test; p < 0.1). (B) Hierarchical clustering analysis of genotypes based on their voxel count in control 374 
conditions. (C) Voxel count for individual genotypes corresponding to cluster I-IV. Y-axis represent voxel 375 
count, x-axis indicate time-point (week 1, 2, and 3). C: control, HNT: high night temperature. Box plot 376 
represents range, median and mean (red triangle) for the same. Means connected with similar letter are not 377 
significantly different from each other (Student’s t-test; p < 0.1). 378 
 379 

Color intensity – an estimate for rate of maturation 380 

Rate of panicle maturation is a well-studied trait that directly impacts final yield [55, 56]. Heat stress 381 

impacts rice seed development and hence alters the panicle maturation rate [57, 58]. Therefore, evaluating 382 

the dynamic of panicle maturation could be potentially useful in determining the dynamic of stress response 383 

in rice. However, evaluation of the respective traits is done by conventional phenotyping methods, which 384 

are inherently laborious and subjective. To estimate the panicle maturation dynamics, we extracted intensity 385 

of the RGB channels from the 3D point cloud. Then, we used the ratio of intensity from R to G channels to 386 

estimate the yellowness of developing panicle, which increases as the panicles mature. We observed a 387 

temporal trend indicating an increase in the ratio of R to G from W1 to W3 (Figure 4A). This observation 388 

is consistent with the progression of panicle maturation as its color changes from green to yellow. 389 
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Interestingly, the R to G ratio was significantly higher for plants treated with HNT compared to control, 390 

suggesting that HNT accelerates the rate of panicle maturation. We next explored the genotypic differences 391 

for maturation rate (Figure 4B). We observed consistent increase in the R to G ratio from W1 to W3 under 392 

control and HNT (Figure 4B). The R to G ratio for majority of genotypes was significantly higher for HNT 393 

treated plants than control (Figure 4B and Additional File 5).  394 

 395 

 396 

Figure 4: Estimation of color intensity. 397 
Color intensity represents sum of color intensities of signals from red (R), green (G), and blue (B) channels. 398 
(A) Average ratio of R to G intensities from all genotypes for a respective treatment (control or HNT) and 399 
time-point (week 1, 2, and 3) is shown. Box plot represents range, media and mean (red triangle) of the R 400 
to G ratio. Means connected with same letter are not significantly different from each other (Student’s t -401 
test; p < 0.1). (B) Heat map of R to G ratio for different genotypes under control and HNT.  402 
  403 
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Discussion 404 

With the recent advances in automated plant image acquisition, accurate quantification of phenotypic traits 405 

has become the focal point for realizing the potential of plant phenomics. The primary focus of automated 406 

phenotyping platforms has been on the vegetative growth and development and to some extent on the root 407 

architectural traits [53–55 and references therein]. Only limited effort has been directed towards more 408 

complex yield related traits such as IA in greater detail [16, 20–22, 28, 62]. After flowering, inflorescence 409 

undergoes dynamic changes, such as grain filling and maturation, which significantly contributes towards 410 

the final yield in cereals. Previous attempts to capture inflorescence-related traits have been limited to end-411 

point measurements. Further, automated Lemnatech phenotyping system, which is mainly used for whole 412 

plant imaging, is not suitable to extract high-resolution data from the inflorescence. Hence, the major goal 413 

of this study was to capture the growth and developmental dynamics of inflorescence architecture (IA) at 414 

high-resolution in rice. To this end, we have developed a low-cost effective system ‘PI-Plat’ to comprehend 415 

multi-dimensional features of IA (Figure 1). One of the main novelties of the PI-Plat is that it is designed 416 

to reconstruct 3D models of smaller plant parts, in this study ‘panicle’, with a very high resolution. Also, 417 

compared to the widely used turntable imaging system where cameras rotate [63], the panicle is fixed at the 418 

center of the PI-Plat, thus the vibration is avoided, and the 3D point cloud has less noise. This imaging 419 

system can be used to image the panicles in a non-destructive manner, which provides an opportunity to 420 

perform temporal phenotyping of the same panicle at consequent developmental stages. On similar basis, 421 

rice developing panicles were imaged on weekly basis after fertilization to capture growth dynamics. The 422 

multi-view images of developing rice panicle were used for 3D reconstruction, which enabled us to capture 423 

digital traits, such as voxel count and color intensity.  424 

We found that the 3D reconstruction-based feature – voxel count has a positive correlation with 425 

seed number and total weight at maturity. Panicle development after fertilization involves change in seed 426 

weight and volume, but seed number remains constant. Consequently, we observed the temporal trend for 427 

correlation of voxel count with final seed weight but not with seed number (Figure 2). Our correlation 428 

analysis signifies that image-based phenotyping of developing panicles can be used to estimate the final 429 

yield outcome. This information can be valuable for elucidating the physiological and genetic basis of yield 430 

components in rice. Various yield components are determined by numerous genes and pathways, which 431 

likely influence the yield traits at different developmental phases during panicle development. By using the 432 

3D reconstruction-based voxel count during the panicle development, researchers can identify phenotypic 433 

variation over time for divergent genotypes, hence increase the mapping resolution for linking genotypes-434 

to-phenotype. Furthermore, relatively stable correlation between voxel count and seed number at maturity 435 

suggest that image-based phenotyping after fertilization can be used to estimate final seed number. In 436 

contrast, the 2D based total pixel count of developing panicle showed relatively lower and unstable 437 
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correlation with seed number and total seed weight at maturity (Figure 2). Interestingly at W3, 2D based 438 

pixel counts had lower correlation with endpoint measurements than voxel counts. For instance, the 439 

correlation of voxel count with projected surface area and total seed weight was 0.82 and 0.74, respectively, 440 

while the correlation of 2D pixel count with projected surface area and total seed weight was 0.58 and 0.47, 441 

respectively. This could be due to the limitation of using convention 2D-based phenotyping to completely 442 

capture the growth and color dynamics of developing rice seed. Since voxel count positively correlates with 443 

final weight, it can be used to capture the weight or volume dynamics. We observed an increase in voxel 444 

count from W1 to W3, which is directly related to the increase in size and volume of developing seeds. In 445 

context of panicle development, it accounts for rate of grain-filling. Significant gain in the voxel count was 446 

achieved by W2 suggesting that substantial seed volume is attained by week 2 (Figure 3). This observation 447 

holds true for 4/11 genotypes, while the other seven genotypes do not show such any significant difference 448 

between W1, W2, and W3. One possible explanation could be that these genotypes might have accelerated 449 

increase in panicle volume and/or seed weight by W1; thus, exhibiting incremental changes during the 450 

subsequent two weeks. We observed higher voxel count for HNT treated plants compared to control plants 451 

at W1 (Figure 3A). Surprisingly, these differences dissipated at W2 and W3, and no significant difference 452 

was observed at maturity. These results highlight the importance of temporal phenotyping relative to single 453 

time point measurements. Thus, an end-point measurement approach is not practical to identify and hence 454 

map traits that are not persistent at maturity. Since, rice and most other grain crops such as wheat and maize 455 

are generally more sensitive to environmental stresses, such as heat and drought, the approach of capturing 456 

dynamic reproductive traits in a non-destructive manner will be valuable for research aimed at improving 457 

yield resilience to environmental stresses. Early detection of transitory phenotypes/traits is also valuable 458 

for molecular studies. Measurement of color intensities from 3D point cloud aided us in understanding the 459 

dynamics of panicle maturation for diverse genotypes. Notably, panicles from HNT treated plants showed 460 

significantly higher R: G indicating that HNT plants undergo faster maturation. These traits derived from 461 

3D reconstruction of multi-view images provided a close approximation of structural features of the 462 

developing rice panicle.  463 

To harness the full potential of the existing genetic resources, we need to bridge the gap between 464 

genotype and phenotype. In this context, high throughput genotyping has been facilitated by development 465 

of low-cost sequencing platforms. However, accurate and efficient phenotyping of large-scale populations 466 

is a major bottleneck for crop improvement. The emergence of phenotyping platforms specifically targeting 467 

inflorescence-related traits promise close approximation of the yield-related parameters. PI-Plat provides 468 

an important first step towards achieving higher spatial and temporal resolution in IA phenotyping without 469 

destructive sampling. The next step towards achieving high-throughput phenotyping of IA traits is the 470 

automation for enabling researchers to develop genotype-to-phenotype linkages. Although, the 3D derived 471 
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voxel count, and color intensity developed as part of PI-Plat can be used to screen large populations 472 

elucidating phenotypic variability in inflorescence-related traits, it is still a laborious task given the lack of 473 

automation. In summary, PI-Plat-derived 3D traits fills a significant gap in the plant phenotyping toolbox 474 

by providing greater spatial and temporal sensitivity of capturing dynamic inflorescence traits, especially 475 

for studying abiotic stress responses during reproductive development. 476 

 477 
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