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Supporting Computational Apprenticeship
through educational and software
infrastructure. A case study in a

mathematical oncology research lab

Abstract: There is growing awareness of the need for mathematics and
computing to quantitatively understand the complex dynamics and feedbacks
in the life sciences. Although individual institutions and research groups are
conducting pioneering multidisciplinary research, communication and educa-
tion across fields remains a bottleneck. The opportunity is ripe for using
education research principles to develop new mechanisms of cross-disciplinary
training at the intersection of mathematics, computation and biology. In this
paper we present a case study which describes the efforts of one computa-
tional biology lab to rapidly prototype, test, and refine a mentorship infras-
tructure for undergraduate research experiences in alignment with the com-
putational apprenticeship theoretical framework. We describe the challenges,
benefits, and lessons learned, as well as the utility of the computational ap-
prenticeship framework in supporting computational/math students learning
and contributing to biology, and biologists in learning computational meth-
ods. We also explore implications for undergraduate classroom instruction,
and cross-disciplinary scientific communication.

Keywords: computational apprenticeship, computational biology, math-
ematical biology, open source, multidisciplinary research, undergraduate
research, STEM education, engineering education

1 Introduction

Over the last several decades advances in experimental techniques have
provided life scientists with increasing quantities of high dimensional,
high-resolution datasets. Unfortunately these technological develop-
ments have not yet been matched by similar clinical advances. In fact,
U.S. life expectancy has actually declined for the first time in decades,
and development costs for new drugs continue to rise [1, 2].

Over the last decade, a consensus has emerged among scientific thought
leaders about the need for “convergence” or the integration of transdis-
ciplinary approaches from engineering and physical sciences to help life
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scientists generate meaningful biological insights from the growing abun-
dance of biological data [3, 4]. In particular, computational modeling
approaches, which include both mathematical modeling of complex bio-
logical systems and statistical modeling of large datasets, are a powerful
vehicle for synthesizing disparate and sometimes conflicting data into
an integrated biological understanding. Ideally, computational model-
ing approaches work recursively with experimental workflows; mathe-
matical models quantitate and formalize the largely qualitative “mental
models” of biologists, and the iterative comparison of model outputs
to experimental data informs model refinement and also suggests new
experimental directions [5–8].The use of mathematical models clarifies
the biological conditions or parameters under which the “mental model”
can explain the experimental and simulation data. Increasingly, statisti-
cal modeling approaches including machine learning and bioinformatics
are used to complement mathematical modeling of biological systems
[6]. Analysis of large clinical or experimental datasets can be used to
inform parameterization of mathematical models, or to identify novel
relationships between cell states and behaviors which can generate new
hypotheses for mathematical modeling. Additionally, machine learning
methods can be used for richer and more informative analysis of math-
ematical model outputs.

Despite the consensus around the need for greater use of computa-
tional modeling approaches, there remains relatively limited adoption
of these methods throughout the life sciences community. Furthermore,
the research groups that employ computational modeling approaches
largely work in isolation using their own data sources, building their
own models, and performing their own analyses [6]. Biologists in exper-
imental research groups face substantial structural, technical and edu-
cational barriers to learning to implement computational modeling ap-
proaches [9]. These challenges are compounded by resource limitations
at emerging research institutions including minority serving institutions
and primarily undergraduate institutions [10]. Expanding participation
in computational modeling approaches requires adoption of innovative
practices in cross-disciplinary scientific communication and training [9].

Similarly, the traditional educational divisions between engineering,
computational, physical science and biological curricula have impeded
communication between these silos and raised barriers both to the use
of simulations by biologists and the effective understanding of biological
needs and design of tools for biological applications by engineers [11, 12].
Materials to bridge this divide are currently quite limited. There have
been a number of efforts to incorporate quantitative or computational
content into undergraduate biology courses [13, 14]. Similarly, there
are several reports of reforms to provide greater life sciences disciplinary
content to engineering students [15–17]. Nevertheless, there is a need for
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theoretically sound, evidence-supported models for undergraduate class-
room instruction and undergraduate research experiences to train new
cohorts of biologists and engineers equipped to work at the intersection
of computation and biology. Additionally, there is a need for collabora-
tion with education researchers to develop and assess interdisciplinary
efforts [18].

In this paper, we present a case study of our computational biology
research group’s experience in developing and implementing an educa-
tional infrastructure for undergraduate research experiences. We de-
scribe a mutually beneficial conversation and collaboration with com-
putational education researchers to develop, assess, and continuously
improve undergraduate research involvement in a research active com-
putational laboratory.

In this work, we adopt rapid prototyping approaches from engineer-
ing to iteratively design, test, and refine the mentorship infrastructure:
after implementing a current mentorship version in the lab, we evaluate
strengths and weaknesses, identify concrete refinements to address weak-
nesses while building upon strengths, update the mentorship structure
(with a new version number), and continue testing in the subsequent
research term. This case study will present each mentorship version as
we stepped through this iterative design process.

1.1 Computational Apprenticeship

Computational Apprenticeship is a newly proposed theoretical frame-
work and a type of cognitive apprenticeship for computational disciplines
[19]. Biology and engineering, like most other academic disciplines, are
often taught through traditional instructional methods heavily featuring
didactic lectures. In these disciplinary contexts, there is often a heavy
emphasis on the technical aspects of computational topics. However, ed-
ucation research suggests that a narrow focus on technical competency
typically provides students with routine expertise, but lacks the adaptive
expertise needed to solve computational problems in real world settings
[19–21]. For example, students attempting to develop computational
models of biological systems report challenges with higher-order compu-
tational thinking skills such as abstraction and problem decomposition,
rather than coding or mathematics [9, 22, 23].

Improving computational education requires greater consideration
for helping students develop their ability to solve disciplinary problems
with computation, rather than merely master the technical aspects of
worked examples. Cognitive Apprenticeship is grounded in construc-
tivist learning theories and draws on traditional apprenticeship training
structures in the skilled trades. This model argues that students learn
best through guided-experience on cognitive and metacognitive skills
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and processes specific to their discipline [24]. Collins et al. outlined
Content, Method, Sequencing, and Sociology as the four critical dimen-
sions of learning environments [25]. The Computational Apprenticeship
framework adapts this model to computational domains and provides a
theoretical basis for creating curated learning experiences with gradu-
ated challenges in terms of difficulty and diversity. The framework also
provides direction for the use of emerging technological practices such as
code commenting and Jupyter notebooks to to deliver pedagogical scaf-
folding and other elements of the sequencing and method dimensions of
learning [19].

1.2 Research group context

Macklin’s MathCancer Lab is a computational research group which de-
velops theory- and data-driven computational model systems that can
help understand and engineer the behavior of multicellular systems, es-
pecially in cancer and tissue engineering. Tackling these goals requires
both multicellular systems biology and multicellular systems engineering
perspectives [6, 26]. The development of next-generation cures requires
a deeper understanding of the fundamental biology of multicellular sys-
tems [27]. Reductionist approaches—motivated in part by the earlier
successes of germ theories for infectious diseases—attempt to cure dis-
eases by identifying and repairing a single root cause (e.g., a single or
small number of driver mutations, or an overactivated receptor pathway)
in an isolated cell type [28, 29]. These approaches, however, neglect the
complex interactions in the evolving multi-level networks of normal and
diseased tissues [30]. Targeted interventions do not affect just single cell
types; biochemical and biophysical feedbacks—combined with intercel-
lular heterogeneity and natural selection [27] and amplified by physical
constraints [31]—can cause secondary effects such as therapeutic resis-
tance (e.g., by selecting for resistant cancer clones), worsened drug deliv-
ery, and treatment toxicity [5, 27, 32]. Thus, next-generation therapies
must not just treat single cell types, but rather steer the multicellular
systems towards balance. This necessitates systems thinking that com-
bines biological domain expertise with computational and mathematical
tools designed for complex biological systems [5, 27], along with scientific
computing infrastructures for large-scale investigations [5, 33].

To drive these systems approaches, the MathCancer Lab develops
the technological core components and infrastructure of a computational
model system that can be interrogated for multicellular systems biology
and engineering [27]. They developed BioFVM [34] to simulate diffu-
sion and biological transport of growth substrates and chemical signals
exchanged between cells, to model the biochemical environment of tis-
sues. They linked this dynamics tissue environment to PhysiCell [35],
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Figure 1. Sample PhysiCell models. left: Cancer Immunotherapy. See a

full description and 3D visualization at [37] and a cloud-hosted 2D interactive

version at [38]. Adapted under CC-BY license from [35]. right: Cell-cell

communication by chemical diffusion. See a cloud-hosted interactive version

and full description at [39].

an agent-based modeling framework to simulate 106 or more cells in 3D
environments, while including mechanical effects and custom cell rules.
(See [36] for an overview of cell-based modeling methods in cancer.) To-
gether, these components form the backbone of a computational tissue
model system for testing multicellular systems and optimizing multi-
cellular designs [27]. Typical applications include cancer immunology,
synthetic multicellular systems, and metabolic tumor-stroma crosstalk
in heterogeneous cell populations. See some examples in Fig. 1.

The MathCancer Lab has partnered with the open source commu-
nity to prototype large-scale investigations on supercomputers [5] and
machine learning approaches that accelerate the investigations and aid
model interpretation [33]. Other collaborations have contributed new
modeling capabilities (e.g., Boolean signaling networks [40]). Efforts
towards data standardization [6, 41] and a recent focus on creating
open educational training materials and shared source code reposito-
ries seek to grow MathCancer Lab’s computational tools from a single-
lab effort to a community-driven ecosystem of computational tools for
data-driven multicellular systems biology and engineering [6, 42]. To
advance towards these goals, the lab is pioneering new models that in-
tegrate undergraduate research, undergraduate education, and schol-
arly communication, drawing upon evidence-based practices from the
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computational apprenticeship framework. Undergraduate and graduate
students, scientific staff, faculty, visiting researchers, and a network of
multi-disciplinary collaborators work together to build computational
resources, apply them to specific cancer and other biological problems,
disseminate methods and results, and unite researchers for community-
driven science. Here, we share our experiences in this iterative effort.

2 Case study: Undergraduate involvement in a computational
oncology laboratory

The MathCancer Lab moved to Indiana University’s new Intelligent Sys-
tems Engineering Department in January 2017, starting with one lab
principal investigator (PI: Macklin), one scientific staff (Heiland), and
one Ph.D. student. In the Fall 2017 semester, the lab began integrat-
ing undergraduate researchers into its growing research program, with
several guiding principles:

• Students should be involved with the main research program. (Stu-
dents should be directly involved in ongoing publication-driven re-
search, rather than projects created solely for didactic purposes.)

• Student involvement should accelerate these existing projects or
allow expanded exploration of the existing scientific aims.

• More experienced students should help mentor less experienced stu-
dents to foster a sustainable team.

• Research results should feed back into education and outreach.

• Graduate students should gain team management experience while
helping to mentor undergraduate students.

• The students’ class work and personal/home responsibilities must
take priority over their research involvement.

• Students should be encouraged to seek other opportunities in the
summer to broaden their skills and drive professional networking.

2.1 Evolving undergraduate research model

Motivated by rapid prototyping methodologies, we iteratively developed,
tested, and refined the mentorship structure (with guidance from com-
putational apprenticeship theory) while integrating undergraduate stu-
dents into ongoing (primarily grant-funded) research in mathematical
oncology. At the end of each semester, we evaluated the current men-
torship structure against the guiding principles, with particular attention
to:

1. progress towards research milestones

2. progress towards peer-reviewed scientific posters
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3. development of scientific and communication skills

4. individual understanding of the projects and their contributions

5. unanticipated creativity and innovation

6. emergence of undergraduate student leadership

7. evolving team leadership skills by involved graduate students

8. undergraduate student retention

The progress was assessed by a combination of graduate student, one re-
search staff (Heiland), and PI (Macklin) observations, student interviews
(lead by Madamanchi [43]), and end-of-semester lab discussions.

2.2 Version 1 (Fall 2017)

The first version of the mentorship structure included the PI (Mack-
lin), one scientific research staff (Heiland), one Ph.D. student, and five
undergraduate (freshman) students with a variety of backgrounds in en-
gineering and neuroscience. See Table 1 in APPENDIX A.

This mentoring structure focused on training the undergraduate and
graduate students to use the lab’s main computational framework (Physi-
Cell [35]). Each week, the group met for a 1-2 hour live coding session
that introduced the codebase and illustrated modeling techniques for
sample tumor growth problems. The Ph.D. student and research staff
attended the sessions and helped the undergraduate researchers to trou-
bleshoot their code, similarly to the role of teaching assistants in lab
sections for programming-heavy STEM courses.

Assessment: At the end of the semester, the PI, scientific staff, and
graduate student met to discuss the successes and failures of the semester,
based on their personal observations.

Research impact: These coding sessions exposed areas for improve-
ment in PhysiCell, particularly ways that model setup could be auto-
mated and made more user-friendly. These core method improvements
were beneficial to all scientific projects in the lab.

Other metrics: One of the five students returned to continue research
in the following semester.

What worked: The students progressed from little-to-no programing
expertise, to being able to independently compile and run C++-based
PhysiCell simulations on their own laptops. They learned how to make
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minor code modifications to existing models to change the model hy-
potheses, often driven by a basic understanding of ordinary differential
equations. They also learned to create and present scientific posters.

Areas for improvement: We found that the live coding sessions did
not make the fullest use of the students’ individual capabilities. The
students needed more hands-on time to learn and contribute individually.

2.3 Version 2 (Spring 2018)

In response to the Version 1 observations, we changed to a small team
structure. Each team consisted of 1-3 undergraduate students, the PI,
and potentially a co-mentor (Ph.D. student or scientific staff). Each
team met early in the week for approximately 1 hour to mentor, set goals,
and work. The undergraduate students worked on their own towards
the weekly goals for 1-2 hours between these weekly mentored meetings.
The updated lab structure is in Table 1 in APPENDIX A. Note that
all the undergraduate students were freshmen. The semester’s projects
included:

Project 1: Develop Jupyter notebook user interfaces for PhysiCell models (PI,
research staff, 3 undergraduates).

Project 2: Develop a model of extracellular matrix (ECM) remodeling by mi-
grating tumor cells (PI, Ph.D. student, 2 undergrads).

Project 3: Develop a model of color cancer metastases (PI, 1 undergraduate).

Assessment: At the end of the semester, the entire lab met to discuss
the semester’s progress and assess our current research organization. Af-
terwards, the PI, scientific staff, and Ph.D. student met to discuss the
final lab meeting’s observations, together with their own personal obser-
vations. Madamanchi began collaborating in Summer 2018 to observe
the lab structure and contribute computational apprenticeship expertise
to help refine our mentoring structure [43].

Research impact: The students in Project 1 were successful in pro-
totyping a technique to create a Jupyter-based graphical user interface
(GUIs) for a PhysiCell-based simulation model of cancer nanotherapy
[44]. They presented their work at an Indiana University poster session
and at a major NSF site visit. The students in Project 2 were able to
prototype key elements of the ECM model and present their results at a
poster session. The student in Project 3 was not able to make progress,
primarily due to other extracurricular priorities for the student.
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Other metrics: Five of the six students returned to continue research
in the following semester. The remaining student was not asked to return
due to insufficient research progress.

What worked: The students were able to make individual contribu-
tions to the projects. We observed growth in their C++ and Python
skills, and independent creativity (particularly in Project 1).

Areas for improvement: While the students were able to make in-
dividual contributions to their projects, they expressed that they felt
isolated from the lab and unaware of progress by other teams. They
sought increased interactions between the teams. The PI observed that
his weekly meetings with each team were not scalable or sustainable.

2.4 Version 3 (Fall 2018–Spring 2019)

To address our Version 2 observations, we refined the mentoring struc-
ture to ensure that each team had a non-PI co-mentor who would take
responsibility for the team. The updated lab structure is in Table 1 in
APPENDIX A. We also altered the weekly mentoring schedule:

• The PI met with all co-mentors in weekly one-on-one mentoring to
discuss their team progress and plan their team’s next steps.

• The non-PI co-mentors met with their teams early each week (ap-
proximately 1 hour) to set goals and work. The PI attended these
meetings by request of the co-mentors.

• The undergraduate researchers worked on their own towards the
weekly goals mid-week and/or on the weekend.

• We held an “all hands” lab meeting each Friday for 1-2 hours:

Team presentation: One of the teams prepares and presents
a 10-20 minute presentation on their progress and open prob-
lems, followed by group discussion. This encouraged “cross-
pollination” between teams and collective brainstorming, while
developing undergraduate student presentation skills and en-
couraging individual student understanding of the work.

Unstructured mentoring time: For the remainder of the
group meeting, we broke into teams, while the PI met with
each team for extra mentoring and troubleshooting.

• We added a PI’s “state of the lab” talk to the end of each semester
to summarize and contextualize progress and kick-start group dis-
cussion to assess our lab processes.

In these semesters, the projects included:
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Project 1: Continue development of Jupyter notebook user interfaces for Physi-
Cell models (research staff, 3 undergraduates)

Project 2: Continue development of the ECM model (Ph.D. student 1, 3 un-
dergraduates),

Project 3: Develop an improved nanoparticle model (Ph.D. student 2, 1 un-
dergraduate)

Project 4: Continue developing of PI’s prototype of a cancer hypoxia model
(Ph.D. student 3, 2 undergraduates)

Project 5: Extend PhysiBoSS to Microsoft Windows compatibility (research
staff, 1 undergraduate)

Assessment: At each semester’s final all-hands meeting, the entire
lab (PI, scientific staff, Ph.D. students, undergraduate researchers) dis-
cussed the semester’s progress and name strengths and weaknesses of
our current research organization. Afterwards, the PI, scientific staff,
and Ph.D. students met to discuss the final lab meeting’s observations,
together with their own personal observations. Madamanchi performed
student interviews (results were published in [43]) and consulted regu-
larly with the PI on his observations.

Research impact: The students in Project 1 were successful in gen-
eralizing their previous prototype to develop xml2jupyter [45], which
allows us to develop a Jupyter-based GUI for any PhysiCell model and
deploy it on nanoHUB [46] as a cloud-hosted mathematical model. The
students co-authored a scientific abstract and a peer-reviewed paper that
was published in 2019 [45]. The students presented their work at an In-
diana University poster session and at a major NSF site visit.

The students in Project 2 continued to refine and explore their ECM
model, while also presenting results at an Indiana University undergrad-
uate poster session and at the NSF site visit. They began drafting a
scientific manuscript on their model. One group member created an
unexpected technology for small-team ad hoc crowdsourcing, for use in
their model exploration.

The students in Project 3 were new and spent most of the semester
in training. However, they did make advances in modeling pH changes
in tumor tissues. The students in Project 4 were able to make some
progress in refining the models of cancer hypoxia (low oxygen). However,
as in team 3, both the undergraduate and graduate students were new
and required extensive PI training.

The student in Project 5 made substantial progress in developing
Windows support for the underlying MaBoSS library [47], which pre-
viously was only compatible with Linux. The team contributed these
open source refinements to the original development team.
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Two additional undergraduate students attended lab meetings irreg-
ularly and contributed to discussions but did not attend regularly enough
to join projects.

Other metrics: One undergraduate student served as an undergrad-
uate team lead in Project 2 and began training a successor so he could
pursue interests in his core concentration (cyberphysical systems and
computer engineering). Three undergraduate students contributed to a
peer-reviewed journal article [45]; two of these ramped down their in-
volvement and “graduated” from the lab after reaching this milestone,
allowing them to pursue interests in their concentration of study. One
student graduated from Indiana University and was employed in indus-
try. Five of the remaining students returned to continue research in
the following academic year. (As noted above, three left the group to
research closer to their engineering concentration after successful knowl-
edge transfer, and one graduated.)

What worked: The students made substantive individual contribu-
tions, including a peer-reviewed publication [45]. Student creativity lead
to unanticipated advances (ad hoc small team crowdsourcing), and we
observed frequent undergraduate-undergraduate mentoring. Notably,
this updated mentoring structure accommodated a near doubling of un-
dergraduate involvement (an increase from six to ten students).

Areas for improvement: Overall, we have found that this mentoring
structure has been successful, but we identified areas for improvement.
The large number of projects left the lab feeling fragmented and difficult
to manage. Some of the teams were unbalanced: Projects 1, 2, and 5
benefited from a senior Ph.D. student (with prior mentoring experience
in industry) or scientific staff. Projects 3-4 were co-mentored by younger
Ph.D. students with less leadership experience and domain knowledge,
leading to reduced progress. Student surveys also found that students in
Projects 3-4 gained the impression that Projects 1-2 and 5 were higher
lab priorities. Thus, better communication of priorities and the impact
of each project were needed in the younger teams.

2.5 Version 4 (Fall 2019–present)

The Version 4 lab structure is in Table 1 in APPENDIX A. We modified
the Version 3 mentoring structure in several ways:

• Organize teams around themes, rather than specific technical projects:
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Team 1: PhysiCell training and community: In support of a new NCI
administrative supplement, this team worked to develop inter-
active training materials (a series of 10-15 minute training mod-
ules including PowerPoint slides, YouTube recordings with cap-
tions, and nanoHUB-hosted microapps to illustrate core code
concepts. They also worked on developing PhysiCell.org as a
portal to focus the growing international PhysiCell community.
(2 Ph.D. students, 4 undergraduate students)

Team 2: ECM model development: This team performed final computa-
tional investigations of the ECM model and worked on a scien-
tific manuscript. The group also worked on drafting a scientific
manuscript for the ad hoc crowdsourcing technique. (1 Ph.D.
student, 2 undergraduate students)

Team 3: PhysiCell tools: This team continued xml2jupyter [45] refine-
ments, but was also encouraged to creatively explore standalone
tools that could increase the usability and utility of PhysiCell
models. (1 staff, 2 Ph.D. students, 4 undergraduate students)

• Devote some lab presentations to new team management or techni-
cal skills, rather than project progress. Examples included:

– Project management with Trello

– Scrums, sprints, and kanbans (software team skills)

– PhysiCell simulation data structures [41]

• The PI gives frequent updates from research travel and reinforces
the key role of each team’s work in the lab’s long-term strategy.

Assessment: This iteration is still in progress. An end-of-semester
“state of the lab” talk and discussion is planned for December 2019,
as well as discussion among the senior staff (Ph.D. students, scientific
staff, and PI) and Madamanchi. Macklin and Madamanchi are planning
assessments for use in the Spring 2020 semester.

Research impact: Team 1 has prototyped educational microapps and
tested presentations. They began brainstorming new outreach methods
while designing the PhysiCell.org website. Team 2 continues to make
good progress on their ECM model and is performing final analyses for
their manuscript. Team 3 has released a “Python loader” tool [48, 49]
to load simulation data into Python, has made significant visualization
and usability refinements to xml2jupyter (which will improve several
nanoHUB apps), and has prototyped methods to interactively explore
3-D simulation data with the open source Unity game engine.
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Other metrics: This work is ongoing, but we see evidence of strong
student leadership. The students in Team 1 (mostly sophomores) devel-
oped their own recording methodologies and are leading the development
of educational microapps. They have also proposed leading a student-
run minisymposium at the 2020 Annual Meeting of the Biomedical En-
gineering Society (BMES), showing a sense of intellectual co-ownership.

Team 2 is working independently: the PI coordinates work with the
Ph.D. student lead, who has also encouraged leadership by the under-
graduate students. Team 3 has shown substantial technical know-how
and creativity in adapting open source tools to the PhysiCell software
ecosystem. They are actively leading the development of new features.

What worked: While this lab version is ongoing, preliminary obser-
vations find that grouping more students together in teams wrapped
around themes has allowed greater peer-to-peer mentoring, individual
creativity, and initiative. The students frequently suggest solutions and
meet in smaller pairs to work new angles. Teams 1 and 3 have begun
breaking their topics down into separate sub-projects to work in parallel.

Pairing two younger Ph.D. students in Team 1 was helpful in address-
ing the prior weakness of unbalanced teams (particularly teams where
the undergraduate and graduate students were less experienced). More-
over, mixing new and returning students in Teams 1 and 3 helped to
balance expertise and encourage within-team peer mentoring.

Areas for improvement: Overall, we have found that this mentoring
structure has addressed most of the issues identified in Version 3. We
will continue to evaluate and refine.

2.6 Contextualization as Computational Apprenticeship

Undergraduate research is broadly considered a valuable component of
undergraduate education in STEM disciplines. Participation in under-
graduate research is associated with greater STEM retention and edu-
cational achievement [50–52]. However, the traditional models for un-
dergraduate research have developed in the natural sciences, and there
is a need for critical reflection on how to scale and adapt undergraduate
research opportunities within computational and interdisciplinary fields.

The MathCancer lab’s evolving approach to undergraduate mentor-
ing has developed a tiered mentoring structure that aligns with educa-
tion research showing that students benefit from having both faculty
and graduate or staff mentors [53, 54]. The apprenticeship relation-
ship between undergraduate researchers and their mentors provides not
only domain knowledge, but also higher-order skills including heuristic
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strategies, learning strategies, and metacognitive skills that are associ-
ated with ‘thinking like a scientist’ [55]. Additionally, undergraduate
researchers are socialized into the disciplinary community and can have
gains in their disciplinary identity that are associated with long-term
persistence within the field [56]. A tiered mentoring structure allows
each undergraduate researcher to receive coaching and guidance from
multiple mentors, as well as provides opportunities for students to learn
by observing and modeling the disciplinary processes of their mentors
and their undergraduate peers. Similarly, structured interactions with
multiple lab members supports the socialization of the undergraduate
researchers in the lab community.

The MathCancer group recently partnered with computational ed-
ucation researchers to study the experience of their undergraduate re-
searchers [43]. Our qualitative investigation found that the undergradu-
ate researchers enjoyed and valued their time in the MathCancer group.
Specifically, the students reported gains in their intellectual and per-
sonal development through their lab experience. Students reported in-
creased knowledge of “real-world” engineering and modeling norms and
practices, and they reported gains in their ability to “think like an en-
gineer”, suggesting growth in both metacognitive skills and disciplinary
identity. The students’ self-reported development in these domains is
similar to published findings from studies of undergraduate researchers
in the natural sciences [56–58].

Our study also characterized the executive management and strate-
gic knowledge component of the undergraduate researchers’ metacog-
nition. Students displayed varied levels of these metacognitive skills,
which reflected the differences in age and length of research experience.
The students all reported an executive management approach of “guess-
and-check” for implementing their research plan. More mature students
were able to identify this approach as part of a larger iterative process
of planning and evaluating. In contrast, students with less experience in
the lab indicated a high degree of reliance upon their staff or graduate
co-mentor to help identify the next step in the plan. The tiered men-
torship structure of the MathCancer research group allows for greater
scaffolding and support for novice researchers and builds in “fading” of
that support and greater independence for more advanced undergradu-
ates. The undergraduate researchers all indicated satisfaction with the
growth in their strategic knowledge, but had difficulties in articulat-
ing the heuristic, control, and learning strategies that they use in the
research process. Interviews with faculty, staff, and graduate mentors
as well as examination of the group’s research documentation suggests
that the undergraduate researchers did, in fact, gain experience with new
heuristics for problem-solving but had difficulty recalling or articulating
them in a decontextualized semi-structured interview.
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To further support the metacognitive development of its undergrad-
uate researchers, the MathCancer group intends to provide mentorship
training to lab members and embed scaffolded reflection to its research
process. Mentorship training will consist of a short seminar on compu-
tational apprenticeship model. This seminar is intended to remind both
the mentors and the undergraduate researchers that learning consists not
only of technical domain knowledge, but also of metacognitive knowl-
edge. The seminar will also cover the modes and sequencing of mentor-
ship to help mentors understand different ways of organizing research
tasks, and prompt students to be more intentional about their learn-
ing process (see Table 2 in APPENDIX B, constructed from [25, 55]).
The mentors in the MathCancer group already demonstrate many of the
mentoring modalities of computational apprenticeship, but research indi-
cates that foregrounding these approaches through mentorship training
is beneficial for undergraduate researchers [59, 60].

Similarly, the MathCancer group plans to embed bimonthly scaf-
folded reflection prompts into their existing research documentation pro-
cess. Specifically, they have adapted Howitt et al.’s Learner Logbook in-
tervention for computational research as a way helping undergraduates
absorb bigger picture learning during their research [61]. See Table 3 in
APPENDIX B.

3 Ongoing and future work: extending computational ap-
prenticeship to classroom instruction and scholarly com-
munication

The computational apprenticeship principles that the MathCancer group
has embodied through their undergraduate research program also offer
valuable insight for both interdisciplinary undergraduate classroom in-
struction and scientific communication. A major goal of interdisciplinary
education at the intersection of life sciences and computational sciences
is acculturating students to the modes of thinking within each discipline.
Authentic learning experiences that provide students with realistic in-
terdisciplinary problems are crucial for teaching students to “think like
a biologist” and “think like an engineer/mathematician”. However, pre-
senting students with computational or systems concepts applied to life
sciences problems can challenge students by simultaneously introducing
them with new disciplinary knowledge and new technical content.

The use of educational “microapps” or interactives can be a power-
ful way of creating authentic learning experiences, while still providing
the scaffolding and sequencing called for within the computational ap-
prenticeship framework. Microapps can embed widgets and sliders that
allow students to explore the problems globally or conceptually before
implementing models on their own.
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The MathCancer group is adapting xml2jupyter [45] (see Section
2.4) to build technological infrastructure to enable these pedagogical ap-
proaches. Small, efficient agent-based models [36] can be purpose-built
to illustrate biological concepts, automatically fitted with Jupyter-based
GUIs, and rapidly deployed as cloud-hosted educational microapps. These
apps present didactic information, parameter tabs (default values guide
novice users), a runnable simulation model, and tabs to visualize the cell
behavior and chemical substrates. (See Figure 2 for an example that ex-
plores biased random cell migration.) Macklin has tested microapps
in an undergraduate systems biology course, and the MathCancer lab
is using the approach to build a series of microapp-enhanced training
modules for PhysiCell. (See Section 2.5.) Moreover, Macklin uses the
xml2jupyter workflow to enhance computational apprenticeship in the
classroom: advanced multicellular systems biology students at Indiana
University develop their own PhysiCell [35] models as a final project,
convert them to cloud-hosted models with xml2jupyter [45], and demon-
strate their interactives in their final presentations. We envision that ed-
ucational microapps could be developed to supplement open educational
materials in educational communities such as QUBES [62]. Moreover,
such educational communities could act as “educational marketplaces,”
connecting tool builders (e.g., engineering faculty) with educators to
identify and develop interactive-enhanced curricular materials.

Similar approaches may be valuable for interdisciplinary communi-
cation among practicing scientists. Current practices for communicating
computational biology are limited to traditional paper formats that in-
clude the foundational equations or at best a link to the model code.
This approach puts a high burden for replication and exploration on
time-limited readers. Worse, for biologists with limited computational
training, this approach prevents any engagement with computational
biology literature. The MathCancer Lab used xml2jupyter [45] to cre-
ate pc4cancerimmune [38], its first “publication companion app” as part
of [33]. This allows scientific readers to interactively explore and un-
derstand the key cancer immunology simulation model at the heart of
the publication’s method, as well as to better disseminate model to
the broader scientific community. Moreover, cloud-hosted versions of
published research-grade models can readily be used in classroom in-
struction, thus allowing educators to rapidly incorporate cutting-edge
research in their curriculum. The MathCancer lab has tested using
publication companion apps to illustrate intelligent systems modeling
to sophomore engineering students at Indiana University, and it is cur-
rently seeking new educational communities to further test the concept.

The current work and future directions of the MathCancer lab high-
light the value and mutual benefit of engaging with education scholar-
ship and education researchers. We have observed several instances of
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what may be termed ‘convergent evolution’ between our practice and
education research findings. Our hierarchical mentoring model includes
the mentoring triads that education researchers have identified as a best
practice. Similarly, our approach to ‘rapid prototyping’ our educational
infrastructure mirrors the design-based research modality of education
researchers. Consultation with education researchers can help educa-
tors to arrive at theoretically and empirically supported practices more
quickly. Similarly, practitioners in rapidly evolving interdisciplinary ed-
ucation spaces can offer new perspectives that stimulate new education
scholarship.

Figure 2. Educational microapps. The first PhysiCell/xml2jupyter ed-

ucational microapp, [63], was rapidly developed and deployed over 2 days in

response to student learning needs. As part of Team 1’s work in the Version

4 lab (2.5), this has been refined to build a new microapp ([64]) to illustrate

biased random cell migration in PhysiCell in train users to set key phenotypic

parameters. Note that the app has didactic material (A), user-set parameters

(B), a runnable simulation, and built-in visualization (C).
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APPENDICES

APPENDIX A MathCancer Lab Mentoring Structure

We summarize and compare the Version 1 (Section 2.2), Version 2 (Sec-
tion 2.3), Version 3 (Section 2.4), and Version 4 (Section 2.5) lab struc-
ture versions in Table 1.

Table 1. Evolving MathCancer lab and mentoring structure.

Version 1 Version 2 Version 3 Version 4

Scientific 1 1 1 1
Staff

Ph.D. 1 3 3 5
Students

Undergraduate 5 6 10 10
Trainees

Fields engineering engineering engineering engineering
neurobiology CS, informatics CS, informatics

Number of 1 3 5 3
Teams / Projects

Co-mentors? Yes Yes Yes

Weekly meeting? Yes Yes Yes

State of the Lab? Yes Yes Yes

Mixed update Yes
and skills talks
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APPENDIX B Computational Apprenticeship mentorship &
reflection

Modes and sequencing of mentoring in Computational Apprenticeship
are given in Table 2. Scaffolded reflection prompts are given in Table 3

Table 2. Computational Apprenticeship: Mode and Sequencing of Mentoring

Mode of Mentoring

Modeling: Explicit demonstration of a task, including
verbalizing the associated heuristics (strate-
gies)

Coaching: Observing students as they perform tasks and
offering feedback

Scaffolding: Making tasks accessible to students by cali-
brating difficulty levels

Articulation: Asking students to verbalize their process as
they complete tasks

Reflection: Prompting students to compare multiple ap-
proaches to problem solving

Exploration: Fading or slowly withdrawing as students gain
the ability to perform complex tasks

Sequencing of Mentoring

Increasing complexity: organizing coding tasks from simple to more
complex

Increasing diversity: allowing students to develop skills within one
language/project before transferring those ap-
proaches to a new context

Global to local skills: Sharing the overall conceptual approach using
psuedocode before implementing specific sub-
tasks
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Table 3. Scaffolded Reflection Prompts

Students will select one question to briefly answer every two months:
• How has your group navigated any challenges you have encountered?
• What might you have done differently if you had known two months

ago what you know now?
• Has your research question changed? If so, why, and what has it

changed to?
• How have you chosen the approach or methods that you are using for

your project?
• What are the connections between your research activities and your

other studies?
• Can you see ways in which you could apply what you have learned to

other activities?
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