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Abstract 20 

Transmission network modelling to infer ‘who infected whom’ in infectious disease outbreaks is a 21 

highly active area of research. Outbreaks of foot-and-mouth disease have been a key focus of 22 

transmission network models that integrate genomic and epidemiological data. The aim of this study 23 

was to extend Lau’s systematic Bayesian inference framework to incorporate additional parameters 24 

representing predominant species and numbers of animals held on a farm. 25 

 26 

Lau’s Bayesian Markov chain Monte Carlo algorithm was reformulated, verified and pseudo-27 

validated on simulated outbreaks populated with demographic data Japan and Australia. The 28 

modified model was then implemented on genomic and epidemiological data from the 2010 29 

outbreak of foot-and-mouth disease in Japan, and outputs compared to those from the SCOTTI 30 

model implemented in BEAST2. 31 

 32 

The modified model achieved improvements in overall accuracy when tested on the simulated 33 

outbreaks. When implemented on the actual outbreak data from Japan, infected farms that held 34 

predominantly pigs were estimated to have five times the transmissibility of infected cattle farms 35 

and be 49% less susceptible. The farm-level incubation period was 1 day shorter than the latent 36 

period, the timing of the seeding of the outbreak in Japan was inferred, as were key linkages 37 

between clusters and features of farms involved in widespread dissemination of this outbreak. To 38 

improve accessibility the modified model has been implemented as the R package ‘BORIS’ for use in 39 

future outbreaks. 40 

 41 
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Introduction 43 

Outbreaks of foot-and-mouth disease (FMD) in previously free countries cause severe and 44 

widespread socio-economic impacts [1]. FMD-free countries therefore have stringent biosecurity 45 

measures in place to prevent incursions and investigate outbreaks very thoroughly. Following a 46 

review of outbreaks in non-endemic regions covering the period 1992 to 2003 [2], there have been a 47 

series of costly outbreaks in previously free countries, including those in the United Kingdom in 2007 48 

[3], Taiwan in 2009 [4], Japan in 2010 [5] and three independent introductions into South Korea 49 

between 2010 and 2011 [6]. Many of these outbreaks are detailed in a recent review [7]. 50 

 51 

The inference of ‘who infected whom’ in infectious disease outbreaks has gained considerable 52 

momentum in the wake of rapid advances in genome sequencing [8]. Accurate inference of the 53 

transmission network and epidemiological parameters can aide in decision-making in the early 54 

phases of an outbreak in numerous ways, including: assisting in targeting who to investigate; 55 

uncovering whether unsampled (and possibly as yet undetected) sources are seeding new clusters; 56 

and establishing whether or not control measures, as implemented, are effectively breaking 57 

transmission. Retrospective reconstruction of outbreak networks is useful for establishing risk 58 

factors for transmission and failures in biosecurity, targeting surveillance and planning for how to 59 

respond most appropriately to future outbreaks. Bayesian models that combine genomic and 60 

epidemiological data to infer the transmission network of outbreaks have been developed for a 61 

range of emerging infectious diseases and transboundary animal diseases including highly 62 

pathogenic avian influenza [9, 10], Ebola [11] and FMD [10, 12-14]. These have recently been 63 

reviewed and benchmarked for application in FMD outbreaks [15]. The best-performing approaches 64 

in that previous analyses were Lau’s joint Bayesian inference framework [12], the Structured 65 

Coalescent Transmission Tree Inference (SCOTTI) model version 1.1.1 [14] and a modification to 66 
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Cottam’s original frequentist approach [15, 16]. None of these models include farm-level covariates 67 

other than the spatial relationship between farm locations. 68 

 69 

In April 2010, an outbreak of FMD was detected in the Miyazaki Prefecture of Japan. This was the 70 

first outbreak in the country for 10 years and prior to this outbreak vaccination had not been 71 

practiced for FMD in Japan. The earliest detected infected premises (IPs) included mostly beef cattle 72 

farms, with rapid spread to pig and dairy cattle farms across the extent of the Prefecture. The 73 

outbreak was officially detected on 20 April 2010 based on PCR positive test results on samples from 74 

cattle at a fattening farm, though non-specific clinical signs had first been detected, but not 75 

diagnosed as FMD, in a cow on this farm on 9 April 2010, and even earlier, on 31 March 2010 in 76 

water buffalo on a nearby farm [17]. The outbreak lasted 2.5 months, during which time 292 IPs 77 

were detected and around 200,000 infected animals (cattle, pigs, water buffalos, goats and sheep) 78 

were culled to contain spread. A further 87,000 animals that were vaccinated during the control 79 

program were also slaughtered to expedite the resumption of international trade in livestock 80 

produce. Detailed epidemiological descriptions of the outbreak, genomic analyses, risk factor 81 

investigations and simulation studies have been published [5, 17-23]. 82 

 83 

The aim of the present study was to extend Lau’s systematic Bayesian inference framework to 84 

incorporate farm-level covariates representing the predominant species and numbers of animals 85 

held on infected farms. Specific further objectives included evaluating the performance of the 86 

modified model in characterising the transmission process, and estimating key epidemiological and 87 

phylogenetic parameters on data from the 2010 FMD outbreak in Japan, alongside other available 88 

approaches. 89 

 90 
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Materials and Methods 92 

Model formulation and modification 93 

The model developed here is an adaptation of Lau’s joint Bayesian Markov Chain Monte Carlo 94 

(MCMC) inference framework  [11, 12]. In Lau’s original model, the total probability of individual j 95 

becoming infected during time period [t, t + dt] was given by: 96 

𝑟(𝑗, 𝑡, 𝑑𝑡) = {𝛼 + ∑ 𝛽𝑘𝑑𝑖𝑗
𝑖𝜖𝜉𝐼(𝑡)

}𝑑𝑡 + 𝑜(𝑑𝑡) (1) 

  

where ξI(t) is the set of all infectious premises at time t, α is the background rate of infection, β is the 97 

secondary transmission rate, kdij is a transmission kernel function used to represent the spatial 98 

relationship between premises with o(dt) representing probability of individual j being infected by 99 

multiple sources of infection in the small period dt, here the power law kernel was assumed of the 100 

form: 101 

𝑘𝑑𝑖𝑗 =
1

1 + 𝑑𝑖𝑗
𝜅 (2) 

where dij is the Euclidean distance between the premises and κ is an inferred parameter. Other 102 

options for the spatial kernel include exponential, Cauchy and Gaussian decay (not tested here). 103 

 104 

In the present analysis, the term β in equation (1) was reformulated as βij to incorporate additional 105 

terms that represent modifications to the transmissibility of each infectious farm, Infi, and the 106 

susceptibility of each susceptible farm, Suscj, such that: 107 

 108 

𝛽𝑖𝑗 = 𝛽 × 𝐼𝑛𝑓𝑖 × 𝑆𝑢𝑠𝑐𝑗 (3) 
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𝐼𝑛𝑓𝑖 = 𝑛𝑖
𝜈 × (𝜙𝑐𝑎𝑡𝑡𝑙𝑒 ∙ 𝑓𝑡𝑦𝑝𝑒0 + 𝜙𝑝𝑖𝑔 ∙ 𝑓𝑡𝑦𝑝𝑒1 + 𝜙𝑜𝑡ℎ𝑒𝑟 ∙ 𝑓𝑡𝑦𝑝𝑒2) (4) 

𝑆𝑢𝑠𝑐𝑗 = 𝑛𝑗
𝜏 × (𝜌𝑐𝑎𝑡𝑡𝑙𝑒 ∙ 𝑓𝑡𝑦𝑝𝑒0 + 𝜌𝑝𝑖𝑔 ∙ 𝑓𝑡𝑦𝑝𝑒1 + 𝜌𝑜𝑡ℎ𝑒𝑟 ∙ 𝑓𝑡𝑦𝑝𝑒2) (5) 

 109 

where ni and nj represent the number of animals on premises i and j, respectively, and ν and τ are 110 

inferred parameters that allow for nonlinear effects of holding size [24]. We allowed three levels 111 

(modulated by an indicator variable for farm type, ftype) for inferred parameters representing the 112 

effect of the predominant species on premises i and j on transmissibility, such that ϕpig and ϕother 113 

represented the component of instantaneous hazard modified by the infectiousness of 114 

predominantly pig and other farms (compared to a reference category of predominantly cattle 115 

farms, i.e. ϕcattle=1), respectively, and ρpig and  ρother represented the susceptibility of predominantly 116 

pig and other farms (compared to a reference category of predominantly cattle farms, ρcattle=1), 117 

respectively. This accounts for a well described biological feature of transmission whereby the 118 

minimum infectious doses by inhalation for cattle, sheep and goats are much lower than those of 119 

pigs, whereas infectious pigs excrete considerably more virus than these ruminant species [25] and is 120 

similar in underlying structure to one of the key simulation models implemented on data from the 121 

2001 FMD outbreak in the United Kingdom [24, 26]. The parameter β was retained for scaling 122 

purposes. A further modification to the model was also tested, where the infectivity and 123 

susceptibility terms were normalised by the population mean infectivity and susceptibility, 124 

respectively. 125 

 126 

Model verification and pseudo-validation 127 

The modified model was verified on three FMD outbreak datasets simulated following a previously 128 

described approach [27] based on Sellke thresholds [28]. These ‘model verification’ simulation runs 129 

(designated J1–J3) were parameterised with the same underlying population structure as areas of 130 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 8, 2019. ; https://doi.org/10.1101/835421doi: bioRxiv preprint 

https://doi.org/10.1101/835421
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

Miyazaki Prefecture in Japan from 2010, with differing numbers of susceptible farms and different 131 

plausible transmission and genomic parameters. 132 

 133 

The modified model was then pseudo-validated by testing on three previously described FMD 134 

outbreak datasets  simulated in the Australian Animal Disease Simulation (AADIS) model [29], a 135 

completely different modelling framework. Corresponding phylogenetic trees nested within the 136 

known transmission networks were simulated with VirusTreeSimulator 137 

(https://github.com/PangeaHIV/VirusTreeSimulator; last accessed 31 October, 2017) and SeqGen 138 

version 1.3.3 [30]. These simulated Australian FMD outbreak datasets were designated A1–A3. All 139 

simulated datasets are provided in supplementary materials (S1) along with detailed descriptions of 140 

their parameterisation. 141 

 142 

Case study: 2010 outbreak of FMD in Miyazaki Prefecture, Japan 143 

The 2010 Miyazaki FMD outbreak datasets analysed were provided by the National Institute of 144 

Animal Health and comprised premises-level covariate data on 292 infected premises and 104 L-145 

fragment consensus nucleotide sequences of virus isolates from animals on these farms, prepared as 146 

previously described [5, 18, 20, 21]. Sequences were tested for recombination using RDP4 [31] and 147 

for the best fitting DNA substitution model using MEGA version 7.0 [32], as assessed based on the 148 

lowest Bayesian Information Criterion. 149 

 150 

Model implementation 151 

The modified joint Bayesian MCMC inference of the transmission tree was implemented on a 152 

parallel computing cluster with 4 chains of 1 million iterations, the first 20% of each discarded as 153 

burn-in and the remainder thinned by 1000 based on assessment of convergence and 154 
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autocorrelation, with Gelman and Rubin's shrink factor [33], visually and by calculation of 155 

autocorrelation and effective sample size using Tracer [34]. All unobserved parameters (Table 1) 156 

were given uninformative flat priors and imputed as described previously [12]. The MCMC was 157 

initialised with a transmission tree with initial sources selected randomly from amongst those 158 

estimated to hold infectious animals at the estimated time of exposure of each IP. If there were no 159 

potential sources at the estimated time of exposure of an IP the proposed source for this IP was 160 

initialised with a value to represent seeding from a non-observed IP. The initiating single universal 161 

master sequence was assumed to be the consensus sequence of all available genomic data. 162 

 163 

Comparative analyses 164 

The 2010 Miyazaki FMD outbreak dataset was also analysed by preparing temporal transmission 165 

windows [16] and inferring the transmission network and phylogenetic parameters with the SCOTTI 166 

model version 1.1.1 [14], implemented in BEAST version 2.4.7 [35]. The HKY substitution model [36] 167 

was assumed with 2 independent chains of 10 million MCMC iterations, each with 20% discarded as 168 

burn‐in and thinned by 20000 based on assessment of convergence and autocorrelation. In this 169 

coalescent model with migration, each IP was modelled as a ‘host’, each with a distinct diverse 170 

pathogen population undergoing genetic evolution. Transmissions between hosts were modelled as 171 

‘migration’ events and the maximum number of hosts was set to 10 times the number of sequences 172 

available to allow for unobserved IPs, observed IPs for which genomic data was missing and seeding 173 

from external clusters. All unobserved parameters were given uninformative flat priors and the 174 

following were inferred: the mutation rate, the ratio of transitions to transversions, the rate of 175 

transmission between hosts, the total number of hosts (including non-sampled IPs), the number of 176 

pathogen lineages per host and the tree height (from which the delay between origin and detection 177 

of the outbreak could be estimated). 178 

 179 
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The code for implementing the modified Lau model has been incorporated into a freely available R 180 

package named Bayesian Outbreak Reconstruction, Inference and Simulation (BORIS) [37].  The 181 

descriptive analyses of all model outputs was undertaken in the R statistical package version 3.4.3 182 

[38], using the libraries epiR v0.9-93 [39], statnet v2016.9 [40], coda v0.19-1 [41] and ggplot2 [42]. In 183 

all comparisons, model accuracy in inferring the transmission network was considered as the 184 

proportion of infected premises for which the true source was the proposed source with the highest 185 

posterior probability density [15]. The effect of features of the inferred transmission network on the 186 

reproductive number was inferred as previously described [43].  187 

 188 

Results 189 

Model verification and pseudo-validation 190 

The modified version of the model demonstrated improved performance in each of the simulated 191 

model runs (Figure 1 and supplementary materials, S2). Overall accuracy improved by 6.2% in 192 

verification runs J1–J3 (range: 5.4–6.9%) and by 4.7% in pseudo-validation runs A1–A3 (range: 2.3–193 

7.8%). Accuracy improvements occurred over the full range of model support values. Posterior 194 

probability density (model support) for proposed sources was higher for outputs from the modified 195 

versus the original model for all verification runs (Wilcoxon signed-rank p-values all <0.001) and 196 

comparable for pseudo-validation runs; higher support has previously been associated with higher 197 

accuracy. The performance of the modified-normalised version was very similar to the modified 198 

version without normalisation, with the non-normalised version demonstrating typically 1–2% better 199 

accuracy. 200 

 201 

Posterior distributions of the inferred epidemiological and phylogenetic parameters are presented in 202 

Supplementary Materials S3 by model run, compared to the known values. In validation runs, the 203 

models were highly accurate and comparable in their inferences of α, the mutation rate and 204 
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transition-to-transversion ratio, farm-level latent and infectious periods, the spatial kernel shape 205 

parameter (κ), and the farm-level transmissibility (ϕ) and susceptibility (ρ) weighting parameters, 206 

and indices for the effects of number of animals per farm (ν and τ). In runs J1 and J2, the models 207 

were highly accurate in their inference of the secondary transmission rate (β). In run J3, which had 208 

an extremely low value of β all of the models overestimated the true value of 6 × 10-4. The modified 209 

model had the least discrepancy, with its highest probability density region (HPD) ranging from 2 to 210 

3 times the true value, the inferred values for the original and modified-normalised models were out 211 

by >200-fold. In pseudo-verification runs, the models were highly accurate and comparable in their 212 

inferences of the transition-to-transversion ratio, however all three models underestimated the 213 

mutation rate by between 41% and 49%. The rest of the inferred parameters are not directly 214 

analogous to those used in the simulation framework for pseudo-validation, so could not be directly 215 

compared to known values. 216 

 217 

Case study: 2010 outbreak of FMD in Miyazaki Prefecture, Japan 218 

Each of the 104 sequences were 7667 nucleotides in length, no recombination was detected. The 219 

best-fitting nucleotide substitution model was the Tamura-Nei (TN93) model with non-uniformity of 220 

the evolutionary rate among sites represented using a discretised Gamma distribution with five 221 

categories, an estimated shape parameter of 0.13, assuming that none of the sites were 222 

evolutionarily invariable and a transition to transversion ratio of 9.08 (see supplementary materials, 223 

S4 for further detailed results). 224 

 225 

The transmission network inferred using the modified Lau MCMC algorithm is presented in arbitrary 226 

space in Figure 2. Posterior estimates of the key epidemiological and phylogenetic parameters from 227 

the modified version of the Lau model are presented in Table 2. Networks for the original and 228 

modified-normalised model formulations are provided as Supplementary Materials (S5) highlighting 229 
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differences to the presented network. The root of the inferred transmission tree was inferred with 230 

very high model support. Transmission from an external source was inferred to have most likely 231 

occurred 31 days prior to the outbreak being detected (i.e., on 19 March 2010; 95% HPD: 8 and 25 232 

March 2010). At the point of outbreak detection (on 20 April 2010) it was inferred that there were 233 

15 farms already infected. The median diagnostic delay (time from inferred exposure at a farm until 234 

day of sampling) was estimated to be 9.7 days (range: 4.6, 32.9 days). 235 

 236 

Of the 292 IPs, only 47 had a proposed source from Lau’s modified algorithm with model support 237 

>50%, of these only 18 links had model support >80%. Model support was highest for inferred 238 

transmission events earlier in the outbreak (geometric mean support for events in first 4 weeks was 239 

74.8%, whereas for events in the mid and latter 4-week periods of the outbreak geometric mean 240 

support was 24.1% and 12.2%, respectively), likely relating to the density of genomic sampling. The 241 

longest of the inferred chains of infection involved 8 transmission events, with 93% of transmission 242 

chains being ≤5 events in length. The scale-free properties of the transmission network’s out degree 243 

distribution (coefficient of variability = 3.3), suggested a multiplying effect on the basic reproductive 244 

number of 12.0. The geometric mean number of secondarily infected premises for IPs exposed in the 245 

first 4 weeks of the outbreak was 5.9, dropping to 3.2 and 1.3 for IPs exposed in the middle and 246 

latter 4-week intervals of the outbreak, respectively. This demonstrates the effectiveness of animal 247 

movement controls and other measures. 248 

 249 

Farms that kept predominantly pigs were 5.15 times more infectious than cattle farms (Table 2). The 250 

eleven farms that were inferred to have led to the highest number of secondary infections were all 251 

pig farms. Those farms that predominantly kept other species appeared less infectious than cattle 252 

farms, however as there were only five ‘other’ farms the HPD for ϕother crossed the null value of 1. 253 

Farms that kept predominantly pigs were 49% less susceptible than cattle farms. Those farms that 254 
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predominantly kept other species were 55% less susceptibility than cattle farms (noting that the HPD 255 

again crossed 1, due to low numbers in this group). The number of animals on a farm had more 256 

influence on farm-level susceptibility than infectivity.  257 

 258 

The posterior estimates of the mean farm-level incubation, latent and infectious periods were 5.9, 259 

6.8 and 15.2 days, respectively. Based on the shape of the inferred spatial transmission kernel 260 

(Figure 3), most of the density of risk is within 15 km of an infected premises. Most parameter 261 

inferences were highly comparable across model runs (modified versus original and normalised). An 262 

exception was the secondary transmission rate (β) which from the modified-normalised model 263 

outputs was inferred to be an order of magnitude higher than as inferred in the original and 264 

modified formulation. The HPDs of most of the inferred parameters overlapped with those used in 265 

the model verification runs J1–J3. 266 

 267 

Comparative analyses 268 

Transmission windows estimated by Cottam’s approach, are presented for the 20 IPs with earliest 269 

dates of onset in Figure 4. Based on this approach, at least ten IPs had already been exposed by the 270 

time the outbreak was detected. There were only seven IPs for which the Lau modified and SCOTTI 271 

models agreed on source. Amongst the 104 IPs for which genomic data were available, proposed 272 

sources for 13 IPs inferred by the SCOTTI algorithm were on the transmission pathways inferred by 273 

the Lau model (which included both sampled and unsampled sources).  274 

 275 

The posterior median estimates of the substitution rate and transition to transversion ratio inferred 276 

by SCOTTI were highly comparable to those inferred by Lau’s model, with overlapping HPDs that also 277 

encompassed the maximum likelihood value estimated using MEGA. The SCOTTI model suggested 278 
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the sequence data were monophyletic (i.e., a single introduction), with only a single likely root and 279 

transmission from the original external source was estimated to have occurred 39 days prior to 280 

detection of the outbreak (i.e. on 12 March 2010). Onward transmission from the source occurred at 281 

a rate of 3.2 new infected premises per day over the course of the outbreak, with the median 282 

estimate of the number of FMD viral lineages within each farm being 19. Of those 104 IPs with 283 

genomic sequence data available, only 32 had consensus support that their proposed source was 284 

amongst those sampled and of these only 5 had >50% model support for their proposed ancestor 285 

(detailed results provided as Supplementary Materials, S6). Based on the structured coalescent 286 

transmission tree inference, there was very low likelihood that the source of infection for the first 287 

farm inferred to have been infected in this outbreak was amongst those sampled (support = 2.4%), 288 

whereas it was much more likely that the index farm’s source was amongst those sampled (support 289 

= 33.4%) and model support that the index was infected by the first farm inferred to have been 290 

infected approached consensus (42.8%). 291 

 292 

Discussion 293 

Transmission network models that enable reconstruction of outbreaks hold considerable promise for 294 

informing decision-making in future outbreak responses if they are accurate, robust, reproducible, 295 

reliable and can be implemented with ease. Here, we have developed and evaluated an extended 296 

version of Lau’s systematic Bayesian inference framework incorporating additional parameters to 297 

infer farm-level effects on transmissibility and susceptibility related to the predominant species on a 298 

property and the numbers of animals kept. The modified model demonstrated improved 299 

performance across a series of varied simulated outbreaks, with overall accuracy improving by 300 

between 5 and 6%. These improvements may seem modest unless considered from the perspective 301 

that Lau’s original model was already a well-performing highly detailed inference as recently 302 

demonstrated [15] and the modified model is intended to be implemented in near-real time in 303 
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outbreaks involving hundreds of infected farms, where each correctly inferred link may aid the 304 

speed of containment and subsequently greatly reduce future outbreak impacts. 305 

 306 

The inferred transmission network for the 2010 outbreak of FMD in Japan identified all key linkages 307 

between clusters and characterised features of important farms in widespread dissemination of this 308 

outbreak. Pig farms played a vital role, with most of the farms forming hubs in the transmission 309 

network holding predominantly pigs. This has previously been identified as key to dissemination of 310 

FMD [25, 44], however, with the inclusion of additional parameters, we were able to estimate the 311 

magnitude of this effect alongside other important epidemiological and phylogenetic parameters. 312 

The five-fold increase in transmissibility of pig farms compared to farms holding predominantly 313 

cattle is biologically plausible and agrees with published accounts that, depending on FMD strain, 314 

pigs can excrete up to 100 times more airborne virus at the peak of the viraemic phase than cattle 315 

[25]. Whilst pigs may excrete more virus than ruminants, cattle on a downwind farm are more 316 

susceptible to infection via inhalation. Although pig farms tend to hold more animals, they also 317 

typically implement management measures specifically focussed on hygiene, biosecurity, ventilation, 318 

humidity and temperature control, odour and pollution reduction that would be expected to 319 

influence and often reduce the potential for disease dissemination. 320 

 321 

The effect of numbers of animals held suggested farm size had more of an influence on farm 322 

susceptibility than transmissibility, however the HPDs of the inferred parameters representing these 323 

non-linear effects overlapped considerably. This modification was stimulated by the formulation of 324 

previous FMD models for the 2001 outbreak in the United Kingdom [24] and despite minor 325 

differences in parameterisation the estimates were all reasonably close to those fit to that prior 326 

outbreak. In some of the regions previously studied in the UK 2001 outbreak, numbers of animals 327 

held influenced transmissibility more than susceptibility, but the finding was not consistent. Such 328 
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differences likely relate to differences in the predominance of sheep versus pigs in different regions 329 

and their differing influences on transmission. In their analysis, Tildesley and colleagues (2008) 330 

included species-specific parameters to represent the nonlinear influence of numbers of animals 331 

held. When we attempted to include such species-specific parameters in the modification to Lau’s 332 

approach, this led to over-parameterisation and presumed identifiability issues impacting on MCMC 333 

chain mixing and convergence. We therefore settled for a single parameter for each effect, assuming 334 

that species-specific effects should be well represented by the specific farm-level susceptibility and 335 

transmissibility terms. 336 

 337 

The inferred farm-level incubation period in the 2010 FMD outbreak in Japan of 2–14 days 338 

corresponds very closely with previously published data [25, 45]. Interestingly, at the farm-level, the 339 

median inferred incubation period was 1 day shorter than the median latent period. This finding is 340 

consistent with an experimental study where the relationship between onset of infectiousness was 341 

based on directly demonstrating FMD transmission to another animal [46]. In contrast, many studies 342 

that have considered onset of infectiousness at the farm-level based on proxy measures (such as 343 

detection of virus in blood, nasal fluid and/or oesophageal-pharyngeal fluid) [45] may have 344 

underestimated the duration of the latent period [46]. Whilst individual animals have been shown to 345 

excrete FMD virus 1–2 days before onset of clinical signs [47-49], this depends on dose and FMD 346 

virus strain, and there is marked individual variability in the onset of early clinical signs in pigs and 347 

cattle. It is important to note that the unit of interest in the present analysis is the farm and these 348 

epidemiological parameters are therefore observed at the farm-level, whereas most studies of the 349 

timing of onset of infectiousness and clinical signs focus on the animal-level. Also, the observed 350 

epidemiological data that informed our inferences were from field observations, rather than based 351 

on experimentation, and thereby include a certain level of uncertainty. Nonetheless, these 352 

epidemiological parameters are very helpful for informing disease response activities (quarantine 353 

periods, surveillance and contact-tracing windows), and estimates from observed outbreak such as 354 
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those presented here are vital for parameterising FMD simulation modelling. Similarly, the farm-355 

level infectious period is a very important parameter, seemingly intuitive but given all the factors at 356 

play difficult to interpret. Often, as in the present analysis, the farm-level infectious period is cut 357 

short by culling and other disease control activities. In the 2010 outbreak of FMD in Japan, targeted 358 

vaccination was only implemented for 5 days at the peak of the outbreak [17], so was not 359 

considered to have had a major impact on the inference of epidemiological parameters. 360 

 361 

With data augmenting MCMC approaches, as implemented here, reconstructing such outbreaks 362 

need not be completed years after the outbreaks are over. It is a primary intention of the design of 363 

these models that they be implemented to inform ongoing disease responses. Indeed, these models 364 

are presently being implemented in near-real time to inform the ongoing outbreak of Mycoplasma 365 

bovis in New Zealand [50].  As detailed in the present analysis, these models provide statistically 366 

justifiable inference of which premises were primary sources in an outbreak and the timing of 367 

exposure at those farms. This can greatly inform targeting of contact-tracing windows and farmer 368 

interviews to high-risk periods and help identify undetected sources of such outbreaks before 369 

further clusters can be seeded. An active area of further research includes incorporating contact-370 

tracing and other animal movement data into this model. Further areas for development include 371 

refining the representation of genomic evolution through the implementation of within-host 372 

dynamics such as has been implemented in other transmission network models [10] and formally 373 

predicting undetected infections with Reversible-Jump MCMC or related methods [51]. 374 

 375 

The original attempts at FMD outbreak transmission network modelling have largely focussed on 376 

small subsets of large outbreaks [10, 12, 16, 52].  With the present modified formulation, we have 377 

demonstrated inference for outbreaks involving up to 400 premises, and with typically available 378 

parallel computing infrastructure it presently appears feasible to run inferences for outbreaks of 379 
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over 500 premises with some further efficiencies in coding. The present analysis was limited in the 380 

number of simulations that could be feasibly undertaken for model verification and pseudo-381 

validation. However, we consider the additional gain in information will be modest with further 382 

testing on substantially increased numbers of simulation runs. In the present analysis, all models had 383 

difficulties inferring secondary transmission rates when these were very low. The best-performing 384 

model was again that with the modification to incorporate farm-level effects on transmissibility and 385 

susceptibility. The low value for β tested in verification run J3 was perhaps unrealistic being 100 386 

times below the inferred values based on the actual outbreak data from the 2010 outbreak in Japan. 387 

The mutation rate appears to be underestimated by all forms of the Lau model. This is not a major 388 

concern, as the primary purpose of this model is to infer the transmission network. More purposeful 389 

phylogenetic tools, such as BEAST and associated packages [35, 53], are preferable when the primary 390 

aim is estimation of such phylogenetic parameters and more sophisticated models including 391 

additional complexities such as within-host diversity are available. Nonetheless the mutation rates 392 

inferred by the modified Lau model overlapped with those of the SCOTTI model implemented in 393 

BEAST2. 394 

 395 

The present analysis was limited in the number of simulations that could be feasibly undertaken. 396 

However, we consider the additional gain in information will be modest with further testing on 397 

substantially increased numbers of simulation runs. In the present analysis, all models had 398 

difficulties inferring secondary transmission rates when these were very low. The best-performing 399 

model was that with the modification to incorporate farm-level covariates. 400 

 401 

There was poor agreement between the transmission networks inferred by SCOTTI and the Lau 402 

modified model. Reasons for differences in transmission network inferences include different 403 

underlying likelihood formulations and data requirements. Specifically, the Lau model infers 404 
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sequences for known IPs for which genomic data is unavailable and incorporates terms that account 405 

for the spatial relationships between infected premises. For four IPs that formed an isolated cluster 406 

in Ebino, in the far West of Miyazaki Prefecture, the sources inferred by Lau’s modified model 407 

agreed very closely with epidemiological field data whereas the sources for all four of these 408 

premises inferred by SCOTTI were inferred to be over 60 km away. Whilst at least one of these 409 

premises is likely to have been infected from the main focus of infection to the East, it is highly 410 

unlikely that all four were infected in independent introductions.  Considered together, the 411 

inferences of Lau and SCOTTI’s models provide a reasonably complete epidemiological and 412 

phylogenetic inference for the Japanese outbreak. 413 

 414 

Conclusions 415 

Extending Lau’s systematic Bayesian inference framework to incorporate additional parameters 416 

representing predominant species and numbers of animals held on a farm resulted in improvements 417 

in overall accuracy across a series of varied simulated outbreaks. Infected farms that held 418 

predominantly pigs were estimated to have five times the transmissibility of infected cattle farms 419 

and be 49% less susceptible. The farm-level incubation period was estimated to be 1 day shorter 420 

than the latent period, suggesting a small window following onset of clinical signs to target 421 

interventions may substantially reduce the risk of onwards transmission in future outbreaks. 422 

 423 

  424 
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Table 1: Key parameters in the Bayesian MCMC inference. 577 

Parameter Type Description 

t.sampj, Sj Observed The timing of sampling and available sequences for infected premises 

in the dataset. 

ψj, t_ej, t_ij Latent The source and timing of exposure and onset of infectiousness for 

each exposed site j. 

Gtj Latent The sequence on each infected premises at each sampling and 

transmission time (t). 

α Latent The background rate of infection. 

β, βij  Latent The secondary transmission rate, with and without additional farm-

level covariates. 

dij Observed Euclidean distance between premises i and j. 

κ Latent The power of the spatial transmission kernel. 

ni, nj Observed Number of animals on premises i and j. 

ν Latent The effect (power) of number of animals on premises-level infectivity 

for farms. 

τ Latent The effect (power) of number of animals on premises-level 

susceptibility for farms. 

ϕcattle, ϕpig, 

ϕother 

Latent The multiplicative effect of predominant species on premises-level 

infectivity. 

ρpig, ρother Latent The multiplicative effect of predominant species on premises-level 

susceptibility. 

μ1, μ2 Latent The rates of transitions and transversions. 

mean(lat), 

var(lat) 

Latent The mean and variance of the duration of the farm-level latent period. 

c Latent The mean period from onset of infectiousness to the last day of culling 

(i.e., the farm-level infectious period). 

p Latent Probability that a nucleotide base of a primary sequences differs from 

that in the universal master sequence. 
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Table 2: Epidemiological and phylogenetic parameters inferred for the 2010 outbreak of foot-and-mouth disease in Miyazaki Prefecture, Japan, by 579 

transmission network model. 580 

Model parameter (units) Lau’s joint inference, modified 

Posterior Median [95% HPD] 

Structured Coalescent Transmission 

Tree Inference Posterior Median [95% 

HPD] 

Primary transmission rate, α 4.0 × 10-5 [0.1 × 10-5, 2.1 × 10-4] — 

Secondary transmission rate, β 0.063 [0.016, 0.142] — 

Mutation rate (substitutions site-1 day-1) 1.83 × 10-5 [1.63 × 10-5, 2.06 × 10-5] 2.31 × 10-5 [1.73 × 10-5, 2.89 × 10-5] 

Transition to transversion ratio 6.95 [5.20, 9.57] 10.12 [6.68, 14.33] 

Delay from origin of epidemic to outbreak detection (days) 30.9 [25.9, 42.3] 38.5 [24.4, 56.5] 

Effective population sizea — 18.9 [8.6, 34.5] 

Number of farms infected at outbreak detection 15 [11, 30] — 

Farm-level incubation period (days) 5.6 [2.6, 13.8] — 

Farm-level latent period, mean(lat) (days) 6.8 [5.2, 8.1] — 

Farm-level infectious period, c (days) 15.2 [13.6, 17.2] — 

Spatial kernel scaling parameter, κ 1.79 [1.54, 2.04] — 

Infectivity of pig farms vs. cattle farms, ϕpigs 5.15 [2.64, 11.59] — 

Infectivity of other farms vs. cattle farms, ϕother 0.50 [0.11, 1.67] — 

Effect of farm size on infectivity, ν 0.08 [0.00, 0.26] — 

Susceptibility of pig farms vs. cattle farms, ρpigs 0.51 [0.30, 0.83] — 

Susceptibility of other farms vs. cattle farms, ρother 0.45 [0.14, 1.22] — 

Effect of farm size on susceptibility, τ 0.23 [0.11, 0.35] — 

HPD = Highest probability density region; IP = infected premises. a Estimated from structured coalescent migratory model based on within-host (here, within-farm) effective 581 
population size (Ne), migration rate and proportion of hosts with consensus support that their source was sampled. 582 
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Figure legends 583 

 584 

Figure 1: Comparison of the accuracy of inferences of proposed sources of infection for six 585 

simulated outbreaks of foot-and-mouth disease in Japan and Australia.  Black line = original 586 

formulation; red = modified model. Runs J1, J2 and J3 simulated in the same framework as the 587 

modified model. Runs A1, A2, A3 simulated in using the Australian Animal Disease Simulation model. 588 

Accuracy was defined as the proportion of infected premises for which the true source was the 589 

proposed source with the highest posterior probability density. Vertical reference lines denote 590 

proposed ancestors with >50% and >80% model support, respectively. 591 

 592 

Figure 2: Inferred transmission network for the 2010 outbreak of foot-and-mouth disease in 593 

Miyazaki Prefecture, Japan, in arbitrary space. Model support for the proposed ancestor 594 

represented by edge width. Darker shading of edges represents earlier inferred transmission events 595 

in the outbreak. Farms holding predominantly pigs, cattle and other species are represented by pink, 596 

white and blue nodes, respectively. Case numbers randomised for confidentiality. 597 

 598 

Figure 3: Inferred spatial transmission kernel shape for the 2010 outbreak of foot-and-mouth 599 

disease in Miyazaki Prefecture, Japan. Bold line represents posterior median prediction and dashed 600 

lines represent 95% highest probability density region. 601 

 602 

Figure 4: Estimated transmission windows based on Cottam’s frequentist approach for the first 20 603 

infected premises detected for which genomic data were available in the 2010 outbreak of foot-604 

and-mouth disease in Miyazaki Prefecture, Japan. Black lines represent most likely period of the 605 

earliest infection of an animal on each infected premises (IP), grey lines represent estimated 606 

duration of infectiousness at the premises level, tapering as culling commences. The red reference 607 

line represents the point of outbreak detection on 20 April 2010. On the most likely day that Farm B 608 

was infected, only Farm A was possibly infectious. 609 

  610 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 8, 2019. ; https://doi.org/10.1101/835421doi: bioRxiv preprint 

https://doi.org/10.1101/835421
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplementary Materials 611 

 612 

S1: Simulated outbreak datasets: data and parameterisation. 613 

 614 

S2: Comparison of the accuracy of the original model and modifications of Lau’s joint Bayesian 615 

transmission network inference for inferring sources for simulated outbreaks of foot-and-mouth 616 

disease in Japan and Australia. 617 

 618 

S3: Comparison of the accuracy of the original model and modifications of Lau’s joint Bayesian 619 

transmission network inference for inferring epidemiological and phylogenetic parameters for 620 

simulated outbreaks of foot-and-mouth disease in Japan and Australia. Model formulations 621 

abbreviated as follows: orig = original; mod = modified; mod-n = modified-normalised. 622 

 623 

S4: Nucleotide substitution model fit for genomic data from the 2010 outbreak of foot-and-mouth 624 

disease in Japan. 625 

 626 

S5: Lau model (original and modified-normalised) inferred transmission networks and estimates 627 

for the 2010 outbreak of foot-and-mouth disease in Miyazaki Prefecture, Japan. 628 

 629 
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