A TBX5 dosage-sensitive gene regulatory network for human congenital heart disease

2

- Irfan S. Kathiriya^{1,2,3*}, Kavitha S. Rao^{1,2,3}, Giovanni Iacono⁴, W. Patrick Devine^{1,5}, Swetansu K.
 Hota^{1,2}, Michael H. Lai^{1,2}, Bayardo I. Garay^{1,2,3}, Reuben Thomas¹, Andrew P. Blair^{1,8}, Henry Z.
- Gong⁸, Lauren K. Wasson^{6,7}, Piyush Goyal^{1,2}, Tatyana Sukonnik^{1,2}, Gunes A. Akgun^{1,2}, Laure D.
 Bernard^{1,2}, Brynn N. Akerberg⁹, Fei Gu⁹, Kai Li⁹, William T. Pu^{9,10}, Joshua M. Stuart⁸, Christine
- 8 E. Seidman^{6,7}, J. G. Seidman⁶, Holger Heyn^{4,11}, Benoit G. Bruneau^{1,2,12,13*}
- 10 1. Gladstone Institutes, San Francisco, CA, USA.
 - 2. Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA,
- 12 USA
 - 3. Department of Anesthesia and Perioperative Care, University of California, San Francisco,
- 14 CA, USA
 - 4. CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and
- 16 Technology (BIST), Barcelona, Spain;
 - 5. Department of Pathology, University of California, San Francisco, CA, USA
- 18 6. Department of Genetics, Harvard Medical School, Boston, MA USA
 - 7. Howard Hughes Medical Institute, Division of Cardiovascular Medicine, Brigham and
- 20 Women's Hospital, Boston, MA USA
 - 8. Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz,
- 22 CA, USA
 - 9. Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- 24 10. Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
 - 11. Universitat Pompeu Fabra, Barcelona, Spain

26 12. Department of Pediatrics, University of California, San Francisco, CA, USA

13. Cardiovascular Research Institute, University of California, San Francisco, CA, USA

28 * Authors for correspondence: irfan.kathiriya@ucsf.edu, benoit.bruneau@gladstone.ucsf.edu

30 Abstract

Haploinsufficiency of transcriptional regulators causes human congenital heart disease
 (CHD) ¹. This observation predicts gene regulatory network (GRN) imbalances ², but the nature of dosage-vulnerable GRNs and their contribution to human cardiogenesis and CHDs are

- 34 unknown. Here, we define transcriptional consequences of reduced dosage of the CHD transcription factor TBX5 during human cardiac differentiation from induced pluripotent stem
- 36 (iPS) cells. Single cell RNAseq revealed that transcriptional responses to reduced TBX5 levels are not homogeneous, and instead, discrete sub-populations of cardiomyocytes exhibit
- 38 dysregulation of distinct TBX5 dose-sensitive genes related to cellular phenotypes and CHDassociated genetics. Cellular trajectory inference revealed TBX5 dosage-dependent
- 40 differentiation paths, with implications for cardiac developmental identity. GRN analysis of the single cell RNAseq data identified vulnerable nodes enriched for CHD genes, implicating a
- 42 critical sensitivity to TBX5 dosage in cardiac network stability. A novel GRN-predicted genetic interaction between *TBX5* and *MEF2C* was validated in mouse, revealing a highly dosage-
- sensitive pathway for CHD. Our results reveal unforeseen complexity and exquisite sensitivity to
 TBX5 dosage in discrete sub-populations of iPSC-derived cardiomyocytes, providing
- 46 mechanistic insights into human CHDs and quantitative transcriptional regulation in disease.

48 Introduction

CHDs are a leading cause of childhood morbidity and mortality, and incidence of CHD is
 estimated to be ten-fold higher in human fetuses than live births ^{3,4}. Many human mutations

linked to CHD predict reduction in dosage of transcriptional regulators, including transcription

- 52 factors (TFs) and chromatin-modifying genes ¹. Despite advances in tracing the roles of individual factors, how altered dosage of transcriptional regulators translates to altered
- 54 transcriptional activity is not known, nor is it known how these altered GRNs disrupt heart development, resulting in CHD.
- 56 Heterozygous mutations in the T-box TF gene *TBX5* cause Holt-Oram syndrome (HOS) ^{5,6}, which presents with upper limb defects, CHDs, diastolic dysfunction, or arrhythmias. In
- 58 humans, homozygous *TBX5* loss of function is presumed to cause fetal demise. Altered expression of select genes in mice *in vivo* demonstrate a stepwise sensitivity to reductions in
- 60 *Tbx5* dosage ^{7,8}. These findings suggest that a reduction in TBX5 dosage perturbs downstream gene expression, but the overall disrupted networks and mechanisms are not understood.
- 62 Mechanistic investigation of human CHD has been hampered by a lack of relevant and tractable models. Human heart tissue is largely inaccessible for molecular analysis, and
- 64 pathological or surgical specimens are limited. However, induced pluripotent stem (iPS) cells, genome editing, directed differentiation, and single cell RNAseg together provide a human
- 66 cellular platform for gene-centered cardiac disease modeling at single cell resolution. In considering how transcriptional regulator haploinsufficiency might cause CHD, at least two
- 68 scenarios are possible: 1. That reduced dosage affects genes only in specific anatomical locations, such as the atrial septum. 2. That reduced dosage affects cardiac gene expression
- 70 broadly, but altered programs manifest as morphologic defects only in structures most sensitive to the disturbance. The first scenario would make it challenging to discover altered gene
- 72 expression in 2-dimensional cultures if susceptible cell types are absent. The second may predict that homogeneous changes in gene expression might be detected in that context, as
- corroborated by bulk RNAseq studies of heterozygous human iPS cell models of CHD ⁹⁻¹¹.
 However, it is likely that relevant, discrete alterations in a complex cell mixture were not

76 detected in those studies. Therefore, how reduced dosage of a transcriptional regulator alters GRNs in susceptible cells leading to CHD remains unclear.

78

Impaired human cardiac differentiation and function by reduced TBX5 dosage

- 80 To determine a role for TBX5 dosage in human cardiac biology, we created an allelic series of human iPS cells mutant for *TBX5* by using CRISPR/Cas9-mediated genome editing, to
- target exon 3 of *TBX5* at the start of the essential T-box domain (Fig. 1a). We isolated targeted iPS cell lines: control (*TBX5*^{+/+}), heterozygous (*TBX5*^{in/+}) and homozygous (*TBX5*^{in/de/} and
- 84 $TBX5^{PuR/PuR}$) mutants (Fig. 1b, Extended Data 1). TBX5 protein levels in cardiomyocytes differentiated from these lines were diminished in $TBX5^{in/+}$ and absent in $TBX5^{in/del}$ and
- *TBX5^{PuR/PuR}* cells (Fig. 1c), consistent with a dosage-step allelic series of mutant *TBX5* loss-offunction cell lines.
- 88 We observed reduced cardiomyocyte differentiation efficiency, a delay in onset of beating, and worsening sarcomere disarray, by graded loss of *TBX5* (Fig. 1d-i, Extended Data
- 90 2). Patch clamp analysis revealed lengthened action potentials (AP) in *TBX5^{in/del}* cells (Fig. 1k, I;
 APD90, adj p-value<0.04 by Holm-Sidak test¹²), consistent with previous findings ¹³⁻¹⁵. Fluo-4
- 92 imaging measurements uncovered protracted calcium transient duration in *TBX5^{in/del}* and *TBX5^{PuR/PuR}* cells (T90 down, adj p-value<9E-4 by Holm-Sidak test), with an intermediate defect</p>
- 94 in *TBX5^{in/+}* cells (adj p-value<0.01) (Fig. 1m, n), consistent with findings in murine postnatal atrial CMs ¹⁶. These findings may underlie diastolic dysfunction in HOS in mice and humans ¹⁷.

96

Resolving TBX5 dosage-sensitive transcriptomes during human cardiac differentiation

98 To determine if reduced TBX5 dosage alters gene expression in potentially vulnerable cell types, we used a droplet-based single cell RNAseq method with cells collected from

- 100 parental WTC11, control *TBX5*^{+/+}, and mutant *TBX5* (*TBX5*^{in/+}, *TBX5*^{in/de/}) genotypes during directed cardiac differentiation (Fig. 2a). Heterogeneous cell populations composed of cardiac
- 102 precursors (CP) at day (d) 6, and cardiomyocytes (CMs) at d11 or d23, were harvested. We interrogated 64,396 cells with an average normalized read depth of 88,234 reads per cell (Fig.
- 104 2b-d; Extended Data 3). At d6, we identified 11 cell clusters, representing at least four cell types, including *POU5F1*⁺ pluripotent cells, *MESP1*⁺ mesoderm, *ISL1*⁺ cardiac precursors and
- 106 nascent *TNNT2*⁺ cardiomyocytes (Extended Data 3). At d11 and d23, differentiated cell types were identified by specific marker genes (Extended Data 3). This included a diversity of *TBX5*⁺
- 108 cell types, comprising very few $PLVAP^+$ endothelial cells or TTR^+ endodermal cells, some $COL1A1^+$ fibroblasts and, most abundantly, $TNNT2^+$ cardiomyocytes (Extended Data 3, 4). All of
- 110 these major cell types were present and detected in each *TBX5* genotype at d11 or d23 (Extended Data 3).
- 112 We applied this classification of human cell types to learn more about the genes that contribute to CHDs. We examined the expression of 376 CHD-associated candidate genes,
- 114 compiled from ¹⁸⁻²⁵, across the major cell types regardless of *TBX5* genotypes at d23 (Extended Data 4, Supplemental Table 1). For many CHD-associated genes, we observed enrichment of
- gene expression in CMs (e.g. *TBX5, FOXH1, ARID1A, EP300, KDM6A, PKD1*; adj p-value<0.05
 by Wilcoxon Rank Sum test), fibroblasts (e.g. *SMARCA2, PITX2, ZEB2, HAND2*; adj p-
- value<0.05), endoderm (e.g. *TBX3, WDR5, SALL4, NODAL*; adj p-value<0.05), endothelial cells
 (e.g. *FGFR1, TGFBR2, SHANK3, KCNJ2*; adj p-value<0.05) or other cell types (Extended Data
- 4). This gene expression dataset provides a resource that helps identify progenitors to these cell types and may allow further categorization of human CHD-associated candidate genes.

122

TBX5 dose-dependent cellular trajectories during human cardiac differentiation

- 124 To assess if altered transcriptional states in *TBX5* mutant cells reflected changes in paths of differentiation, we inferred cellular trajectories of each *TBX5* genotype in our allelic
- 126 series using the R package URD ²⁶, which predicts cellular chronology based on userdetermined origins and ends. We defined *POU5F1*⁺ cells from d6 as a root and each d23 cluster
- as an individual tip in a pseudotime tree (Fig. 2b-d, Extended Data 5). *TBX5^{in/+}* cells followed a path similar to wildtype and control (collectively "WT) cells during differentiation to CMs (Fig. 2e,
- f, dashed lines), but within the shared branch, a tip occupied by *TBX5^{in/+}* CMs (red arrowhead)
 was disparate from wildtype (black arrowhead) and control, demonstrating *TBX5^{in/+}* CMs distinct
- 132 from WT. In contrast, *TBX5^{in/del}* cells deviated from the differentiation path (Fig. 2g, blue dashed line, blue arrowheads). We identified several genes (e.g. *NAV1, TECRL, LAMA4,* and *NPPA*),
- 134 which were positively correlated with pseudotime (rho \geq |0.4|, p-value<0.05 by two-sided *t* test) in the WT/*TBX5*^{*in*/+} branch, but not in the *TBX5*^{*in*/del} branch (Z-score \geq 15 by difference in rho),
- suggesting that these genes were not activated properly in *TBX5^{in/del}* cells (Fig. 2h, i, Extended Data 5). Likewise, we identified several genes (e.g. *DES, TBX2, RSPO3,* and *LBH*) that
- 138 positively correlated with pseudotime in *TBX5^{in/de/}* cells (rho≥|0.4|, p-value<0.05), but not in wildtype cells (Z-score≥15) (Fig. 2j, Extended Data 5), signifying that these genes are</p>
- 140 inappropriately deployed in *TBX5^{in/del}* cells.

To identify genes that may determine one cell trajectory route from another, we

- 142 assessed differential gene expression between imputed intermediates, which we considered as potential precursors, within branches proximal to *TBX5* genotype-specific tips. We compared
- 144 these intermediate branches of cells that distinguish the cell trajectory route to CMs of wildtype, control and *TBX5^{in/+}* from *TBX5^{in/del}* (Fig. 2k, segments 69 vs. 70). We identified several
- differentially expressed genes, including structural genes (e.g. *MYL3*, *TTN*, *MYH6*, *TNNT2*,
 TNNI1; adj p-value<0.05 by Wilcoxon Rank Sum test), calcium handling genes (*PLN*, *ATP2A2*,
- 148 *RYR2*; adj p-value<0.05), secreted factors (*WNT2*, *FGFR1*; adj p-value<0.05), and cardiac TFs (*IRX4*, *HAND2*; adj p-value<0.05) (Extended Data 5). Of note, expression of the CHD-

- 150 associated cardiac transcription factor *NKX2-5*, a transcriptional partner of TBX5^{7,27,28}, was differentially expressed between intermediate branches of the URD tree that distinguish
- wildtype/control/*TBX5^{in/+} TNNT2⁺* cells from *TBX5^{in/del} TNNT2⁺* cells (Fig. 2I; adj p-value<1E-300
 Wilcoxon Rank Sum test). Onset of *NKX2-5* expression was delayed in *TBX5^{in/del}* cells (adj p-
- value<0.05 by Bonferroni-Holm multiple testing correction), along with a module of genes (e.g.
 PARP1, RPL37, KIAA1462 and *ATP1A1*; adj p-value<0.05), concomitant with *NKX2-5*
- 156 expression (Fig. 2I, Extended Data 5), providing a potential molecular explanation for a delay of onset of beating by *TBX5* loss (Fig. 1e).
- 158

Quantitative transcriptomic responsiveness to reduced TBX5 dosage in cardiomyocytes

- 160 *TBX5* genotype-specific clusters emerged among cardiomyocytes at d11 (Fig. 2c), and *TBX5* genotype-specific segregation was more striking at d23, particularly in *TNNT2*⁺ cells (Fig.
- 2d). We focused on *TNNT2*⁺ clusters at d23 (Fig. 3a, b) and d11 (Extended Data 6). We constructed a phylogenetic tree relating 25 different *TNNT2*⁺ cell clusters (Fig. 3c), and
- 164 observed heterogeneity of gene set enrichment among WT or *TBX5^{in/+}* clusters (Fig. 3d), implying putative CM subtypes. Some CM subtypes did not fit conventional categorization
- based on anatomy. We searched for differentially expressed genes, by pair-wise comparisonsof related subtypes between *TBX5* genotypes. To identify *TBX5* genotype-specific differences
- within a CM subtype, we compared clusters enriched for WT to related clusters enriched for $TBX5^{in/+}$ or $TBX5^{in/del}$ cells (Fig. 3d-k). We discovered only a few common changes in gene
- 170 expression amongst pair-wise cluster comparisons of WT vs *TBX5^{in/+}* clusters, such as *NPW* and *PLN* (Fig. 3d-i; adj p-value<0.05 by Wilcoxon Rank Sum test). We also discerned
- 172 differences in gene expression based on cluster-specific comparisons (adj p-value<0.05 by Wilcoxon Rank Sum test), implying discrete cell subtype-sensitivity to TBX5 haploinsufficiency
- 174 (Fig. 3d-i) or TBX5 loss (Extended Data 7). We also compared related TBX5 genotype-specific

cell clusters at a lower resolution of Louvain clustering and discovered genes that were

- 176 differentially expressed across reduced TBX5 dosage in a variety of patterns (Fig. 3j, k). Quantitative changes in gene expression level were apparent across *TBX5* genotypes (for
- example, *PLN, FYXD1*; adj p-value<0.05 by Wilcoxon Rank Sum test), as were changes in both expression level and percentage of expressing cells (e.g. *RSPO3, NPPA, TECRL, DES*) (Fig.
- 180 3k).

This differentially expressed gene set was enriched for electrophysiology (EP)-related

- genes (FDR<0.05, Fig. 3I), which are implicated in membrane depolarization (*SCN5A*), calcium handling (*RYR2*, *ATP2A2*, and *PLN*) and arrhythmias (*TECRL*) (Fig. 3e, g, i, k, I). Several
- altered transcripts were encoded by other genes implicated in CHD (*CITED2, MYOCD, ANKRD1*) (Fig. 3e, g, i, k, l). Some TBX5-dependent genes that were previously associated with
- 186 CHD or arrhythmias by genome-wide association studies (GWAS) were identified (Fig. 3I). We uncovered *IGFBP7*, *FRAS1*, *MYH7B* and *SMCHD1* for CHD (odds ratio 3.2, FDR<0.03) and 47
- reported genes for arrhythmias (for example, *PLN, HCN4, SCN5A, GJA1, PITX2* and *TECRL*;
 odds ratio 9.0, FDR<1.9E-39) among TBX5-sensitive genes at day 23 (Fig. 3m, Supplementary
- 190 Table 2).

Using orthogonal assays at single cell resolution, we found that TBX5 dosage-

- 192 dependent downregulation of *NPPA* was evident in CMs by RNAscope (*TBX5^{in/+}*, p<0.05; *TBX5^{in/del}* or *TBX5^{PuR/PuR}*, p<1E-4 by Student's t-test), consistent with a TBX5-dependent
- 194 rheostatic regulation of this gene in mouse ^{7,8}. Loss of DES in *TBX5^{in/+}* and recovery in *TBX5^{in/del}* was detected in CMs by flow cytometry (Extended Data 8, p-value<1E-4 by Chi-Square test),</p>
- 196 corroborating some human *TBX5* dose-dependent sequelae.

Comparisons of biological replicates at d23 showed significant overlap of TBX5-

- 198 dependent genes for WT vs. *TBX5^{in/+}* (p-value<2.466e-9 by hypergeometric test) or WT vs. *TBX5^{in/del}* (p-value<5.410e-6) (Extended Data 9, 10). The differences in gene expression</p>
- 200 between biological replicates likely reflect a combination of technical variability and biological

stochasticity that, as in patients with TBX5 mutations, may explain variable expressivity of

- 202 disease for a given mutation. Since modifiers in different genetic backgrounds might modulate phenotypic effects, we assessed iPSC lines of *TBX5* mutants in an independent genetic
- background (PGP1, from a Caucasian male, compared to WTC11 from a Japanese male,
 Extended Data 11). Comparisons of TBX5-dependent genes in d23 *TNNT2*⁺ cells showed
- significant overlap between WTC11 vs. *TBX5^{in/+}* and PGP1 vs. *TBX5^{in/+}* (p-value<1.174e-8 by hypergeometric test) or WTC11 vs *TBX5^{in/del}* and PGP1 vs. *TBX5^{del/del}* (p-value<7.260e-15)
- (Extended Data 11, 12), proportionally similar to biological replicates (Extended Data 9, 10).
 These results demonstrate reproducible TBX5 dosage-dependent alterations from independent
- 210 experiments, genetic backgrounds, and gene targeting strategies.

To assess if changes to TBX5 dose-sensitive genes were largely direct or indirect TBX5 targets, we examined TBX5 occupancy in human iPSC-derived CMs from a published dataset ¹⁰. We found correlations of TBX5 occupancy near TBX5 dosage-vulnerable gene sets (Fig. 3I,

- 214 m, and Extended Data 13, 14; for example, odds ratio 6.9 for all TBX5-dependent human genes; FDR<1.9E-178), suggesting our identified genes may be direct TBX5 targets. TBX5
- 216 cooperates with GATA4 for cardiac gene regulation ^{10,28,29}; we also observed that GATA4 occupancy ¹⁰ with TBX5 was highly associated near TBX5-dependent genes (Fig. 3I, m, and
- Extended Data 13, 14; for example, odds ratio 6.4 for all TBX5-dependent human genes;
 FDR<1.3E-155), indicating that GATA4 may have a role modulating TBX5 dosage-sensitive
- 220 genes.

212

222 Susceptible human gene regulatory networks for congenital heart disease

Since CHD-associated and arrhythmia-related genes were enriched among TBX5dependent genes, we deduced that TBX5 may be vital for preserving the integrity of cardiac gene regulatory networks (GRNs). To evaluate the role of TBX5 dosage for regulating GRNs,

- we used bigSCale2 ³⁰ to independently infer putative GRNs from single cell expression data of $TNNT2^+$ cells at d6, d11 and d23 of each *TBX5* genotype (Fig. 4a, b, Extended Data 15). This
- 228 allows for quantitative prediction of the biological importance of genes in a regulatory network reconstructed with bigSCale2, by applying the concept of "pagerank" ³⁰, first devised to rank the
- importance of websites via numerical weighting ³¹, to discover genes with a loss in importance
 (i.e. centrality) among *TBX5* genotypes. By comparing nodes from inferred networks of WT to
- 232 *TBX5^{in/+}* or *TBX5^{in/del}*, we uncovered several nodes that displayed reduced pagerank centrality at specific time points and levels of reduced TBX5 dosage (Fig. 4a-c, Extended Data 15). These
- 234 included *RYR2* and twenty CHD-associated genes (for example, *GATA6*, *HAND2*, *SMAD2*, p<2.2e-5 by hypergeometric test.) (Fig. 4c, d, Extended Data 15), consistent with independent
- analysis from differential gene expression. For example, at d11, pagerank centrality of the CHDassociated TF *SMAD2* was absent in *TBX5^{in/+}* cells (Fig. 4a-c, top 5% of all changes), indicating
- 238 an impairment of *SMAD2* function. Centrality of the cardiac development-related TF *MEF2C*, which is necessary for heart development ³², was substantially reduced by heterozygosity or
- 240 loss of *TBX5* at d11 (Fig. 4a-c, top 5% cutoff). *MEF2C* gene expression was unchanged by reduced TBX5 dosage, suggesting a change in *MEF2C* functional connectivity. These altered
- 242 GRNs show that TBX5 dosage is critical for maintaining cardiac network stability, and unveil potential genetic interactions disrupted in TBX5-dependent CHDs.
- 244 To further investigate the predicted relationship between *TBX5* and *MEF2C* within a dosage-sensitive CHD-associated GRN, we used a complementary approach using bigSCale2,
- to identify gene-gene correlations with *TBX5* expression in individual *TNNT2*⁺ cells across timepoints and *TBX5* genotypes (Fig. 4e). Genes highly co-expressed with *TBX5* (Pearson
- 248 coefficient >0.5) regardless of *TBX5* genotype suggested potential cell autonomous effects by *TBX5* dosage (for example, *PLN*, *RYR2*, *TTN*), while those with high anti-correlation (Pearson
- 250 coefficient <-0.5) suggested non-cell autonomous effects (for example, HES1, TLE1, CBX1,

ETV4, ID4, FGFR1). MEF2C expression was among the highest correlated with TBX5

- 252 expression and demonstrated greatest *TBX5*-dependent decrease of pagerank (Fig. 4c, e) or degree (i.e. putative number of target genes, Supplemental Table 3) at d11, further suggesting
- 254 *MEF2C* as a candidate for mediating TBX5 dose-sensitive regulatory effects. Multiple genes that correlated with *MEF2C* displayed diminished levels of degree by reduced TBX5 dosage (for

example, *SMYD1, PDK1, MYOCD, TTN, RYR2*; top 5% cutoff) (Fig. 4f, Supplementary Table
3), supporting a potential explanation for changes to *MEF2C* functional connectivity in a TBX5
dosage-sensitive GRN.

We evaluated the predicted genetic interaction between TBX5 and MEF2C in vivo. We

- used a hypomorphic allele of Tbx5 ($Tbx5^{CreERT2IRES2xFLAG}$, abbreviated $Tbx5^{CreERT2}$)³³, which we further characterized (Extended Data 16) to probe for a potentially highly-sensitive genetic
- 262 interaction between *Tbx5* and a null allele of *Mef2c (Mef2c^{del})* ³². *Tbx5^{CreERT2/+};Mef2c^{del/+}* mice were underrepresented at weaning (Fig. 5a). By histology, we detected muscular (n=3 of 4) or
- 264 membranous (n=1 of 4) VSDs in compound heterozygous embryos at E14.5, which were not apparent in *Tbx5^{CreERT2/+}* or *Mef2c*^{del/+} embryos (Fig. 5b-k). These findings demonstrate a highly-
- 266 sensitive genetic interaction between *Tbx5* and *Mef2c* in mouse *in vivo*, consistent with prediction from the human TBX5 dose-sensitive GRN.
- We speculated that MEF2C may play a direct role to co-regulate TBX5-dependent gene expression. Chromatin occupancy ³⁴ of TBX5, MEF2c, and MEF2a (also predicted to be part of
- 270 the TBX5-dependent GRN) was highly correlated near TBX5-sensitive human or mouse genes (for example, *HAND2*, *FHL2*, *TECRL*, *NPPA*/*NPPB*; Fig 5i-g, Extended Data 17, 18, 19;
- FDR<0.05 for multiple comparisons). Thus, direct co-regulation of target genes by TBX5,
 MEF2c, and MEF2a, in addition to previously known interactions with NKX2-5 and GATA4, may
- be a potential TBX5 dosage-dependent mechanism for CHDs.

276 Discussion

Our studies with a human cellular model of CHD has defined consequences of reduced TBX5 dosage during cardiac differentiation at single cell resolution. Of potential relevance to a range of anatomical and functional manifestations of *TBX5* haploinsufficiency, we uncovered

- 280 discrete responses to reduced TBX5 dosage in susceptible cardiomyocyte subtypes. The quantitative specificity of TBX5-dependent cell types underscores cellular complexity in
- 282 response to transcription factor dosage. Analysis of human TBX5 dose-sensitive GRNs identified vulnerable nodes enriched for CHD-associated or cardiac development genes,
- 284 suggesting a vital role for TBX5 dosage to maintain cardiac network stability. The sensitivity of a GRN to transcription factor dosage has been observed in *Drosophila* embryo patterning ³⁵ for
- example, but has not been linked to human disease to date. The biophysical rules regulating transcription factor dosage sensitivity are only now becoming understood, and our results in a
- 288 human CHD model may bring immediate pertinence of human disease to this biological context. From TBX5-sensitive GRNs, we discovered several important nodes linking many CHD-
- 290 related genes. For example, the reduced centrality of *MEF2C* in the TBX5-dependent GRN suggests an important and sensitive link between these cardiac transcription factors. Indeed, we
- validated this predicted genetic interaction in mouse, which yielded muscular VSDs, a type ofCHD rarely observed in mouse models but common in humans. It is likely that other sensitive
- 294 nodes in a TBX5-dependent network will illuminate novel aspects of CHD and cardiac gene regulation. Variability in CHDs with monogenic inherited or *de novo* mutations could be
- 296 explained by additional mutations in genes that form part of these functional networks, as illuminated by our findings, and as evidenced by oligogenic inheritance of CHD-causing variants
- ¹¹. Our results point to a genomic framework that will guide genetic insights into the underpinnings of CHD.

300

Contributions. I.S.K. and B.G.B conceived and designed the project. B.I.G., L.W., L.B., T.S.

- 302 and I.S.K. performed gene targeting and isolation of mutant iPSCs. B.I.G., K.S.R, P.G., T.S., and I.S.K. performed in vitro differentiation and harvested samples. P.G. performed the
- 304 Western analysis. M.H.L. performed electrophysiology analyses. R.T. performed statistical analyses for electrophysiology. K.S.R. performed immunostaining and scoring of
- 306 cardiomyocytes. G.A.A. performed RNAscope and flow cytometry. K.S.R. and I.S.K. performed Seurat analyses. K.S.R., A.P.B., H.G., and I.S.K. performed pseudotime analyses. H.G.
- implemented the cell browser. G.I. performed gene regulatory network analyses. W.P.D. andI.S.K. performed phenotype analyses of mutant mice. I.S.K. performed bulk RNAseq analyses.
- B.N.A., F.G., K.L., and W.T.P. performed ChIP-seq experiments and peak calling. S.K.H. and
 R.T. performed association analyses of co-occupancy, gene expression and disease
- 312 candidates. J.M.S., W.T.P., C.E.S., J.G.S., and H.H. provided advisement. I.S.K. and B.G.B. wrote the manuscript, with comments and contributions from all authors.

314

Acknowledgements. We thank Dario Miguel-Perez and Sarah Wood for mouse genotyping

- 316 and colony maintenance, Jeff Farrell for input on URD, David Joy and Todd McDevitt for sharing in-house imaging software, Brian Black for mouse lines, Kathryn Claiborn for editorial
- 318 assistance, and members of the Bruneau lab for discussions and comments. We also thank the Gladstone Bioinformatics, Genomics, Histology and Microscopy, and Stem Cell Cores, R. Sarah
- 320 Elmes at the UCSF Laboratory for Cell Analysis, the UCSF Center for Advanced Technology, the Salk Institutes Center of Excellence for Stem Cell Genomics, Matthew Speir and Maximilian
- 322 Haeussler at cells.ucsc.edu, and the UCSC Stem Cell Data Center Hub for their invaluable assistance. This work was supported by grants from the National Institutes of Health (NHLBI
- 324 Bench to Bassinet Program UM1HL098179 to B.G.B. and UM1HL098166 to J.G.S. and W.T.P., 2T32HL007731-27 to S.K.H), , the Foundation for Anesthesia Education and Research

- 326 (Mentored Research Training Grant to I.S.K.), Society for Pediatric Anesthesia (Young Investigator Award to I.S.K.), Hellman Family Fund (I.S.K.), UCSF REAC Grant (I.S.K.) and
- 328 UCSF Department of Anesthesia and Perioperative Care (New Investigator Award to I.S.K.).H.H. is a Miguel Servet (CP14/00229) researcher supported by the Spanish Institute of Health
- 330 Carlos III (ISCIII) and Ministerio de Ciencia, Innovación y Universidades (SAF2017-89109-P; AEI/FEDER, UE). This work was also supported by the California Institute for Regenerative
- 332 Medicine (RB4-05901 to B.G.B), an NIH/NCRR grant (C06 RR018928) to the J. David Gladstone Institutes, the Younger Family Fund (B.G.B.), and the Office of the Assistant
- 334 Secretary of Defense for Health Affairs through the Peer Review Medical Research Program under Award No. W81XWH-17-1-0191. Opinions, interpretations, conclusions and
- 336 recommendations are those of the author and are not necessarily endorsed by the Department of Defense. In conducting research using animals, the investigator(s) adheres to the laws of the
- 338 United States and regulations of the Department of Agriculture. In the conduct of research utilizing recombinant DNA, the investigator adhered to NIH Guidelines for research involving
- 340 recombinant DNA molecules.
- 342 **Competing Interests**: B.G.B. is a co-founder and shareholder of Tenaya Therapeutics. None of the work presented here is related to the interests of Tenaya Therapeutics.
- 344

346

348 Methods

Gene targeting and genotyping of human iPS cells mutant for TBX5. sgRNAs for TBX5

- exon 3 (sgRNA1, TCCTTCTTGCAGGGCATGGA) or exon 7 (sgRNA2,
 CCTTTGCCAAAGGATTTCG), which encode the T-box domain, were selected using
- 352 crispr.genome-engineering.org, and cloned by annealing pairs of oligos into a plasmid containing humanized *S. pyogenes* Cas9, as described in ³⁶ (px330-U6-Chimeric_BB-CBh-
- hSpCas9 was a gift from Feng Zhang, Addgene #42230).
 For WTC11-derivatives *TBX5^{+/+}* (control), *TBX5^{in/+}* or *TBX5^{in/del}*, the induced pluripotent
- 356 stem (iPS) cell line WTC11 (gift from Bruce Conklin, available at NIGMS Human Genetic Cell Repository/Coriell #GM25236)³⁷ was electroporated (Lonza #VPH-5012) with a cloned
- nuclease construct containing a guide RNA (sgRNA1) targeting exon 3 of *TBX5*, as described in
 ^{37,38}. Cells were plated on human ESC-grade Matrigel (Corning #354277) and cultured in
- 360 mTeSR-1 (StemCell Technologies Cat #05850) with 10μM ROCK inhibitor (StemCell
 Technologies, Y-27632). For screening of *TBX5* exon 3 non-homologous end-joining (NHEJ)
- 362 mutations, genomic DNA flanking the targeted sequence was amplified by PCR (For1: ATGGCATCAGGCGTGTCCTATAA and Rev1: CCCACTTCGTGGAATTTTAGCCA), amplicons
- underwent digestion by NIaIII, and then evaluated for loss of NIaIII by gel electrophoresis(wildtype band 800bp, mutant band 880bp). Clones with no change, a heterozygous or
- 366 homozygous loss of NlallI were sequenced (For1: ATGGCATCAGGCGTGTCCTATAA, Rev1: TTCCGGGCTTGAACTTCTGG, Seq1: ATAGCCTTGTGCTGATGGCA).

368 For generation of *TBX5^{PuR/PuR}*, a puromycin resistance gene cassette (Frt-PGK-EM7-PuroR-bpA-Frt) containing homology arms of 469bp (5' homology arm) and 466bp (3'

- 370 homology arm) around the sgRNA1 target site at +9bp from the start of *TBX5* exon 3 was cloned by Cold Fusion (System Biosciences #MC010B) using amplicons from genomic DNA of
- 372 WTC11 into a construct that was a modification of plasmid pEN114³⁹. WTC11 cells were

electroporated with a cloned nuclease construct containing a guide RNA targeting exon 3, along

- 374 with the *TBX5* exon3 homology arm-Frt-PGK-EM7-PuroR-bpA-Frt cassette and plated as a serial dilution in mTeSR-1 with Rock inhibitor, as described in ³⁸. On day 2 and subsequent
- days, cells were grown in media containing mTeSR-1, Rock inhibitor and puromycin (0.5ug/mL),to select for puromycin-resistant cells. For screening of *TBX5* exon 3 homology-directed repair
- 378 (HDR) mutations, genomic DNA flanking the targeted sequence was amplified by PCR (For1: ATGGCATCAGGCGTGTCCTATAA, and Rev2: CCCACTTCGTGGAATTTTAGCCA for
- wildtype, 797 bp, For1: ATGGCATCAGGCGTGTCCTATAA, Rev3:
 GTTCTTGCAGCTCGGTGAC ³⁹ for PuroR, 1631 bp). Positive 5' arm clones were genotyped by
- 382 PCR for the 3' arm (For2: ATTGCATCGCATTGTCTGAG ³⁹, Rev4:

TTTGACAATCGGGTGGGACC, 829 bp).

- 384 For PGP1-derivatives *TBX5^{in/+}* or *TBX5^{del/del}*, the iPS cell line PGP1 (gift from George Church, available at NIGMS Human Genetic Cell Repository/Coriell #GM23338) ⁴⁰ was
- electroporated with a cloned nuclease construct containing a guide RNA (sgRNA2) targeting
 exon 7 of *TBX5*, as described in ⁴¹. For screening of *TBX5* exon 7 NHEJ mutations, the targeted
- 388 sequence was amplified using PCR primers (For3: GCTTCTTTTGGTTGCCAGAG, Rev5: CATTCTCCCCATTTCCATGT, Seq2: AGAGGCTGCATTTCCATGAT), Illumina compatible-
- 390 libraries from clones were generated and multiplex-sequenced on a MiSeq for purity of homogeneity of clones for heterozygous or homozygous mutations, as described in ⁴¹.
- 392

Isolation of homogenous iPS cell clones. Isolation of homogenous colonies for WTC11-

- 394 derivatives TBX5^{+/+} (control), TBX5^{in/+} or TBX5^{in/del} was performed by modification of methods described previously ^{38,42}. Briefly, single cell suspension of electroporated iPS cells was plated
- 396 on Matrigel-coated 6 well plates (WP) (BD Bioscience #351146). Once cultures were adherent and recovered to ~80% confluency, cells were detached by Accutase Cell Detachment Solution
- 398 (Stemcell Technologies #07920), diluted with 1X DPBS without Ca²⁺/Mg²⁺ and singularized

using a P1000 filtered tip, and centrifuged. The cell pellet was resuspended in mTeSR-1, Rock

- 400 inhibitor and Gentamicin (Life Technologies #15750-060) media, incubated with DAPI (1:1000 from a 1mg/mL stock) for 5 min, centrifuged and resuspended at a concentration of at least
- 402 1.0E6 cells/mL in mTeSR-1, Rock inhibitor and Gentamicin media without DAPI. After filtering cells with a 40-micron mesh into FACS tubes, remaining cells (about 120,000 cells per well)
- 404 were plated on to 6WP for maintenance. Single cells were then sorted for DAPI negativity using a BD FACS Ariall or ArialII, with a 100-micron nozzle at the lowest flow rate available, into
- 406 individual wells of a 96WP coated with Matrigel containing media of mTeSR-1, Rock inhibitor and Gentamicin. Upon recovery at 37°C, each well was evaluated one day later for no cells, one
- 408 cell or more than one cell. All cells were maintained with mTeSR-1, Rock inhibitor and Gentamicin media for at least 5 days, then with mTeSR-1 alone for an additional 5-7 days. Each
- well at 25% confluency was harvested and re-plated upon singularization with P200 tips in
 96WP for more efficient cell growth. When the cell confluency of each well from "single" cells
- 412 was nearly 100%, then 90% of cells were harvested for genotyping using QuickExtract DNA lysis solution (Epicentre #QE0905T), while 10% of cells were re-plated for the next round of cell

414 selection for wells of interest by FACS sorting again or by serial dilution of cells for manual picking of colonies, as described in ^{37,38} from apparent "single" cells. Rounds were repeated until

- 416 every daughter well showed the same genotype, consistent with homogeneity. Genomic DNA from individual wells of interest were amplified using high fidelity *Taq* polymerase, TA-cloned
- and sequenced to confirm genotype and homogeneity.

Isolation of a homogenous colonies for PGP1-derivatives *TBX5^{in/+}* or *TBX5^{del/del}* was
 performed, as described in {Byrne:2007fn}. Isolation of a homogenous colonies for WTC11 derivative *TBX5^{PuR/PuR}* was performed, as described in ³⁸.

422 After sequencing confirmation of respective genotypes, karyotypically-normal cells from each iPS cell line were expanded for subsequent studies.

424

Maintenance of iPS cells and differentiation to cardiomyocytes. All iPS cell lines were

- 426 transitioned to and maintained on growth factor-reduced basement membrane matrix Matrigel (Corning #356231) in mTeSR-1 medium. For directed cardiac differentiations, iPS cells were
- 428 dissociated using Accutase and seeded on to 6WP or 12WP. The culture was allowed to reach 80-90% confluency and induced with the Stemdiff Cardiomyocyte Differentiation Kit (Stemcell
- 430 Technologies #05010), according to the manufacturer's instructions. Starting on day 7, differentiations were monitored daily for beating cardiomyocytes and onset of beating was
- 432 recorded as the day when beating was first observed.
- 434 **Flow Cytometry.** iPS-derived cardiomyocytes from WTC11, Control, *TBX5^{in/+}* and *TBX5^{in/del}* lines were dissociated using Trypsin-EDTA 0.25% on day 15 or day 23 after induction of the
- 436 differentiation protocol and fixed with 4% methanol-free formaldehyde. Cells were washed with PBS and permeabilized using FACS buffer (0.5% w/v saponin, 4% Fetal Bovine Serum in PBS).
- 438 For evaluation of differentiation efficiency, cells were stained with a mouse monoclonal antibody for cardiac isoform Ab-1 Troponin at 1:100 dilution (ThermoFisher Scientific #MS-295-P) or the
- 440 isotype control antibody (ThermoFisher Scientific #14-4714-82). For analyzing levels of Desmin protein, cells were co-stained with the mouse monoclonal antibody for cardiac isoform Ab-1
- 442 Troponin at 1:100 dilution and recombinant rabbit anti-Desmin antibody at 1:70 dilution (Abcam #ab32362), or normal rabbit IgG antibody (Millipore Sigma #NI01) for 1 hour at room
- 444 temperature. After washing with FACS buffer, cells were stained with the following secondary antibodies - goat anti-mouse IgG Alexa 594 at 1:200 dilution (ThermoFisher Scientific #A-
- 446 11005) and donkey anti-rabbit IgG Alexa 488 at 1:200 dilution (ThermoFisher Scientific#A21206) for 1 hour at room temperature. Cells were then washed with FACS buffer, stained
- 448 with DAPI for 5 minutes, rinsed, and filtered with a 40-micron mesh. At least 10,000 cells were analyzed using the BD FACSArialI or ArialII, and results were processed using FlowJo (BD
- 450 Bioscience). Gating strategy is shown in Extended Data 20.

- 452 **Western blotting.** iPS-derived cardiomyocytes were harvested on day 15, pelleted and flash frozen. Protein was isolated from supernatant in RIPA buffer with EDTA-free protease and
- 454 phosphatase inhibitor (ThermoFisher Scientific) after sonication (15 second pulse on, 15 second pulse off, for four pulses). After quantification by BCA assay (ThermoFisher Scientific), 150µg of
- 456 total protein was loaded per well for each genotype. After running on SDS-PAGE and wet transfer with NuPage Transfer buffer (ThermoFisher Scientific) to a PVDF membrane, the blot
- 458 was washed in PBST and incubated in primary antibodies of rabbit polyclonal anti-TBX5 at a 1:400 dilution (Sigma #HPA008786) and mouse monoclonal anti-cTNT at 1:1000 dilution
- 460 (ThermoFisher Scientific #MS-295-P), followed by secondary antibody incubation with donkey anti-rabbit IgG IRDye680 at 1:2000 dilution (Licor #926-68073) and donkey anti-mouse IgG
- 462 IRDye800 at 1:2000 dilution (Licor #926-32212). The blot was imaged on an Odyssey FC Dual-Mode Imaging system (Licor).
- 464

Fluorescent in situ hybridization. iPS cell-derived cardiomyocytes from WTC11, Control,

- 466 *TBX5^{in/+}, TBX5^{in/del}* and *TBX5^{PuR/PuR}* were dissociated using Trypsin-EDTA 0.25% on day 23 after induction of the differentiation protocol, and 25,000-40,000 cells were plated on to 8-well
- chambered slides (Ibidi #80826), to obtain a relatively sparse monolayer of cardiomyocytes.Cells were fixed the following day with 10% Neutral Buffered Formalin for 15 minutes at room
- 470 temperature. Cells were then serially dehydrated in 50%, 70% and 100% ethanol and stored at -20°C until ready to be hybridized. *In situ* hybridization was performed using the RNAscope
- 472 Multiplex Fluorescent v2 Assay kit (Advanced Cell Diagnostics #323100) with probes for *Hs*-*TNNT2* (#518991) and *Hs-NPPA* (#531281). Slides were imaged at 10X and 40X magnification
- 474 on the Keyence BZ-X710 All-in-One Fluorescence Microscope. Mean intensity of *NPPA* signal was measured in each *TNNT2*+ cell from every group. Unpaired t-tests were used to calculate
- 476 statistical significance.

- 478 **Replating cardiomyocytes for single cell electrophysiology.** iPS cell-derived cardiomyocytes (day 15 or older) from WTC11, Control, *TBX5^{in/+}*, *TBX5^{in/del}* and *TBX5^{PuR/PuR}*
- 480 were gently dissociated in Trypsin-EDTA 0.25% and quenched using StemDiff Maintenance Medium with 10% FBS. Cell suspension was centrifuged at 800 rpm for 5 minutes. The pellet
- 482 was resuspended in StemDiff Maintenance Medium with Rock inhibitor at a 1:1000 dilution.Cardiomyocytes were counted, and 25,000-35,000 cells were plated on to growth factor-
- 484 reduced Matrigel-coated 15mm round glass coverslips (Warner Instruments #64-0703) to obtain a sparse distribution. Cardiomyocytes were then maintained on coverslips in StemDiff
- 486 Maintenance Medium.
- 488 **Patch Clamp Electrophysiology.** Patch clamp recordings were made on single iPSC-derived CMs using the perforated-patch configuration. Experiments were performed at 30°C under
- 490 continuous perfusion of warmed Tyrode's solution containing (in mM): 140 NaCl, 5.4 KCl, 1 CaCl₂, 1 MgCl₂, 10 glucose, and 10 HEPES, with the pH adjusted to 7.4 with NaOH.
- 492 Recordings were conducted using borosilicate glass pipettes (Sutter Instruments) with typical
 resistances of 2 to 4MΩ. The pipette solution consisted of (in mM): 150 KCI, 5 NaCI, 5 MgATP,
- 494 10 HEPES, 5 EGTA, 2 CaCl₂, and 240 μg/mL amphotericin B, with the pH adjusted to 7.2 with
 KOH. Spontaneous action potentials were acquired in a zero-current current clamp
- 496 configuration using an Axopatch 200B amplifier and pClamp 10 software (Axon Instruments).Data was digitized at 20 kHz and filtered at 1kHz. Action potential parameters from each cell
- 498 were derived using Clampfit 10 software (Axon Instruments).
- 500 **Fluorescent recordings of calcium flux.** iPSC-derived CMs on glass coverslips were loaded with Ca²⁺ indicator dye Fluo-4 AM (Thermo Fisher Scientific #F14201) to record Ca²⁺ flux, as

- 502 previously described ⁴³. Measurements were made on spontaneously firing single or small clusters of iPSC-derived CMs using a 10X objective on a Zeiss Axio Observer Z1 inverted
- 504 microscope. For experiments, cells were placed in Tyrode's solution containing 1.8 mM Ca²⁺ within a 37°C heated stage-top imaging chamber (Okolab). Images were acquired at 100 fps
- using an ORCA-Flash 4.0 camera (Hamamatsu, Bridgewater, NJ). Data was processed using ZEN (Zeiss) or Image J software (<u>http://rsbweb.nih.gov/ij/</u>) and analyzed using custom in-house
 software ⁴⁴.
- 510 **Graphing and statistics for electrophysiology.** For electrophysiology and calcium imaging experiments, graphs were generated using Prism 8.2.0 (GraphPad Software). Significance
- 512 between parental and experimental groups was determined with a custom R-script using unpaired two-sided Welch's *t* tests with Holm-Sidak correction for multiple comparisons 12 .

514 Adjusted P < 0.05 was considered statistically significant.

- 516 **Immunostaining and scoring of cardiomyocytes.** iPSC-derived cardiomyocytes from WTC11, Control, TBX5^{in/+} and *TBX5^{in/del}* were replated on coverslips placed in 12-well plates on
- day 23, as described above for replating for electrophysiology. Cells were fixed in 4%formaldehyde for 20 minutes at room temperature, followed by washes in PBS. Cells were then
- 520 treated with a blocking buffer containing 5% goat serum and 0.1% Triton X-100 in PBS for 1 hour at room temperature. A mouse monoclonal antibody for cardiac isoform Ab-1
- 522 Troponin (ThermoFisher Scientific #MS-295-P) was added to the coverslip-containing wells at a 1:100 dilution in blocking buffer and incubated on a rocker for 2 hours at room temperature.
- 524 Following washes with 0.1% Triton X-100 in PBS, coverslips were treated with a donkey antirabbit IgG Alexa 488 antibody (ThermoFisher Scientific #A21206) at a 1:200 dilution for 2 hours
- 526 at room temperature. Coverslips were then washed with 0.1% Triton X-100 in PBS and stained

with DAPI at a 1:1000 dilution for 2 minutes. Coverslips were washed and stored in PBS at 4C.

- 528 Images were acquired on a Zeiss LSM 880 with Airyscan and processed by ImageJ ⁴⁵. Myofibrillar arrangement in cardiomyocytes was manually scored on a scale of 1-5,
- 530 similar to ⁴⁶. A score of 1 represents cells with intact myofibrils in a parallel arrangement. A score of 2 represents cells that have intact myofibrils, but many are not parallel. Scores of 3 and
- 532 of 4 include cells with increasing degrees of myofibrillar fragmentation or aggregation. A score of 5 represents cells without visible myofibrils. No cells were apparent among our samples with
- 534 a score of 5. Violin plots were generated in Prism (GraphPad) to show distribution of scored cells from each group. Fisher's exact test was used to determine statistical significance.
- 536

Cell harvesting for single cell RNAseq. Cells from day 6, day 11 or day 23 of the

- 538 differentiation protocol were collected from 3 independent differentiations. Wells for dissociation were chosen based on typical differentiated morphology on day 6 or robust beating on day 11
- 540 and day 23. Cells were singularized with Trypsin-EDTA 0.25%. After quenching, the single cell suspension was centrifuged at 800 rpm for 5 minutes. The pellet was resuspended in 1X PBS
- 542 with 0.04% w/v Ultrapure BSA (MCLAB #UBSA-500) and counted. A 30μL cell suspension containing 10,000 cells was used to generate single cell droplet libraries with the Chromium
- 544 Single Cell 3' GEM, Library & Gel Bead Kit v2 according to manufacturer's instructions (10X Genomics). After KAPA qPCR quantification, a shallow sequencing run was performed on a
- 546 NextSeq 500 (Illumina) prior to deep sequencing on a NextSeq 500, HiSeq 4000, or NovaSeq (Illumina) for a read depth of >100 million reads per cell.

548

Data processing using Cellranger. All datasets were processed using Cellranger 2.0.2.

550 FASTQ files were generated using the mkfastq function. Reads were aligned to hg19 reference (version 1.2.0). Cellranger aggr was used to aggregate multiple GEM libraries.

Seurat analysis. Outputs from the Cellranger pipeline were analyzed using the Seurat package

- 554 (version 2.3.4) in R (version 3.5.1) [R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
- 556 URL <u>https://www.R-project.org/</u>]. Datasets from day 6, day 11 or day 23 experiments were analyzed as separate Seurat objects. Quality control steps were performed to remove dead
- 558 cells or doublets, and cells with a UMI count between 10,000 to 80,000 were retained. After normalizing the data, sources of unwanted variation, such as differences in the number of UMI,
- 560 number of genes, percentage of mitochondrial reads and differences between G2M and S phase scores were regressed using the ScaleData function. Next, principal component analysis
- 562 (PCA) was performed using the most highly variable genes. Cells were then clustered based on the top 25-30 principal components and visualized using a dimensionality reduction method
- 564 called Uniform Manifold Approximation and Projection (UMAP)⁴⁷. The resolution parameter was set, so that cluster boundaries separated the major cell types.
- 566 For day 11 or day 23 cardiomyocyte datasets, *TNNT2*⁺ clusters were defined as containing a majority of cells expressing *TNNT2* on a feature plot and extracted using the
- 568 SubsetData function and re-clustered. Subsequently, the resolution parameter was set to partition clusters enriched for a particular genotype. A phylogenetic tree was generated by
- 570 relating the "average" cell from each cluster by centroid analysis, using the BuildClusterTree function. Differential gene expression tests were run between closely related clusters, using the
- 572 FindMarkers function with min.pct set to 0.1 and logfc.threshold set to 0.25. Selected differentially expressed genes with an adjusted p-value less than 0.05 from the Wilcoxon Rank
- 574 Sum test were then displayed using the Dotplot function. As Seurat log normalizes gene expression counts and scales values for each gene (mean is 0, std dev of +/-1), dot plots and
- 576 heatmaps are based on scaled expression values.

578 cardiomyocytes (*TNNT2*), dividing cardiomyocytes (*CENPF+TNNT2*), fibroblasts (*COL1A1*),

endoderm (TTR alone or TTR+AFP) and endothelial cells (PLVAP). Clusters of cells not defined

- 580 by any of these markers were labeled as 'Others'. The numbers of cells in each major cell type category in each genotype were then calculated. Sunburst plot was generated in Excel using
- 582 the percentage of cells in each cell type category per genotype. We used FindAllMarkers to generate a list of top marker genes for each cluster and presented two selected genes in a dot
- 584 plot to display potential diversity of subtypes among these major cell types.
- 586

Congenital Heart Disease-Associated or Electrophysiology-Related Gene Lists and Cell-

- 588 **Type Expression**. A list of 376 CHD-associated candidate genes were manually curated from ¹⁸⁻²⁵, including inherited, *de novo*, syndromic or non-syndromic CHD-associated genes. A list of
- ⁵⁹⁰ 76 EP-linked genes were manually curated. A list of cardiac development-related factors is from
 ⁴⁸. Lists can be found in Supplementary Table 1.
- 592 To determine cell-type enrichment of each CHD-associated gene, cells in the day 23 dataset were assigned one of five cell-type labels (cardiomyocytes, fibroblasts, endoderm,
- 594 endothelial and others). A dot plot was generated to visualize the expression of CHD-associated genes in the 5 cell types. Genes were first manually curated for enrichment in a certain cell type,
- 596 based on expression. Statistical significance of the enrichment of a certain gene in one cell type over the others was then evaluated by Wilcoxon Rank Sum test (adjusted p-value < 0.05).
- 598

Cell trajectories and pseudotime analysis. Pseudotime analysis was performed using the
000 URD package (version 1.0.2). A single Seurat object with data from three timepoints and four genotypes was processed, as described in the previous section, and then converted to an URD

- 602 object using the seuratToURD function. Cell-to-cell transition probabilities were constructed, by setting the number of nearest neighbors (knn) to 211 and sigma to 8. Pseudotime was then
- 604 calculated by running 80 flood simulations with *POU5F1*+ clusters as the 'root' cells. Next, all

day 23 clusters were set as 'tip' cells and biased random walks were simulated from each tip to build an URD tree.

To identify genes that correlate with pseudotime in one genotype but not the other, we

- calculated Spearman rank correlation, using Python (v3.7.3, and libraries Pandas 0.25.0,Numpy 1.17.1, and SciPy 1.3.1), to find genes that share a significant monotonic relationship (p-
- value less than 0.05) with pseudotime. To determine if these monotonic relationships differ
 between WT and *TBX5^{in/del}* paths to cardiomyocytes, we used a Fisher z-transformation to test
- 612 the null hypothesis that there is no significant difference in correlation ⁴⁹. To illustrate these results, we use a scatter plot for all genes with a significant rho value (p-value<0.05 by two-
- sided *t* test), or heat maps for genes with a $|rho| \ge 0.4$ to pseudotime and Z-score ≥ 15 as a difference between WT and *TBX5^{in/del}* paths.ki
- 616 To identify differential expressed genes in inferred cardiac precursors (stems in the URD tree) that are affected by *TBX5* loss, cell barcodes from each precursor segment (69 for
- 618 wildtype/control/*TBX5^{in/+}* path and 70 for *TBX5^{in/del}* path) were extracted from the URD object and assigned new identities in the corresponding Seurat object. Differential gene test was then
- 620 performed between the two segments using Wilcoxon Rank Sum test with min.pct set to 0.1 and logfc.threshold set to 0.25. Selected genes with an adjusted p-value less than 0.05 were plotted
- 622 on the URD tree to visualize their expression.

To compare the trident (*TNNT2*⁺ distal branch for WTC11, control and *TBX5*^{in/+}) and fork 624 (*TNNT2*⁺ distal branch for *TBX5*^{in/del}) during pseudotime, we subdivided the pseudotime from the common branchpoint to the tips of the trident and fork into twenty uniform windows. Within each 626 window, we then calculated the t-test, difference of means, and fold change between the trident and fork for all genes. We filtered the statistics by gene-window combinations with p<0.05 after

628 Bonferroni-Holm multiple testing correction. Then, we hierarchically clustered the genes on ttest p-values and plotted statistics using the R pheatmap library.

630

606

Gene ontology analysis. Gene ontology analysis was performed using 2018 biological process

- 632 terms from org.Hs.eg.db (v3.8.2) and clusterProfiler (v 3.12.0), with a significance threshold set at p-value<0.05. To prevent high false discovery rate (FDR) in multiple testing, we used the
- 634 default cutoff for the estimated q-value<0.05. Figures were produced using Matplotlib (v3.1.0). Gene ratios indicate the number of differentially expressed genes that overlap with each GO
- 636 term divided by the total number of differentially expressed genes. For comparing *TNNT2*⁺ clusters at d23, enriched gene ontology (GO) terms were determined using genes computed
- 638 from a one-versus rest differential test (logfc>0.25; adj p-value<0.05 by Wilcoxon Rank Sum test) among clusters that were predominantly composed of the same *TBX5* genotype (WT-21,
- 640 12, 3, and Control-4, or *TBX5*^{in/+}- 9, 7, 6, and 0). Enriched GO terms associated with pseudotime in a WT- or *TBX5*^{in/de/} path were generated using genes positively correlated with
- 642 pseudotime (rho≥|0.4|, and Z-score≥15) from each path. Several significant GO terms are highlighted.
- 644

Cell browser implementation. The cell browser at cells.ucsc.edu was developed by Maximilian

- 646 Haeussler. We created a cell browser session that allows the user to interrogate the spatial distribution of metadata and expression across data, in multiple reduced dimensionality spaces
- 648 including the URD trajectory. Using a Scanpy python pipeline, we generated PCA, tSNE,UMAP, PAGA, and drl transforms. We also imported the URD trajectory mapping and WGCNA
- 650 transform from their respective packages. We ran the scoreCT algorithm to assign cell types to cell clusters using a marker gene set.

652

Gene regulatory network analysis. bigSCale2 (<u>https://github.com/iaconogi/bigSCale2</u>) ³⁰ was
 used with default parameters to infer gene regulatory networks and "correlomes" from single cell
 RNAseq expression data for *TNNT2*⁺ cells, simply passing as input expression counts and gene
 names. Details of each data set can be found in Supplementary Table 3. To evaluate significant

changes in pagerank (or degree) centrality, we computed all pairwise differential differences in

- pagerank (or degree) between baseline (wildtype or control) and *TBX5* mutants (*TBX5*^{*in/4e*}) or *TBX5*^{*in/del*}) (12 total differences, from 2 *TBX5* mutants * 2 baselines * 3 stages) and used these
- values to determine the top 5% upper change cutoff from 8,704 genes of all networks.
 Classification of Pearson correlations were empirically chosen at >0.5 for correlation and <-0.05
- 662 for anti-correlation.

Mice. All mouse protocols were approved by the Institutional Animal Care and Use Committee

- at UCSF. *Tbx5*^{*del/+ 7*} and *Tbx5*^{*CreERT2IRES2xFLAG*} (abbreviated here as *Tbx5*^{*CreERT2*}) ³³ mice were described previously. *Tbx5*^{*fl-bio/fl-bio50*} mice were obtained from Frank Conlon. *Mef2c*^{*del/+*} mice ³²
- were obtained from Brian Black. *Mef2a^{fl-bio}* and *Mef2c^{fl-bio}* (Jackson #025983) were described in
 ³⁴. *Rosa26BirA* mice were obtained from Jackson labs (Jackson #010920) ⁵¹.
- 668 **ChIP-seq.** Combined peaks of human TBX5 or GATA4 ChIP-seq from hiPSC-derived CMs were used ¹⁰. bioChIP-seq of mouse TBX5, MEF2c and MEF2a from E12.5 hearts were from ³⁴.
- 670 Single replicates of TF bioChIP peaks, which were IDR normalized (IDR_THRESHOLD=0.05 between each set of replicates), were defined as the summit of the peak with the strongest ChIP
- 672 signal \pm 100bp of the individual replicate with the greatest peak intensity. Mouse H3K27ac ChIP-seq at E12.5 of embryonic cardiac ventricles was from ⁵².
- 674 **Bulk RNAseq analysis of embryonic mouse hearts.** Embryos at E10.5 from timed matings of $Tbx5^{del/+} \ge Tbx5^{CreERT2/+}$ were harvested. Each whole heart was dissected, placed in Qiazol, and
- 676 homogenized with a 25-guage needle. Total RNA was extracted using the miRNeasy micro kit with on-column DNAse digestion (Qiagen) and assessed by bioanalyzer (Agilent) for RNA
- 678 integrity, as previously described ⁵³. Four individual hearts of each genotype (wildtype, $Tbx5^{CreERT2/+}$, $Tbx5^{del/+}$ or $Tbx5^{del/CreERT2}$) from multiple litters were used as biological
- 680 quadruplicates. RNAseq libraries were generated using the Ovation RNA-seq system V2 kit

(NuGen), and SPIA-amplified cDNA was made using the Ovation Ultralow System V2 kit (NuGen).
 Libraries were evaluated by bioanalyzer (Agilent), quantified using KAPA qPCR (Kapa Biosystems), and sequenced by paired-end 100 bp reads using a HiSeq2500 (Illumina), for a sequencing depth of >40 million reads per library. Reads were aligned to mm9 by TopHat2 ⁵⁴ and counts per gene were tallied by featureCounts ⁵⁵. Differentially expressed genes were identified by EdgeR⁵⁶, using cutoffs of log2 fold-change of >0.5 or <-0.5, and raw p-value <0.01. R functions, K-means clustering and pheatmap, were used to cluster and create bulk RNAseq heatmaps.

- 690 **Statistical analyses for correlations.** We evaluated the pair-wise association among 24 variables, including all human genes, TBX5-dysregulated genes in cardiomyocytes from two
- 692 different stages of differentiation (d11 or d23), CHD-associated genes, EP-linked genes, TBX5 or GATA4 binding ¹⁰, and genome-wide association (GWAS) genes for CHDs or arrhythmias.
- 694 Reported GWAS genes from <u>https://www.ebi.ac.uk/gwas/</u> for the terms congenital heart disease, congenital heart malformation, congenital left sided heart lesions, conotruncal heart
- 696 defect and aortic coarctation were used to define congenital heart disease-related (CHD) GWAS genes. Reported genes from terms such as cardiac arrhythmia, supraventricular ectopy,
- 698 ventricular ectopy, premature cardiac contractions, atrial fibrillation, sudden cardiac arrest and ventricular fibrillation were considered as arrhythmia-related (EP-GWAS) genes. Two nearest
- genes within 100kb, by using GREAT (great.stanford.edu), of TBX5 or GATA4 binding sites or of reported genes from each group of GWAS were considered for the analysis. The natural
- 702 logarithm odds of genes associating with each one of these variables versus the odds of genes associating with every other variable were estimated using generalized linear models with
- family="binomial" setting in R. The resulting significances of these natural log odds ratios were adjusted for multiple testing by the Benjamini-Hochberg method ⁵⁷. Significance was determined
- using an FDR threshold of 0.05 or less.

Additional correlations were evaluated between 42 variables, including all mouse genes.

- 708 mouse TBX5-dysregulated genes (from bulk RNAseq of E10.5 hearts from wildtype, *Tbx5*^{*del/+*}, *Tbx5*^{*CreERT2/+*} or *Tbx5*^{*CreERT2/del*} embryos), human TBX5-dysregulated genes from d11 or d23
- cardiomyocytes, and TBX5, MEF2c or MEF2a binding sites from E12.5 mouse heart tissue ³⁴.
 Human gene symbols were converted to mouse gene symbols, using the getLDS() function
- 712 from the biomaRt package (https://www.r-bloggers.com/converting-mouse-to-human-genenames-with-biomart-package/). Two nearest genes within 100kb of TBX5, MEF2c or MEF2a
- 514 binding sites were considered for the analysis.

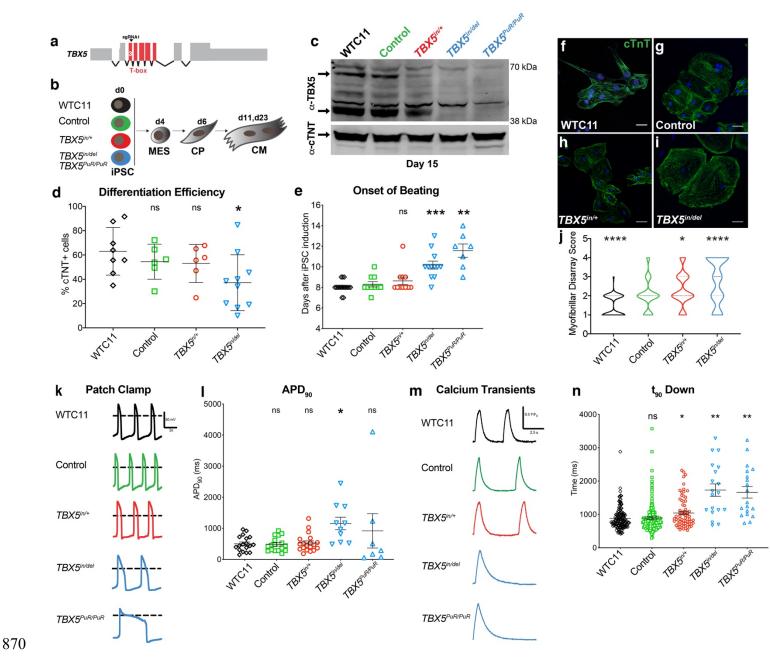
For assessment of associations between binding locations of TBX5, MEF2c and MEF2a

- 716 transcription factors with genes dysregulated by TBX5, analyses were performed corresponding to binding regions of each of the three TFs. First, binding regions of each TF was evaluated for
- 718 association with genes, defined by nearest two genes within 100kb. Using the list of TBX5dysregulated genes (mouse or human), binding regions of each TF associated with a TBX5-
- 720 dysregulated gene was determined. Identified binding regions of each TF that overlapped with at least 50% of the binding regions of each of the other two TFs was determined, using bedops -
- -element-of -50%. This approach defined three variables, including every binding region of the TF, if associated with a TBX5-dysregulated gene, or if it overlaps by at least 50% with the
- 524 binding region of the other TFs, that were used for logistic regression in R. The resulting changes in odds are represented as natural logarithm odds ratios. Multiple testing correction
- 726 was performed using the multtest package in R. All estimates are based on analyses for a given species (mouse or human TBX5-dysregulated).
- 728 **Data availability.** scRNAseq and bulk RNAseq datasets have been deposited at NCBI GEO, under accession GSE137876.
- 730 **Code availability.** R and python scripts will be available upon publication.

732 **References**.

	1.	Zaidi, S. & Brueckner, M. Genetics and Genomics of Congenital Heart Disease.
734		<i>Circ Res</i> 120 , 923–940 (2017).
	2.	Hill, J. T., Demarest, B., Gorsi, B., Smith, M. & Yost, H. J. Heart morphogenesis
736		gene regulatory networks revealed by temporal expression analysis. Development
		144 , 3487–3498 (2017).
738	3.	Hoffman, J. I. Incidence of congenital heart disease: II. Prenatal incidence. Pediatr
		<i>Cardiol</i> 16, 155–165 (1995).
740	4.	Hoffman, J. I. E. & Kaplan, S. The incidence of congenital heart disease. J Am Coll
		<i>Cardiol</i> 39 , 1890–1900 (2002).
742	5.	Basson, C. T. et al. Mutations in human TBX5 [corrected] cause limb and cardiac
		malformation in Holt-Oram syndrome. Nat Genet 15, 30–35 (1997).
744	6.	Li, Q. Y. et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of
		the Brachyury (T) gene family. Nat Genet 15, 21–29 (1997).
746	7.	Bruneau, B. G. et al. A murine model of Holt-Oram syndrome defines roles of the T-
		box transcription factor Tbx5 in cardiogenesis and disease. 106 , 709–721 (2001).
748	8.	Mori, A. D. et al. Tbx5-dependent rheostatic control of cardiac gene expression and
		morphogenesis. 297 , 566–586 (2006).
750	9.	Theodoris, C. V. et al. Human disease modeling reveals integrated transcriptional
		and epigenetic mechanisms of NOTCH1 haploinsufficiency. Cell 160, 1072–1086
752		(2015).
	10.	Ang, YS. et al. Disease Model of GATA4 Mutation Reveals Transcription Factor
754		Cooperativity in Human Cardiogenesis. Cell 167, 1734–1749.e22 (2016).
	11.	Gifford, C. A. et al. Oligogenic inheritance of a human heart disease involving a
756		genetic modifier. Science 364 , 865–870 (2019).

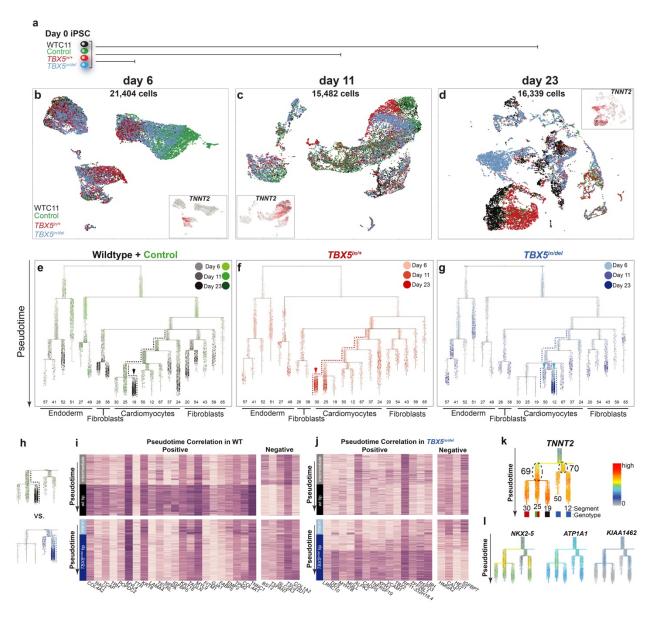
	12.	Holm, S. A simple sequentially rejective multiple test procedure. Scandinavian
758		Journal of Statistics 6 , 65–70 (1979).
	13.	Karakikes, I. et al. A Comprehensive TALEN-Based Knockout Library for
760		Generating Human-Induced Pluripotent Stem Cell-Based Models for Cardiovascular
		Diseases. <i>Circ Res</i> 120, 1561–1571 (2017).
762	14.	Nadadur, R. D. et al. Pitx2 modulates a Tbx5-dependent gene regulatory network to
		maintain atrial rhythm. Science Translational Medicine 8, 354ra115–354ra115
764		(2016).
	15.	Dai, W. et al. A calcium transport mechanism for atrial fibrillation in Tbx5-mutant
766		mice. <i>eLife</i> 8, 40 (2019).
	16.	Laforest, B. et al. Atrial fibrillation risk loci interact to modulate Ca2+-dependent
768		atrial rhythm homeostasis. J Clin Invest 412, 1825–15 (2019).
	17.	Zhu, Y. et al. Tbx5-dependent pathway regulating diastolic function in congenital
770		heart disease. Proceedings of the National Academy of Sciences 105, 5519–5524
		(2008).
772	18.	McCulley, D. J. & Black, B. L. Transcription factor pathways and congenital heart
		disease. Curr. Top. Dev. Biol. 100, 253–277 (2012).
774	19.	Zaidi, S. et al. De novo mutations in histone-modifying genes in congenital heart
		disease. 498 , 220–223 (2013).
776	20.	Prendiville, T., Jay, P. Y. & Pu, W. T. Insights into the genetic structure of
		congenital heart disease from human and murine studies on monogenic disorders.
778		Cold Spring Harb Perspect Med 4 , a013946–a013946 (2014).
	21.	Lalani, S. R. & Belmont, J. W. Genetic basis of congenital cardiovascular
780		malformations. Eur J Med Genet 57, 402–413 (2014).


	22.	Homsy, J. et al. De novo mutations in congenital heart disease with
782		neurodevelopmental and other congenital anomalies. Science 350, 1262–1266
		(2015).
784	23.	Sifrim, A. et al. Distinct genetic architectures for syndromic and nonsyndromic
		congenital heart defects identified by exome sequencing. Nat Genet 48, 1060-1065
786		(2016).
	24.	Priest, J. R. et al. De Novo and Rare Variants at Multiple Loci Support the
788		Oligogenic Origins of Atrioventricular Septal Heart Defects. PLoS Genet 12,
		e1005963–25 (2016).
790	25.	Jin, S. C. et al. Contribution of rare inherited and de novo variants in 2,871
		congenital heart disease probands. Nat Genet 49, 1593–1601 (2017).
792	26.	Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during
		zebrafish embryogenesis. Science 108, eaar3131–9 (2018).
794	27.	Hiroi, Y. et al. Tbx5 associates with Nkx2-5 and synergistically promotes
		cardiomyocyte differentiation. Nat Genet 28, 276–280 (2001).
796	28.	Luna-Zurita, L. et al. Complex Interdependence Regulates Heterotypic
		Transcription Factor Distribution and Coordinates Cardiogenesis. Cell 164, 999–
798		1014 (2016).
	29.	Garg, V. et al. GATA4 mutations cause human congenital heart defects and reveal
800		an interaction with TBX5. 424, 443–447 (2003).
	30.	lacono, G., Massoni-Badosa, R. & Heyn, H. Single-cell transcriptomics unveils gene
802		regulatory network plasticity. 1–20 (2019). doi:10.1186/s13059-019-1713-4
	31.	Brin, S. & Page, L. The anatomy of a large-scale hypertextual Web search engine.
804		Computer Networks and Isdn Systems 30 , 107–117 (1998).

	32.	Lin, Q., Schwarz, J., Bucana, C. & Olson, E. N. Control of mouse cardiac
806		morphogenesis and myogenesis by transcription factor MEF2C. Science 276,
		1404–1407 (1997).
808	33.	Devine, W. P., Wythe, J. D., George, M., Koshiba-Takeuchi, K. & Bruneau, B. G.
		Early patterning and specification of cardiac progenitors in gastrulating mesoderm.
810		<i>eLife</i> 3 , (2014).
	34.	Akerberg, B. N. et al. A reference map of murine cardiac transcription factor
812		chromatin occupancy identifies dynamic and conserved enhancers. Nat Commun
		10, 4907 (2019).
814	35.	Stathopoulos, A. & Levine, M. Dorsal Gradient Networks in the Drosophila Embryo.
		246, 57–67 (2002).
816	36.	Cong, L. et al. Multiplex Genome Engineering Using CRISPR/Cas Systems.
		Science 339 , 819–823 (2013).
818	37.	Miyaoka, Y. et al. Isolation of single-base genome-edited human iPS cells without
		antibiotic selection. Nat Meth 11, 291–293 (2014).
820	38.	Mandegar, M. A. et al. CRISPR Interference Efficiently Induces Specific and
		Reversible Gene Silencing in Human iPSCs. Stem Cell 18, 541–553 (2016).
822	39.	Nora, E. P. et al. Targeted Degradation of CTCF Decouples Local Insulation of
		Chromosome Domains from Genomic Compartmentalization. Cell 169, 930-
824		933.e22 (2017).
	40.	Lee, JH. et al. A Robust Approach to Identifying Tissue-Specific Gene Expression
826		Regulatory Variants Using Personalized Human Induced Pluripotent Stem Cells.
		PLoS Genet 5 , e1000718–15 (2009).
828	41.	Byrne, S. M. & Church, G. M. Crispr-mediated Gene Targeting of Human Induced
		Pluripotent Stem Cells. Current protocols in stem cell biology 35, 5A.8.1–22 (2015).

830	42.	Peters, D. T., Cowan, C. A. & Musunuru, K. Genome editing in human pluripotent
		stem cells. (Harvard Stem Cell Institute, 2008).
832	43.	Spencer, C. I. et al. Calcium Transients Closely Reflect Prolonged Action Potentials
		in iPSC Models of Inherited Cardiac Arrhythmia. Stem Cell Reports 1–13 (2014).
834		doi:10.1016/j.stemcr.2014.06.003
	44.	Hookway, T. A. et al. Phenotypic Variation Between Stromal Cells Differentially
836		Impacts Engineered Cardiac Tissue Function. Tissue Engineering Part A 25, 773–
		785 (2019).
838	45.	Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. 36-
		42 (Biophotonics International, 2004).
840	46.	Judge, L. M. et al. A BAG3 chaperone complex maintains cardiomyocyte function
		during proteotoxic stress. JCI Insight 2, 83–18 (2017).
842	47.	Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP.
		Nat Biotechnol 37 , 38–44 (2018).
844	48.	Duan, J. et al. Rational Reprogramming of Cellular States by Combinatorial
		Perturbation. CellReports 27, 3486–3499.e6 (2019).
846	49.	Fisher, R. A. On the' Probable Error' of a Coefficient of Correlation Deduced from a
		Small Sample. <i>Metron</i> 1 , 3–32 (1921).
848	50.	Waldron, L. et al. The Cardiac TBX5 Interactome Reveals a Chromatin Remodeling
		Network Essential for Cardiac Septation. Dev Cell 36, 262–275 (2016).
850	51.	Driegen, S. et al. A generic tool for biotinylation of tagged proteins in transgenic
		mice. <i>Transgenic Res</i> 14, 477–482 (2005).
852	52.	He, A. et al. Dynamic GATA4 enhancers shape the chromatin landscape central to
		heart development and disease. Nat Commun 5, 4907 (2014).

854	53.	Hota, S. K. et al. Dynamic BAF chromatin remodeling complex subunit inclusion
		promotes temporally distinct gene expression programs in cardiogenesis.
856		Development 146, dev174086–21 (2019).
	54.	Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of
858		insertions, deletions and gene fusions. Genome Biol 14, R36–13 (2013).
	55.	Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose
860		program for assigning sequence reads to genomic features. Bioinformatics 30,
		923–930 (2014).
862	56.	Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package
		for differential expression analysis of digital gene expression data. Bioinformatics
864		26 , 139–140 (2009).
	57.	Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate - a Practical and
866		Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society
		Series B-Statistical Methodology 57, 289–300 (1995).


868

- 872
- 874 **Figure 1. A human allelic series of** *TBX5* **mutants models features of congenital heart** disease. a, Diagram of the human *TBX5* gene. Exons encoding the T-box domain of TBX5 are
- indicated in red. sgRNA1 was used to target exon 3 of *TBX5* by a CRISPR/Cas9 nuclease. b,
 Parental iPS cell line WTC11, control (CRISPR-treated, unmodified at exon 3 of *TBX5*) and
- 878 targeted *TBX5* loss-of-function mutants (*TBX5^{in/+}*, *TBX5^{in/del}*, or *TBX5^{PuR/PuR}*) underwent directed differentiation to cardiomyocytes (CM) via mesoderm (MES) and cardiac precursor (CP) stages.
- 880 **c**, TBX5 and cTNT protein expression for each *TBX5* genotype at day 15 (CMs). **d**, Differentiation efficiency by flow cytometry for cTNT⁺ cells (* p-value<0.05 by unpaired *t* test). **e**,
- 882 Onset of beating (** p-value<0.01, *** p-value<0.001 by unpaired *t* test). **f-j**, Myofibrillar arrangement of cardiomyocytes (* p-value<0.05, **** p-value<0.001 by Fisher's exact test). **k**,

- 884 Action potentials by patch clamp of single beating cells for each *TBX5* genotype. I, Action potential duration at 90% (APD₉₀) (* FDR<0.05). **m-n**, Traces of calcium transients from single
- beating cells were analyzed, including time at 90% decay (t₉₀ down) (* FDR<0.05, **

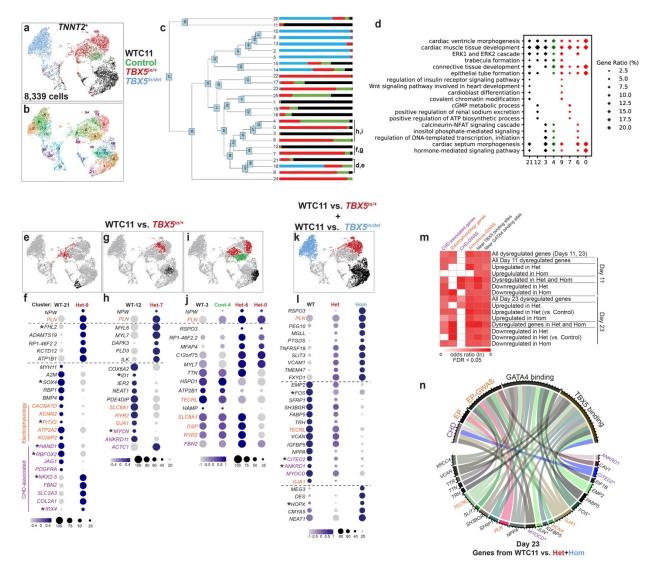
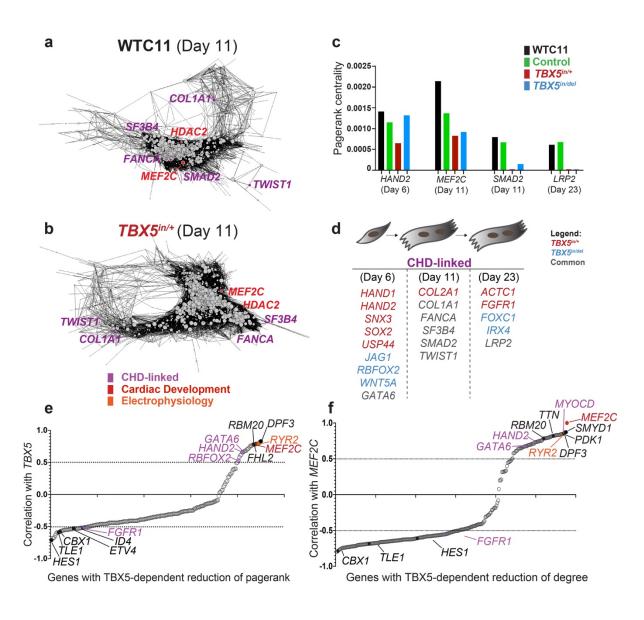

FDR<0.01). Error bars represent standard deviation (**d**, **e**) or standard error (**I**, **n**) of the mean.

Figure 2. *TBX5* loss disturbs cell trajectories to cardiomyocyte fate. **a**, Cells of each *TBX5* genotype were harvested at specific stages during directed differentiation to cardiomyocytes (CM) for single cell RNAseq. **b-d**, UMAPs display cells at day 6, day 11 or day 23, colored by

- *TBX5* genotype. A feature plot of the expression of the CM structural gene, *TNNT2*, is shown in each inset. e-g, Reconstructed cell trajectories by the R package URD are shown as a
 dendrogram for each *TBX5* genotype from day 6, 11 and 23, from root (top; early pseudotime)
- to tips (bottom; late pseudotime). Each *TBX5* genotype is color-coded from light to dark, to indicate time point. Note the enrichment or depletion of cells from one genotype at certain
- branch points (arrowheads). Dashed lines show inferred path to CMs by *TBX5* genotype. **h**, 900 Deduced paths to non-dividing CMs of WT (black dashed line) or *TBX5^{in/del}* (blue dashed line)
- are shown, from intermediate (labeled interm) to tip. **i**, Heat maps show expression for each 902 gene that displays a positive or negative correlation with pseudotime (|rho|≥0.4 and Z-score≥15
- by difference in rho) in the WT path (above) and is altered in the *TBX5^{in/del}* path (below). **j**, Heat
- 904 maps show expression for each gene that displays a positive or negative correlation with pseudotime ($|rho| \ge 0.4$ and Z-score ≥ 15) in the *TBX5^{in/del}* path and is altered in the WT path


- 906 (below). k, Differential gene expression of inferred precursors for the cardiomyocyte branches (segments 69 vs. 70, dashed ovals) show several genes that display altered gene expression
 908 (adj p-value<0.05 by Wilcoxon Rank Sum test) along the WT or *TBX5^{in/del}* path. Colored blocks
- below represent the predominant TBX5 genotypes in each tip. I, Feature plots show a delayed
- 910 onset of expression during pseudotime for *NKX2-5,* in addition to *ATP1A1* and *KIAA1462*.

- 916 **Figure 3. Subsets of cardiomyocytes respond discretely by quantitative transcriptional perturbations to reduced TBX5 dosage**. **a-c**, *TNNT2*⁺ clusters from day 23 were re-clustered
- 918 in Seurat. UMAP shows cells colored by *TBX5* genotype (**a**) or by cluster identity (**b**). **c**, Phylogenetic tree shows the relatedness of the 'average' cell per cluster among clusters. The
- 920 proportion of cells in each cluster are colored by *TBX5* genotype. Pairs of related clusters between *TBX5* genotypes were selected for differential gene tests. **d**, Gene ontology for
- 922 enriched biological processes (p-value<0.05 and q-value <0.05) in cell clusters, which are selected for differential gene expression (logfc>0.25 and adj p-value<0.05 by Wilcoxon Rank
- 924 Sum test), are shown. **e**, **g**, **i**, UMAPs highlight clusters used for pair-wise comparisons for differential gene tests in corresponding dot plots below. **f**, **h**, Dot plots of top differentially
- 926 expressed genes between wildtype-enriched cluster 21 and $TBX5^{in/+}$ -enriched cluster 9 (**f**), or between wildtype-enriched cluster 12 and $TBX5^{in/+}$ -enriched cluster 7 (**h**) (Supplementary Table
- 928 2). Each dot size corresponds to the percentage of cells expressing the gene in the cluster, and the color intensity represents scaled expression values in the cluster. Electrophysiology (EP)-
- 930 related (orange) and congenital heart disease (CHD)-associated (purple) genes are highlighted. Asterisks denote transcription factors. Significance was determined by Wilcoxon Rank Sum test
- 932 (adj p-value<0.05). **j**, The most differentially expressed genes in *TBX5^{in/+}*-enriched clusters 0 and 6, when compared to both wildtype (WT)-enriched cluster 3 or control-enriched cluster 4,

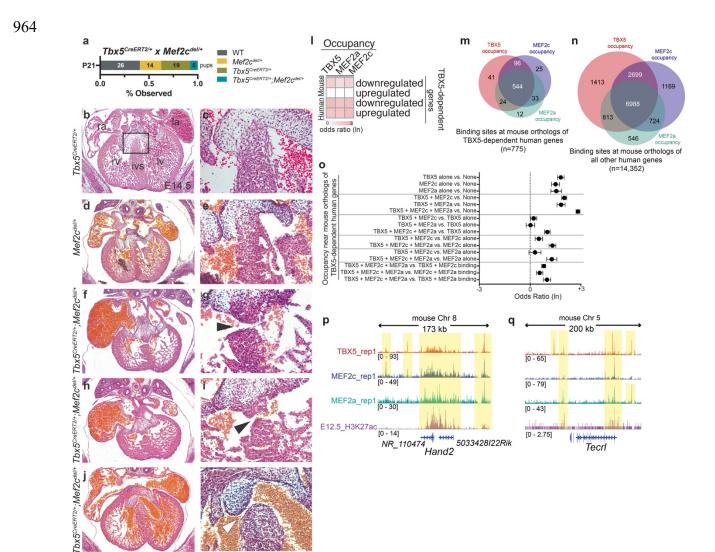
- 934 are shown. **k**, **I**, UMAP highlights clusters for comparison (**k**) in dot plots of genes that are most differentially expressed in both *TBX5^{in/+}* and *TBX5^{in/del}*-enriched clusters, when compared to
- 936 WT-enriched clusters (I). m, Heat map displays significant correlations (adj p-value<0.05 by Benjamini-Hochberg multiple corrections test) among comparisons of candidate lists for CHD-
- associated genes, EP-related genes, genome-wide association studies (GWAS) for CHDs or
 arrhythmias (Supplementary Table 4), and TBX5-dependent gene sets. n, Circular plot shows
- 940 selected genes by category for WT-enriched vs. *TBX5^{in/+}*-enriched and WT-enriched vs. *TBX5^{in/del}*-enriched clusters at day 23.

942

946

948

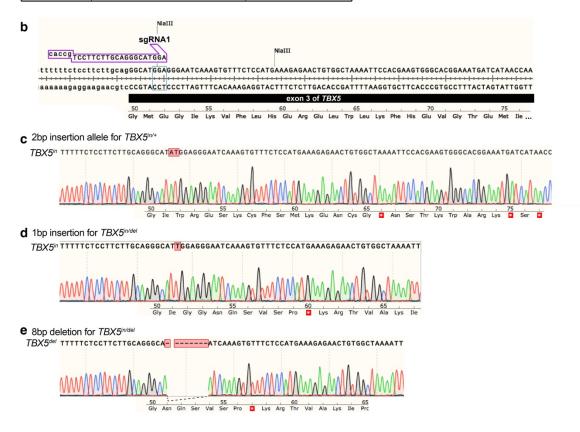
Figure 4. TBX5 dosage preserves cardiomyocyte network stability. a, b, Gene regulatory
 networks (GRNs) for day 11 cardiomyocytes of WTC11 (a) or *TBX5^{in/+}* (b) are shown. Nodes of
 CHD-related (purple), heart development (red) or electrophysiology (orange) genes are shown.
 The size of each node represents its quantitative importance, based on pagerank centrality.


962 Additional data can be found in Supplementary Table 3.

Note the absence of *SMAD2* and the reduced centrality of *MEF2C* (smaller circle) in the
 TBX5^{in/+} network, compared to WTC11. **c**, Pagerank centrality for significantly altered (top 5% cutoff) nodes of CHD-associated or heart development genes at specific time points are shown.

⁹⁵⁶ **d**, Twenty CHD-associated genes display a reduction in pagerank (top 5% cutoff) in at least one mutant *TBX5* genotype at any stage. This indicates enrichment of CHD-associated genes in

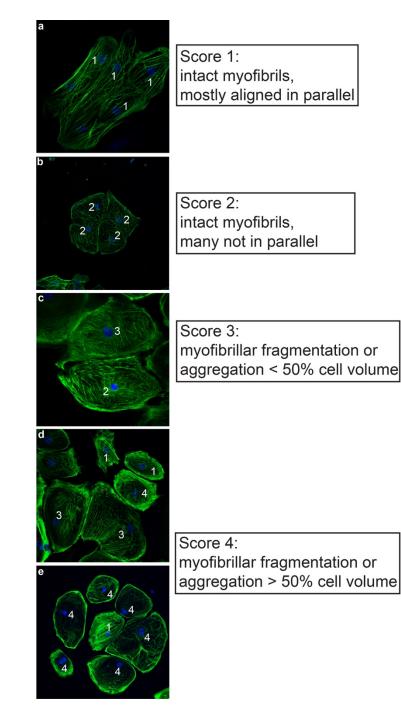
⁹⁵⁸ TBX5 dosage-sensitive networks (p<2.2e-5 by hypergeometric test). **e**, TBX5-dependent genes with a reduction of pagerank are correlated (correlation >0.5), anti-correlated (correlation <-0.5),


⁹⁶⁰ or indeterminate (0.5<correlation<-0.5) with *TBX5* expression in *TNNT2*⁺ cells. **f**, Correlations with *MEF2C* and TBX5-dependent genes with a reduction of degree in *TNNT2*⁺ cells are plotted.

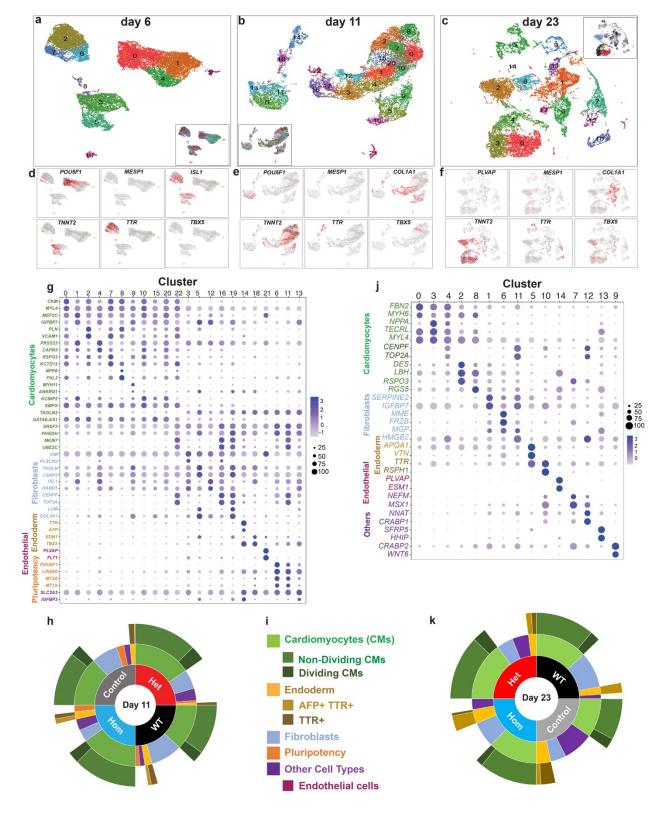
966

968 Figure 5. Tbx5 and Mef2c cooperate in heart development. a, Pups at post-natal day 21 (P21) from matings of $Tbx5^{CreERT2/+}$ X $Mef2c^{del/+}$ were genotyped. Expected Mendelian ratios were not observed for $Tbx5^{CreERT2/+}$; $Mef2c^{del/+}$ at P21. **b**, **d**, **f**, **h**, **j**, Transverse sections of hearts 970 at embryonic day 14.5 (E14.5) from each genotype are shown. c, e, g, i, k. Magnified views of 972 the interventricular septa are shown. Note muscular VSDs (black arrowheads in g, i), a subaortic membranous VSD (k, white arrowhead) and dilated blood-filled atria in the $Mef2c^{+/-}$ 974 ;*Tbx5^{CreERT2/+}* embryos (**f**, **h**, **j**). **I**, Heat map indicates odds ratios (FDR<0.05) of TBX5, MEF2a or MEF2c occupancy near mouse or human TBX5-dependent genes (Supplementary Table 6). 976 m, n, Venn diagrams display the overlap of TBX5, MEF2a or MEF2c occupancy near mouse orthologs of human TBX5-dependent or -independent genes, respectively. o, Odds ratio 978 (FDR<0.05) of combinations of TBX5, MEF2a or MEF2c occupancy near mouse orthologs of TBX5-dependent human genes (Supplementary Table 6). p, g, Browser tracks for ChIP-seq 980 data from E12.5 hearts for TBX5, MEF2c, MEF2a and H3K27ac near conserved TBX5dependent genes, *Hand2* (**p**) or *Tecrl* (**q**). Yellow bands of shading indicate co-occupancy.

а		Genotype	Translation			
	WTC11	+/+				
	Control	+/+				
+ Cas9	TBX5 ^{in/+}	ins 2bp/+	p.M51fs*16/+			
	TBX5 ^{in/del}	ins 1bp / del 8bp	p.M51fs*10/p.M51fs*7			
Ľ	TBX5 ^{PuR/PuR}	ins PGK-PuroR/ins PGK-PuroR				


984

986 Extended Data 1. Genotype information for targeted WTC11-derived iPS cells mutant for *TBX5*. a, Table shows genotypes of WTC11-derived iPS cell lines that were targeted for *TBX5*.


at exon 3. Predicted translation for each *TBX5* genotype is indicated. b, Sequence of the exon 3 of *TBX5* is shown, along with the sgRNA1 location. The PAM site is boxed in blue. Loss of the
 NIaIII site at the PAM site was used in initial screening for mutant iPS cell clones by PCR. The

encoded wildtype protein sequence includes the start of the T-box domain. **c**, Sequence and chromatogram for the 2bp insertion of the mutant allele for $TBX5^{in/+}$ predicts a premature

- truncation, as indicated by a stop codon (white asterisk in red box) in the frame-shifted protein sequence. **d**, **e**, Sequence and chromatogram for the 1 bp insertion, or 8 bp deletion,
- respectively, of the mutant allele for $TBX5^{in/del}$, along with corresponding protein sequences, are shown.

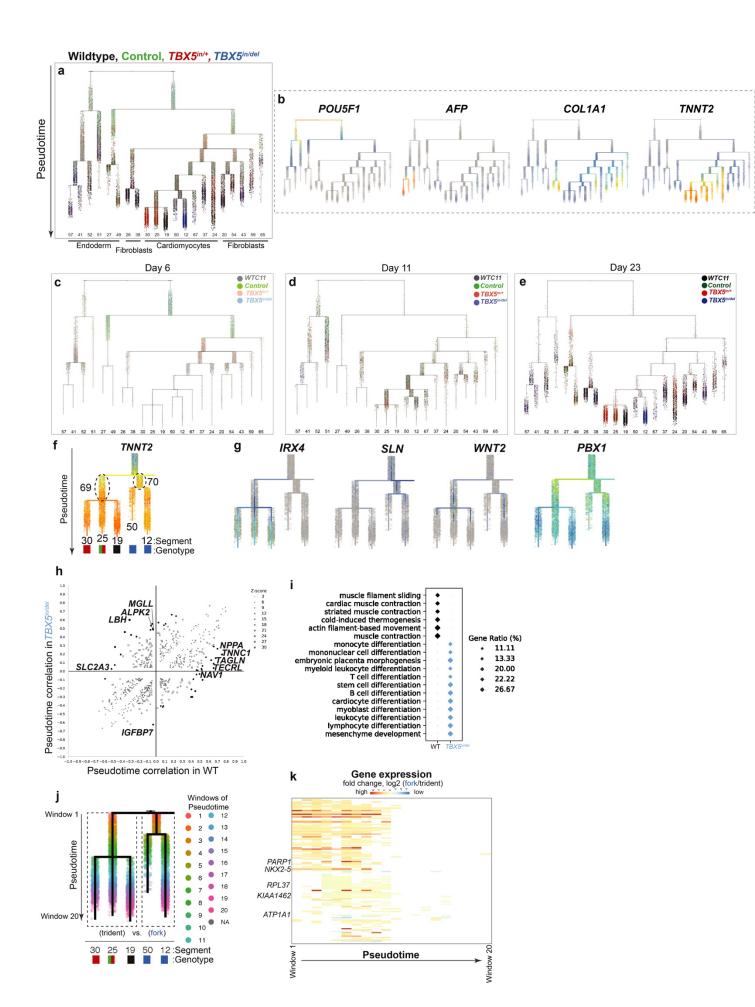
998 **Extended Data 2. Scoring criteria for myofibrillary disarray.** Criteria for scores 1-5 are indicated, and representative images for each score are shown.

1006 Extended Data 3. Human cardiac differentiation is sensitive to reduced TBX5 dosage. a-c,

UMAPs display cells at day 6, day 11 and day 23, respectively, by Louvain clustering. Insets show UMAPs colored by *TBX5* genotype. **d-f**, Feature plots in UMAP space demonstrate

- expression of selected marker genes, which represent major cell types at each timepoint. **g**, **j**, 1010 Det plate display two of the ten marker genes that are expressed in each eluster at day 11 or
- 1010 Dot plots display two of the top marker genes that are expressed in each cluster at day 11 or day 23 (adj p-value<0.05 by Wilcoxon Rank Sum test), and define at least five major human cell
- 1012 types. The size of the dot corresponds to the percentage of cells expressing the gene in the cluster, and the color intensity represents the level of gene expression in the cluster. **h**, **i**, **k**,
- 1014 Sunburst plots indicate the proportion of at least five major cell types, based on top marker genes, by *TBX5* genotype at day 11 or day 23.
- 1016

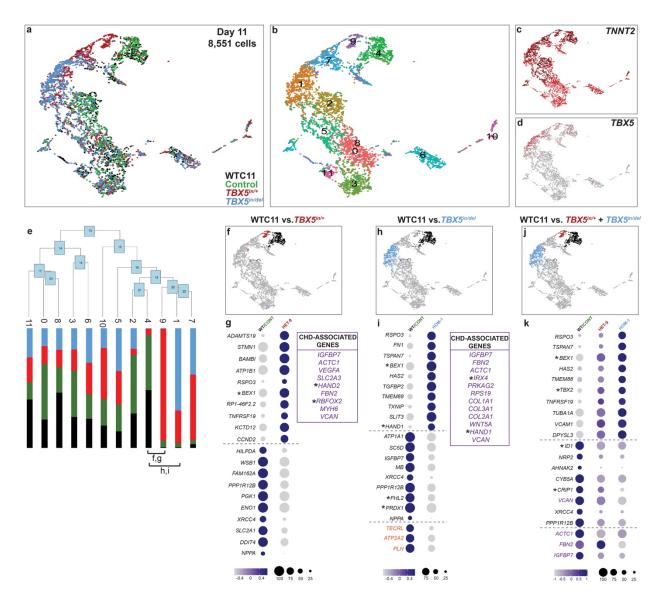
а		ш	ш	Ш		b		Ш	ш	ш		С	П	ш	Ш		d
		Fibroblasts	Endoderm	Endothelial	0			Fibroblasts	Endoderm	Endothelial	~		Fibroblasts	Endoderm	Endothelial	~	Others Endothelial Endoderm Fibroblasts CMs
	0	bla	ode	the	Others		0	bla	ode	othe	5H	0	obla	ode	othe	Others	Others othelial oderm cMs
	CMs	sts	rm	ia	ers		CMs	sts	îm	ia	Others	CMs	sts	rm	lia	ers	thers helial derm olasts CMs
ABCC9	-					ACTA2	•				•	ABCD3				•	
ACTC1						ADAMTS10	•	•				ACVR1	•	•	•		
	•		•	•	•	AHNAK					٠	ARL13B ARL6		•	•	•	DOCK6
ADNP	•	•	•	•		ALX3						ARMC4			•	-	
AMER1			-			ANKRD11	•					ATIC			ė	ŏ	EOGT ETS1
ANKRD1 -						B3GALTL BMPR2	•					BBS12	•	٠	•	•	FGFR1 🔍 🔍 🔍 🔍 🔍
ARID1B	•	•	•	•		CCDC28B	•	Ŏ	•	•	•	BBS5 BBS9		:			
	•	٠	٠	٠	•	COL1A1	•		•	٠	•	BRAF		•	•	•	GJA1 H1FOO
BCOR	•	•		•	•	COL1A2	•			•		CCDC11 CCDC114					HRAS 🔍 🔍 🔍 🔍 🔍
CACNA1C		•			•	COL3A1			•		•	CCDC39	•		•	:	KCNJ2
COL18A1 COX7B				ŏ	ŏ	COL5A1 COL5A2						CCDC40 CDKN1C	ė	ŏ	•	•	
	•		•	•		ECE1	•		•	ŏ		CEP152		•	•	-	
DYRK1A	•	٠	٠	•	٠	EVC		•	•			CEP290 CEP41					PLXND1
EFSUU	•	•	•	•	•	EVC2	*	•	•	•	•	DHCR24	•		•	•	RIT1 RPS19
FBN2		•				FBLN5	•	•	•	•	*	DHCR7			•		
FOXH1	•			•		FBN1						DNAAF2	•		•	•	SHANK3
FTO	•	•				FKBP14 FLNA			ŏ			DNAAF3 DNAH11					
GATA4			•	٠	٠	FOXC1	-	•				DNAH5	•	•		•	SNX3 TGFBR2
UAIA0 []		•	•			FOXF1		•		٠		DNAI1		:			
						GLI3	•	•			٠	DNAL1	•		•	•	
HAND1 HAND2						GPBAR1	-	•	•	•	•	DTNA DYNC2H1			•	•	
		ē		•		HAND1						DYX1C1	•			•	
IRX4	•	٠	•	٠		HAND2 IGFBP7					•	GANAB				•	
NAIOD		•	•	0	•	LMNA -	ŏ	ŏ	ŏ	ŏ	ŏ	GPC3		Ŏ		•	
KDM6A	•					LTBP4	•		•	•	•	IFT122 IFT140	•	•	•	•	
LEFTY2		•				MAP2K2	•					IFT80 -	٠	•	•	•	
	•				•	MGAT2	•			•	•	IGFBP1		•			
MED13L	•	•	•	•	•	MGP						KRAS 🕇 🚬					· 0
MEGF8	•		•	0	۰	NFATC1 NFIX						MKKS	•		•	•	
WITCH	•					NOTCH2	•	•	•		•	NEK8	•	•		•	• 25 1
MYH11 MYH6						NPHP3	•	٠	•	0	٠	NODAL					• 50 0
MYH7	Ŏ				•	PACS1	•		•	•	۰	NSDHL 1 °	•		•	•	•75
						PDGFRA					-	OFD1 PEX13				•	
NKX2-5		•	•	•	۰	PHGDH						PEX26	•	•	•	•	●100 ⁻¹
NHXN1	:					PITX2 PKD2		•				PEX5 PPL					
PKD1 PRKAG2		•				PLOD1			٠		•	PTPRJ	•	•	•	•	
RAF1	•	٠	•	•	•	PRKD1		•	•	•	•	RPGRIP1L					
	•	•		0		PTEN	•				•	RSPH9	•	•		•	
SETBP1	•			-	•	RAB23	•			-		SALL4 SHH					
SHOC2						RAD21 RBFOX2	ŏ					SLC29A3		•	•	•	
SMS TAB2			•			RNF135		•	•	•		SLC2A10					
	•					RRAS -	٠		٠		٠	SLC2A3			•	•	
	•	٠	٠	٠		SH3PXD2B		•	•	٠	۰	SMAD3 SMC3		i	ė	ė	
TDGF1	•					SMAD3		•	•	•		SOX9	•	Ĭ	•	•	
UBE2B						SMARCA2		•				TBX3					
VEGFA		•			•	STRA6 TGFBR1		•	•	•		TTC8	•	•	0	•	
	•	•		۰		TRIM32		•	•	٠	•	USP44 VPS33B	•	•			
1-						TWIST1		•	•	•	•	WDR19		•		•	
						VCAN	•		•	•	•	WDR35	•	•	•	•	
						WNT5A			•			WDR60			•	•	
						ZEB2		-			-	ZMPSTE24					


1018

1020

Extended Data 4. Many CHD-associated genes are enriched among several human cell

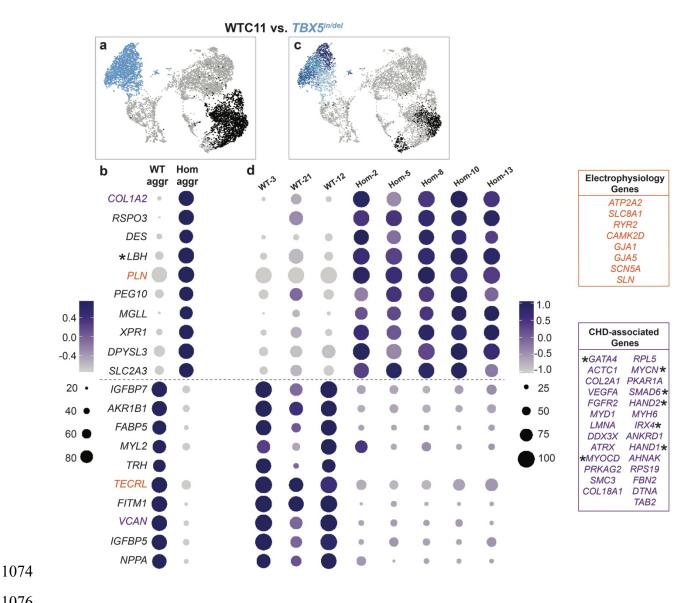
1022 **types. a-d**, Dot plots show the expression of congenital heart disease (CHD)-associated genes that are significantly enriched in cardiomyocytes (**a**), fibroblasts (**b**), endodermal cells (**c**) or


1024 endothelial cells (**d**). Significance was determined by Wilcoxon Rank Sum test (adj p-value<0.05).

1028

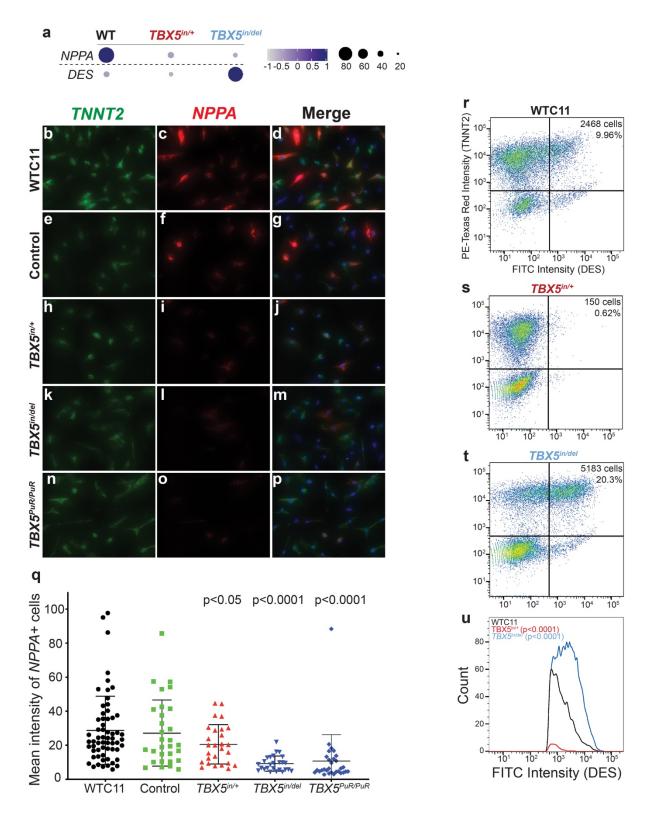
Extended Data 5. Pseudotime analysis of cell trajectory reconstructions by genotype, 1030 time point and cell type. a, All cells for all TBX5 genotypes and time points are shown for directed differentiation to cardiomyocytes in a single plot. Pseudotime is displayed from root 1032 (top) to tips (bottom), **b.** Genes, which mark each major cell type (pluripotent cell, endoderm, fibroblast and cardiomyocyte) during the directed differentiation, are shown. c-e, Cells from all 1034 TBX5 genotypes are shown by time point. f, Differential gene expression between inferred precursors (dashed ovals, segments 69 vs. 70) of the WT or TBX5^{in/del} path was evaluated, **q**. Delayed activation of WNT2, PBX1 and NKX2-5 in the TBX5^{in/del} path (to segments 50 and 12) 1036 diverged from the path of other genotypes (to segments 20, 25, 19). IRX4 was absent in the TBX5^{in/del} path, and instead, SLN was enriched. Significance was determined by Wilcoxon Rank 1038 Sum test (adj p-value<0.05). h, Scatter plot displays two axes of Spearman rho correlations, 1040 which measure a potential relationship between gene expression and pseudotime for WT or TBX5^{in/del} cell. Each white circle represents a gene that has a significant rho correlation with pseudotime (p-value<0.05 by two-sided t test). Size of the circle represents a Z-score difference 1042 for rho correlation of a gene to pseudotime for WT versus TBX5^{in/del} path. As the size of the 1044 circle increases, there is a larger difference in how a gene is correlated with pseudotime between the two genotypes. Black circles represent genes with a moderate correlation or better 1046 with pseudotime in either path ($|rho| \ge 0.4$) and (Z-score \ge 15), when the opposing genotype has no significant correlation to pseudotime (p-value ≥ 0.05 by two-sided t test). i, Gene ontology 1048 (GO) terms for enriched biological processes (p-value<0.05 and q-value<0.05), which are based on genes that positively correlate with pseudotime (|rho|≥0.4 and Z-score≥15 by difference in rho) in the WT- or the TBX5^{in/del} path, are shown. Black (WT) or blue (TBX5^{in/del}) diamonds show 1050 gene ratios. j, Deduced paths for WT/control/ TBX5^{in/+}(trident) or TBX5^{in/del} (fork) to 1052 cardiomyocytes were divided into windows (1-20) along pseudotime for comparison. k, Heat map shows fold change for genes in a cluster that includes NKX2-5, which was significantly 1054 different after correction (adj p-value<0.05 by Bonferroni-Holm test) in windows 2 through 8,

along with genes of a similar pattern, including *PARP1, RPL37, KIAA1462,* and *ATP1A1* (adj p-1056 value<0.05 by Bonferroni-Holm test).



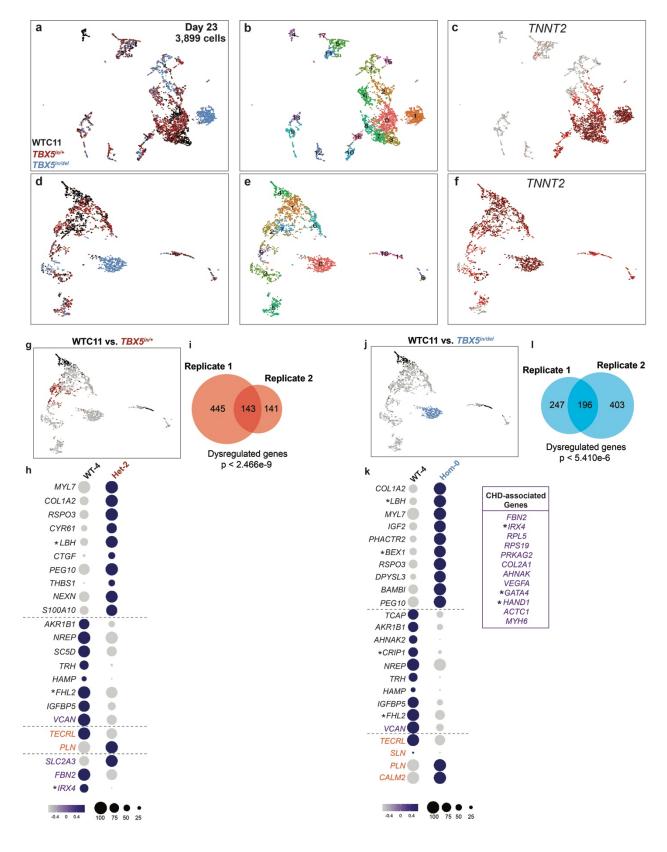
1058

1060 Extended Data 6. Evaluation of reduced TBX5 dosage by gene expression in


cardiomyocytes at day 11. a, b, UMAPs of TNNT2⁺ cells from day 11 of differentiation are 1062 colored by TBX5 genotype or by cluster identity, respectively, c. d. Feature plots by UMAP display expression of TNNT2 or TBX5. e, Phylogenetic tree depicts cluster relatedness. Vertical

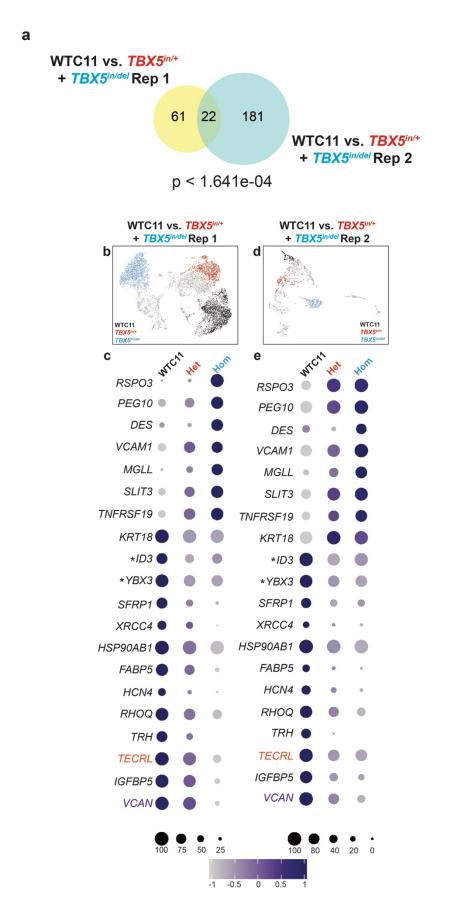
- 1064 bars show the proportion of cells by color of each TBX5 genotype. f, h, UMAPs highlight clusters chosen for pair-wise differential gene expression comparisons. g, i, Dot plots show top
- 1066 differentially expressed genes between WT/control-enriched and TBX5ⁱⁿ⁷⁺-enriched clusters, or WT/control-enriched and TBX5^{in/del}-enriched clusters, respectively. Electrophysiology-related
- (orange) and congenital heart disease (CHD)-associated (purple) genes are highlighted. 1068 Significance was determined by Wilcoxon Rank Sum test (adj p-value<0.05). j, UMAP
- demonstrates pair-wise comparisons between WT/control-enriched and TBX5^{in/+}-enriched 1070
- clusters, and WT/control-enriched and $TBX5^{in/+}$ -enriched clusters. **k**, Common genes that are differentially expressed in both $TBX5^{in/+}$ and $TBX5^{in/del}$, in each comparison with WT/control are 1072 shown.

- WT-enriched and TBX5^{in/del}-enriched clusters. Transcriptional regulators are denoted by 1082 asterisks. Electrophysiology-related (orange) and congenital heart disease (CHD)-associated 1084 (purple) are highlighted. Significance was determined by Wilcoxon Rank Sum test (adj p-
- value<0.05). c, UMAP shows clusters at a higher resolution, with three wildtype-enriched (black)
- sub-clusters and five TBX5^{in/del}-enriched (shades of blue) sub-clusters. d, Heterogeneity of gene 1086 expression among labeled sub-clusters are shown.
- 1088

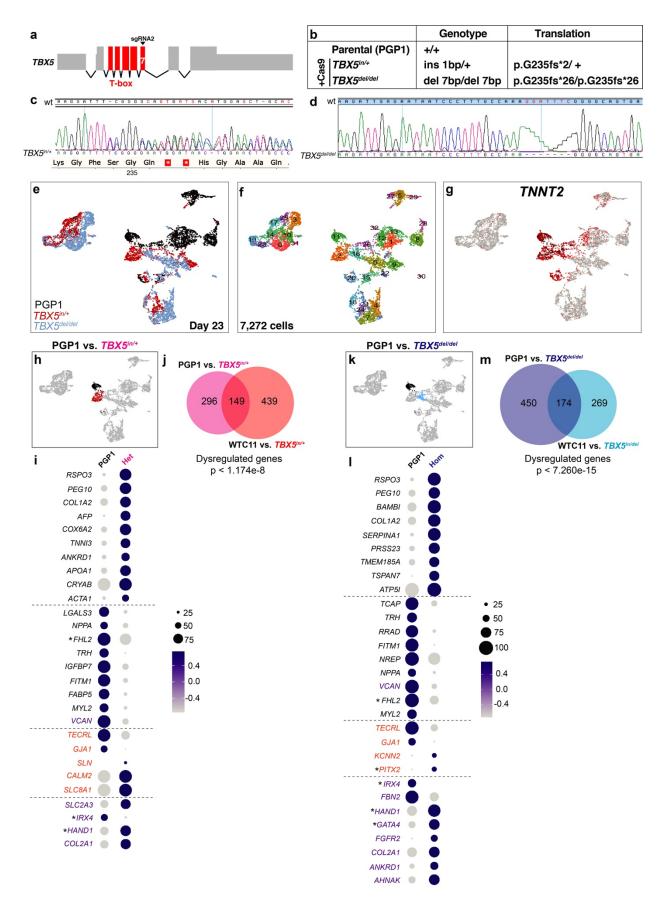

¹⁰⁷⁸ Extended Data 7. Loss of TBX5 by gene expression in individual cardiomyocytes at day 23. a, UMAP of day 23 cardiomyocytes displays a wildtype-enriched (black) and TBX5^{in/del}enriched (blue) cluster, at a low Louvain resolution in Seurat, for comparison between clusters 1080 of TBX5 genotypes. b, Dot plots showing top differentially expressed genes between aggregate

1090

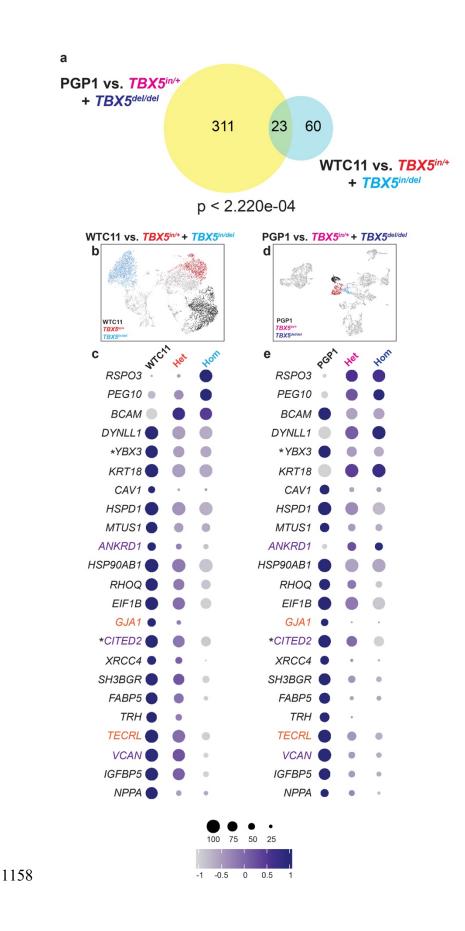
 1092 Extended Data 8. Single cell analysis of TBX5-dependent genes by orthogonal assays. a, Dot plots show expression of *NPPA* and *DES* in WTC11 (WT)-, *TBX5^{in/+}*- and *TBX5^{in/del}* 1094 enriched clusters at day 23. b-p, Fluorescence *in situ* hybridization is visualized for *TNNT2*


- (green) or *NPPA* (red) in day 23 cardiomyocytes, from (**b-d**) WTC11, (**e-g**) control, (**h-j**) *TBX5^{in/+}*, (**k-m**) *TBX5^{in/del}* and (**n-p**) *TBX5^{PuR/PuR}* cells. **q**, Graph displays mean intensity of *NPPA* 1096
- signal of individual double-positive TNNT2*/NPPA* cells by TBX5 genotype. Significance of p-
- values were calculated by unpaired t test. r-t, Pseudocolor plots showing cTNT⁺ and DES⁺ 1098
- double positive cells in (**r**) wildtype, (**s**) $TBX5^{in/+}$ or (**t**) $TBX5^{in/del}$ at day 23. **u**, Histogram of FITC intensity of DES⁺ cells from wildtype, $TBX5^{in/+}$ or $TBX5^{in/del}$ cells is shown (****p-value<1E-4 by 1100 Chi-Square test).

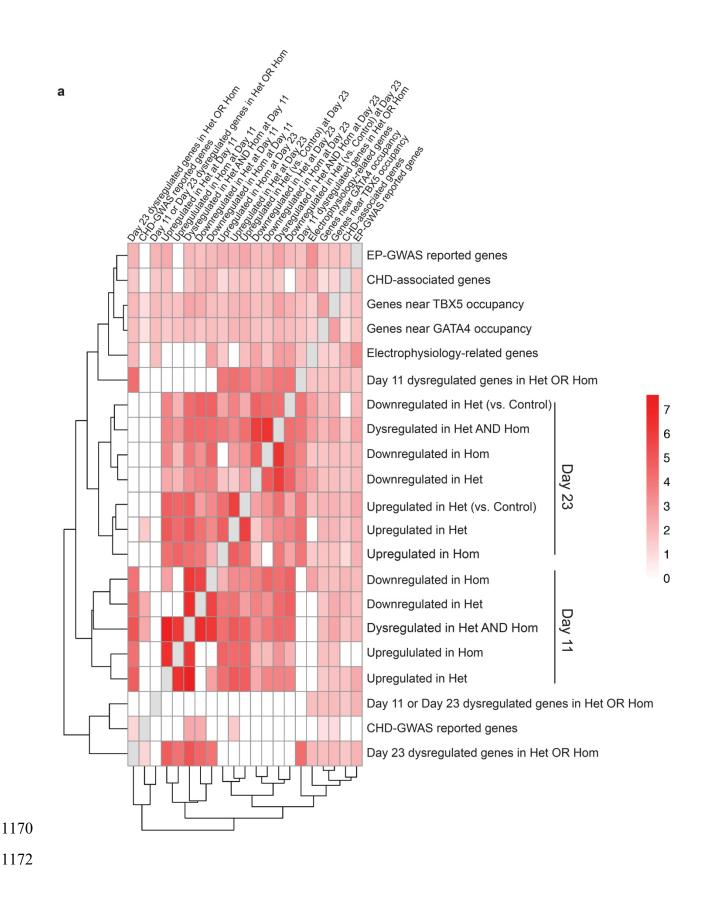
1106 Extended Data 9. Biological replicate of TBX5 dose-sensitive responses in WTC11-


- derived cardiomyocytes at day 23. a, b, Cells at day 23 of an independent differentiation
 (biological replicate) were collected for single cell RNAseq analysis. UMAP shows all cells from day 23 colored by *TBX5* genotype or by cluster identity, respectively. c, UMAP shows *TNNT2*
- 1110 expression. **d**, **e**, UMAP of $TNNT2^+$ cells from day 23 are colored by TBX5 genotype or by cluster identity, respectively. **f**, UMAP shows TNNT2 expression in $TNNT2^+$ cells. **g**, **j**, UMAPs
- 1112 highlight clusters used in pair-wise differential gene tests. h, k, Dot plots show top differentially expressed genes between wildtype (WT)-enriched and *TBX5^{in/+}*-enriched or *TBX5^{in/del}*-enriched
- 1114 clusters (Supplementary Table 2). Electrophysiology-related (orange) or congenital heart
- disease (CHD)-associated (purple) genes are indicated. Asterisks denote transcription factors.
- 1116 Significance was determined by Wilcoxon Rank Sum test (adj p-value<0.05). **i**, **l**, Venn diagrams show overlap of differentially expressed genes detected in the first and second
- 1118 biological replicates at day 23. Statistical significance was determined by Hypergeometric test, based on the union of highly variable genes from both datasets (1,688) as the population size.

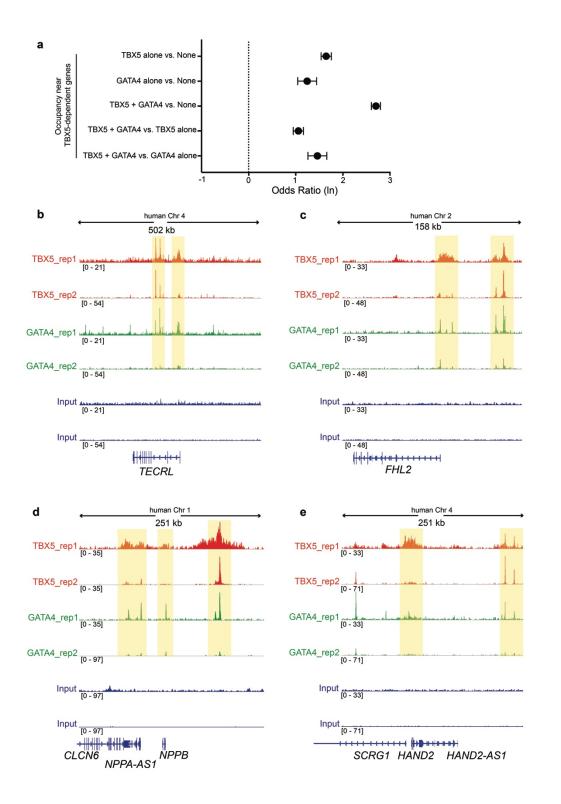
1122


Extended Data 10. Overlap of TBX5 dose-dependent genes between biological replicates.

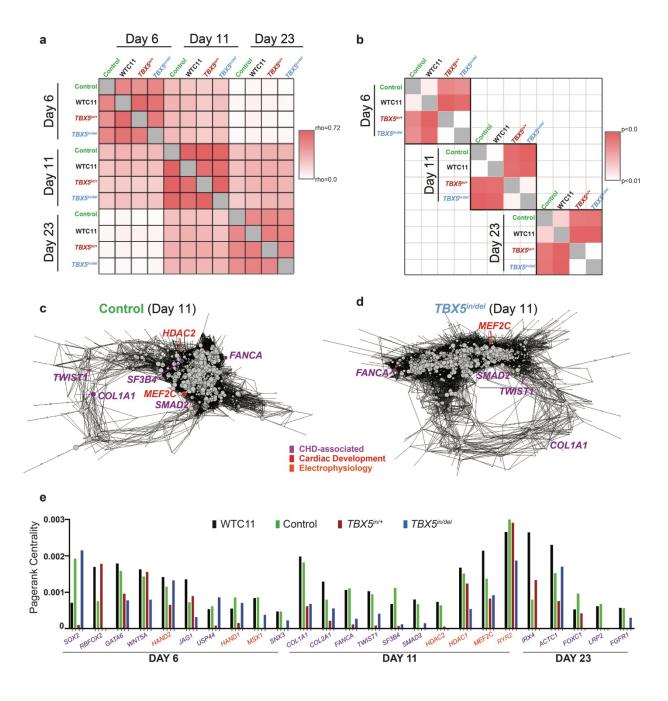
- **a**, Venn diagram shows overlap of differentially expressed genes detected at day 23 in WTC11targeted *TBX5^{in/+}* and *TBX5^{in/del}* cells from biological replicate 1 and replicate 2. Statistical
- 1126 significance was determined by Hypergeometric test, based on the union of highly variable genes from both datasets (1,688) as the population size. **b**, **d**, UMAPs demonstrate clusters
- 1128 chosen for differential gene expression within each experiment for comparison. **c**, **e**, Dot plots show top differentially expressed genes for replicates. Significance was determined by Wilcoxon
- 1130 Rank Sum test (adj p-value<0.05). **f**, Venn diagram shows overlap of differentially expressed genes between genetic backgrounds of WTC11-targeted *TBX5^{in/+}* and *TBX5^{in/del}* cells and PGP1-
- 1132 targeted $TBX5^{in/+}$ and $TBX5^{del/del}$ cells. **g**, **i**, UMAPs show clusters chosen for differential gene expression for comparison. **h**, **j**, Dot plots show top differentially expressed genes in each
- 1134 genetic background by *TBX5* genotype.


1138 Extended Data 11. Assessment of an alternative genetic background for TBX5 dosesensitive gene expression. a, Diagram of human *TBX5* gene is shown, with exons in red. The

- 1140 guide sgRNA2 was used to target exon 7, which encodes a portion of the T-box domain, of *TBX5* in PGP1 iPS cells. **b**, Table specifies the nature of each *TBX5* mutation and the predicted
- 1142 translation of TBX5 for PGP1-derived $TBX5^{in/+}$ or $TBX5^{del/del}$ cells. **c**, **d**, Chromatogram indicates a 1 base pair insertion of the mutant TBX5 allele for PGP1-derived $TBX5^{in/+}$ cells (**c**) or a 7 base
- 1144 pair deletion of *TBX5* in *TBX5^{del/del}* cells (**d**). **e-g**, UMAPs of all cells from day 23 by *TBX5* genotype (**e**), cluster identity (**f**), or by *TNNT2* expression (**g**). **h**, **k**, UMAPs mark *TBX5*
- 1146 genotype-enriched clusters by color that were selected for differential gene expression test. **i**, **I**, Dot plots show top differentially expressed genes in (**i**) *TBX5^{/in/+}* or (**I**) *TBX5^{/del/del}*-enriched
- 1148 clusters. Significance was determined by Wilcoxon Rank Sum test (adj p-value<0.05)
- (Supplementary Table 2). j, Venn diagram shows overlap of TBX5-dependent gene sets
- 1150 between differences of WTC11 and WTC11-derived *TBX5^{in/+}* clusters and differences of PGP1 and PGP1-derived *TBX5^{in/+}* clusters. **m**, Venn diagram displays overlap of TBX5-dependent
- 1152 gene sets between differences of WTC11 and WTC11-derived *TBX5^{in/del}* and differences of PGP1 and PGP1-derived *TBX5^{del/del}*. Statistical significance was determined by Hypergeometric
- 1154 test, based on the union of highly variable genes from both datasets (2,566) as the population size.


1160 Extended Data 12. Overlap of TBX5 dose-dependent genes between genetic

- backgrounds. a, Venn diagram shows overlap of differentially expressed genes between
- genetic backgrounds of WTC11-targeted *TBX5^{in/+}* and *TBX5^{in/del}* cells and PGP1-targeted
- $TBX5^{in/+}$ and $TBX5^{del/del}$ cells. Statistical significance was determined by Hypergeometric test,
- based on the union of highly variable genes from both datasets (2,566) as the population size.b, d, UMAPs show clusters chosen for differential gene expression for comparison. c, e, Dot
- 1166 plots show top differentially expressed genes in each genetic background by *TBX5* genotype (adj p-value<0.05 by Wilcoxon Rank Sum test).

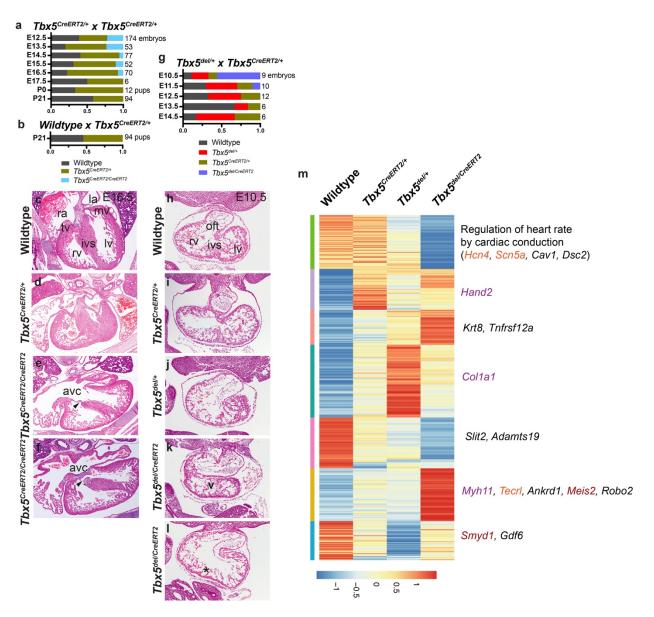

1174 Extended Data 13. Associations between disease candidates, GWAS reported genes, TBX5 or GATA4 occupancy, or TBX5-dependent genes. a, Heat map indicates odds ratios

- 1176 (FDR<0.05) between several variables, including CHD-associated genes, EP-related genes, CHD-related GWAS reported genes, arrhythmia-related GWAS (EP-GWAS) reported genes,
- 1178 TBX5 or GATA4 occupancy, and TBX5-dependent gene sets at day 11 or day 23
- (Supplementary Table 4). Statistical significance was determined by Benjamini-Hochberg multiple testing.

Extended Data 14. Co-occupancy of TBX5 or GATA4 near human TBX5-dependent genes.

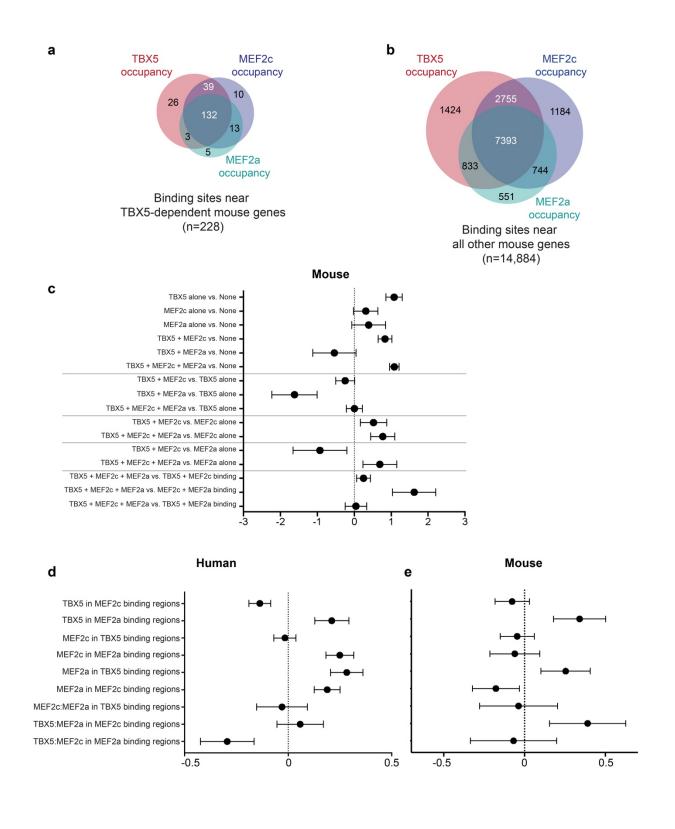
- **a,** Odds ratios (FDR<0.05) of TBX5, GATA4 or TBX5 and GATA4 occupancy near all human TBX5-dependent genes. Statistical significance was determined by Benjamini-Hochberg
- 1186 multiple testing (Supplementary Table 5). **b**, Browser tracks of TBX5 and GATA4 occupancy
- from iPS cell-derived cardiomyocytes are shown for loci of TBX5-dependent genes TECRL,
- 1188 FHL2, NPPA/NPPB or HAND2.

1192


1190

Extended Data 15. Analysis of TBX5 dosage-sensitive gene regulatory networks. a,

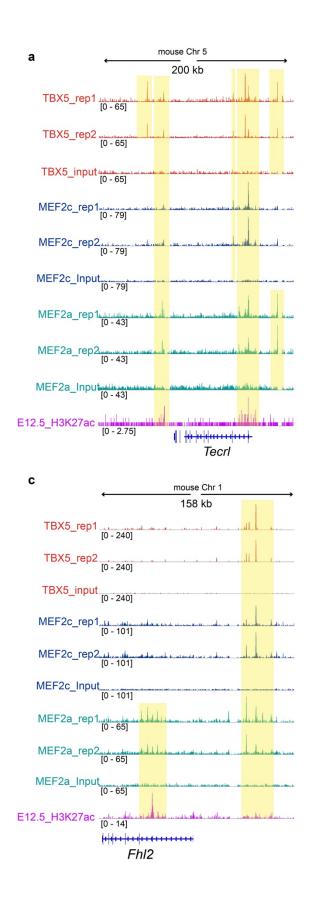
1194 Correlation plot (Pearson correlations of pagerank centralities) of networks by genotypes and time points are shown. Note that networks display highest similarity (red) within a time point. An 1196 inter-stage dissimilarity (white) grows proportionally to the time difference (i.e. Day 23 is less

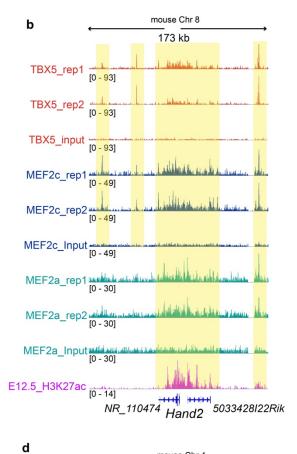

similar to Day 6 than Day 11). Therefore, comparisons for genotype differences were made within differentiation stages. **b**, Network similarity among genotypes within each time point is

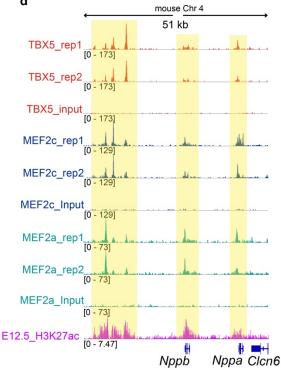
- shown (Wilcoxon Rank Sum test of pagerank centralities for nodes from selected time point
 comparisons). c, d, Network diagrams of day 11 cardiomyocytes for control (c) or *TBX5^{in/del}*(d)
 are shown. e, Quantification of pagerank centrality for significantly altered (top 5% cutoff) nodes
- 1202 of CHD-associated or heart development genes at specific time points are shown.

- 1204
- Extended Data 16. An allelic series of *Tbx5* mutants in mouse. a, Embryos or pups from matings of *Tbx5^{CreERT2/+}* X *Tbx5^{CreERT2/+}* were genotyped. Expected Mendelian ratios were not observed for *Tbx5^{CreERT2/CreERT2}* after E13.5. b, Expected Mendelian ratios were observed for pups at weaning from matings of *Tbx5^{CreERT2/+}* X wildtype. c-f, Transverse sections of hearts at embryonic day 16.5 (E16.5) from each genotype are shown. Right atrium (ra), left atrium (la),
- right ventricle (rv), left ventricle (lv), tricuspid valve (tv), mitral valve (mv) and interventricular septum (ivs) are labeled. Note atrioventricular canal defects (avc), which includes membranous VSDs (arrowheads), in *Tbx5*^{CreERT2/CreERT2} hearts (**e**, **f**). **g**, Expected Mendelian ratios from
- 1214 matings of $Tbx5^{CreERT2/+}$ X $Tbx5^{del/+}$ were not observed for $Tbx5^{del/CreERT2}$ after E10.5. **h-I,** Transverse sections of individual hearts at embryonic E10.5 from each genotype are shown.
- 1216 Note a single ventricle (v) and lack of invagination (*) at the site of the nascent interventricular groove. **m**, Heat map by genotype of average gene expression data from 4 individual whole
- 1218 hearts at E10.5 (Supplementary Table 7). Significant GO term (adj p-value <0.05) for one cluster is shown, including underlying genes. TBX5-dependent mouse genes that are also

1220 TBX5-sensitive in human cells are shown. CHD-associated (purple), electrophysiology-related (orange), or heart development (red) genes are highlighted.

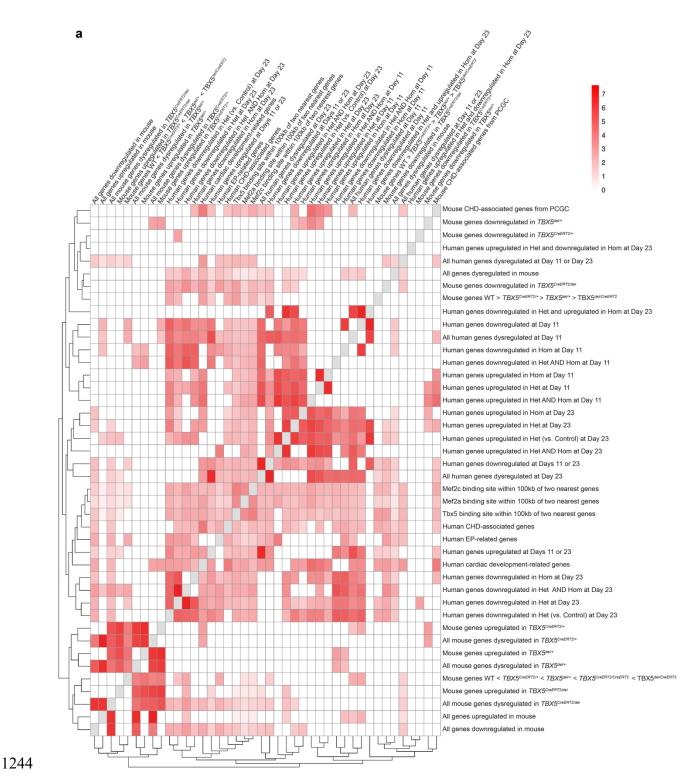



1226


1224

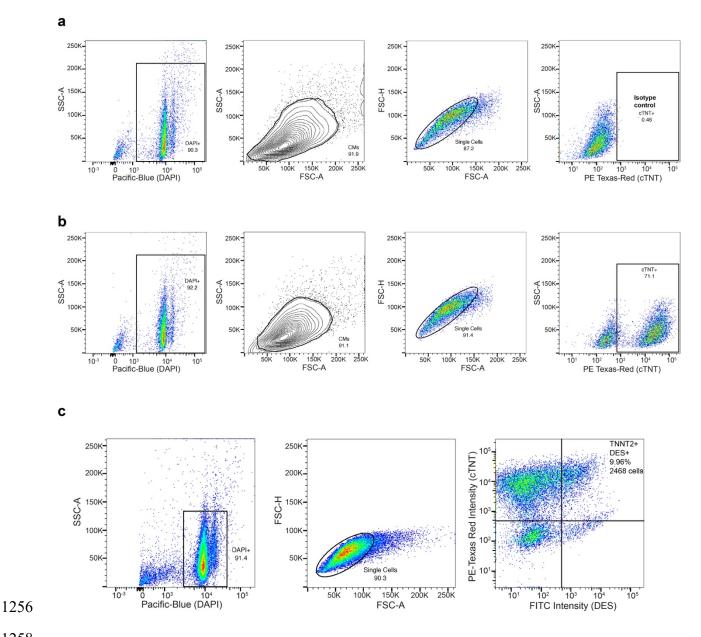
Extended Figure 17. Analyses of TBX5, MEF2c and MEF2a co-occupancy. a, b, Venn diagrams display the overlap of TBX5, MEF2a or MEF2c occupancy near mouse orthologs of human TBX5-dependent or -independent genes, respectively. c, Odds ratios (FDR<0.05) of combinations of TBX5, MEF2a or MEF2c occupancy near TBX5-dependent mouse genes

- 1232 (Supplementary Table 5). d, e, Odds ratios (FDR<0.05) of combinations of MEF2a or MEF2c occupancy within 1kb of TBX5 binding sites near TBX5-dependent or all other genes in human
 1224 (d) or mause (e) (Supplementary Table 8)
- 1234 (d) or mouse (e) (Supplementary Table 8).



Extended Data 18. Co-occupancy of TBX5, MEF2a and MEF2c near TBX5-dependent

- 1240 **genes. a-d,** Browser tracks for ChIP-seq data from E12.5 hearts of TBX5, MEF2c, MEF2a and H3K27ac near conserved TBX5-dependent genes, *Hand2*, *Tecrl, FhI2* and *Nppa/Nppb*. Yellow
- 1242 bands of shading indicate co-occupancy that is present in replicates but not in input.



1246

Extended Data 19. Correlations of between disease candidates, GWAS reported genes, 1248 TBX5, MEF2c or MEF2a occupancy, or TBX5-dependent genes. a, Heat map indicates odds ratios (FDR<0.05) between several variables, including CHD-associated genes, EP-related

1250 genes, CHD-related GWAS reported genes, arrhythmia-related GWAS (EP-GWAS) reported genes, TBX5, MEF2c, or MEF2a occupancy, and TBX5-dependent human gene sets at day 11

1252 or day 23 or TBX5-dependent mouse gene sets (Supplementary Table 6). Statistical significance was determined by Benjamini-Hochberg multiple testing.

1258

Extended Data 20. Gating strategies for flow cytometry. a, b, Gates were determined in
 each of the isotype controls per genotype and applied to genotype-matched samples. First,
 gates were drawn around DAPI⁺ cells in SSC-A vs. Pacific-Blue plots. Next, SSC-A vs. FSC-A
 plots were used to exclude debris. Single cells were then isolated by gating of FSC-H vs. FSC-A
 plots. cTNT⁺ gates were drawn in SSC-A vs. FITC plots. c, For cTNT⁺/DES⁺ cells, PE-Texas
 Red vs. FITC plots were used.

1266

1268

Supplementary Tables.

Supplementary Table 1. Curated gene lists, which are used in this study, include 1274 electrophysiology (EP)-related genes, human congenital heart disease (CHD)-associated genes, mouse CHD-associated genes and cardiac development-related genes. 1276 Supplementary Table 2. Lists of differential genes from comparisons between TNNT2⁺ 1278 clusters, at day 11 or day 23, or by biological replicate or genetic background at day 23. 1280 Supplementary Table 3. TBX5-sensitive gene regulatory network analyses, by pagerank or degree, or by correlation with TBX5 or MEF2C expression. 1282 Supplementary Table 4. Data for odds ratios for correlation of human TBX5-dependent genes 1284 near TBX5 or GATA4 occupancy, congenital heart disease (CHD)-associated GWAS, electrophysiology (EP)-related GWAS. CHD-associated genes. or EP-related genes. 1286 Supplementary Table 5. Odds ratios for co-occupancy data near human TBX5-dependent 1288 genes for TBX5 and GATA4, or for co-occupancy of TBX5, MEF2c and MEF2a near human or mouse TBX5-dependent genes. 1290 Supplementary Table 6. Data for odds ratios for correlation of human or mouse TBX5-1292 dependent genes near TBX5, MEF2c or MEF2a occupancy, congenital heart disease (CHD)associated GWAS, electrophysiology (EP)-related GWAS, CHD-associated genes, or EP-1294 related genes. 1296 Supplementary Table 7. Bulk RNAseg data of mouse embryonic hearts at E10.5 for an allelic

- Supplementary Table 7. Bulk RNAseq data of mouse embryonic hearts at E10.5 for an all series of *TBX5* mutants.
 1298
- **Supplementary Table 8.** Odds ratio for transcription factor (TF) binding of TBX5, MEF2c, or 1300 MEF2a within 1kb of the other TFs in the trio, near human or mouse TBX5-dependent genes.

1302

1272