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Abstract 

People can use abstract rules to flexibly configure and select actions for specific 

situations. Yet how exactly rules shape actions towards specific sensory and/or motor 

requirements remains unclear. One possibility is that rules become integrated with 

sensory/response features in a non-linear, conjunctive manner (e.g., event files; 

Hommel, 1998) to drive rule-guided action selection. To dynamically track such 

conjunctive representations during action selection, we applied a time-resolved 

representational similarity analysis to the spectral-temporal profiles of the EEG signal, 

while participants selected actions based on varying rules. Across two experiments, we 

found that action selection engages conjunctive representations binding action rules to 

specific sensory/motor settings throughout the entire selection period. The strength of 

conjunctions was the most important predictor of trial-by-trial variability in response 

times (RTs) and was closely, and selectively, related to an important behavioral 

indicator of event files—the partial-overlap priming pattern. Thus, conjunctive 

representations were functionally dissociated from their constituent action features and 

play a critical role during flexible selection of action.  
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Conjunctive Representations that Integrate Stimuli, Responses, 

and Rules are Critical for Action Selection  

 

Flexible, goal-directed action requires the use of abstract rules that can be 

applied to a range of specific situations. However, we know little about how abstract rule 

representations connect with lower-level sensory or response representations, as a 

specific action is planned and executed. In traditional stage-based processing models, 

information flows from sensory to response in a cascade of relatively independent 

representations 1-5, that are specified by the relevant action rule.6 An alternative view is 

the idea of a common representational space in which all action-relevant features (e.g., 

sensory, motor, and even abstract action rules) are combined into highly integrated, 

conjunctive representations, sometimes referred to as event files or task files.7-10 By 

tying all relevant features together into a common, integrated representation, a specific 

action becomes executable. Therefore, these representations are a critical condition for 

successful action control and selection.   

Once formed, however, an event file can also get in the way of subsequent 

actions, as indicated by a characteristic pattern of priming effects.11 Specifically, when 

consecutive trials require event files that share either all or none of the constituent 

features, actions are executed relatively fast. However, when only some, but not all 

features overlap across trials, then response-times or errors increase, a pattern that 

event-file theory explains as the cost of “unbinding” the overlapping features from the 

no-longer needed event file. Such partial-overlap costs emerge even when complete S-

R associations repeat across trials while the abstract rule changes, indicating that just 

like any sensory or response features, rules can become part of event files.10   
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The partial-overlap pattern is currently the key empirical indicator of event files. 

However, because it is an aftereffect of event-file formation, this pattern provides no 

information about how conjunctive representations behave during response selection 

and whether or not they are indeed a critical precursor of successful action. Moreover, 

partial-overlap costs can also be explained by alternative models that do not assume 

integration between different codes during action selection. For example, Kleinsorge & 

Heuer12, 13 proposed a strict hierarchical separation between the level of rules and the 

level of stimulus/response selection. The pattern of partial-overlap costs arises from the 

assumption that a switch of action codes on the highest level (i.e., rules) propagates 

down to the lower levels (i.e., stimulus-response codes). As a result, when only the rule 

changes, but the response stays constant, the now inappropriate lower-level 

specification will have to be reverted, leading to performance costs.   

To test the event file model against accounts that do not assume integration of 

action-relevant features as a critical step during action selection, it is important to 

directly track the multiple representations that could concurrently become active during 

action selection––including potential conjunctions between stimuli, responses, and even 

action rules. In the current study, we used the EEG signal to decode information about 

action-relevant representations in a time-resolved manner 14-16 via representational 

similarity analysis (RSA) 17, 18 as participants selected responses to location stimuli on 

the basis of randomly cued, spatial transformation rules10 (Fig.1ab).  Experiment 1 

allowed us to decode conjunctions that were specific for particular rules, but without 

differentiating between S-R conjunctions and conjunctions that also integrated abstract 

rules (i.e., rule-S-R conjunctions). In Experiment 2, we replicated all major results from 
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Experiment 1, but also used an expanded task space that allowed us to test whether or 

not abstract rules can become integrated into conjunction representations. Across both 

experiments, we found strong evidence for conjunctive representations--including rule-

S-R conjunction in Experiment 2. Consistent with predictions from event-file theory, 

conjunctions were robust and unique predictors of variability in performance, and were 

related to the pattern of partial-overlap priming costs.  

Results 

Experiment 1 

Behavior 

For all analyses, error-trials, post-error trials, and trials in which RTs were larger 

than 99.5 percentile of the RT distribution were excluded. Consistent with previous 

work10, we observed partial-overlap costs in RTs and errors as a function of the different 

trial-to-trial transitions (Fig. 2): When the rule, the stimulus, and thus also the response 

repeated or when all changed, responses were fast and accurate, whereas costs 

emerged in the case of partial updates of either rules or stimuli/responses (for statistical 

analysis, see Supplementary Table 1).  

Tracking Representational Dynamics  

  While the pattern of RTs and errors is consistent with predictions from the event-

file model, by itself it is not sufficient to draw strong inferences about the role of 

conjunctive representations during action selection. Fig. 3a shows the results of the 

time-resolved RSA performed on the level of single trials. Consistent with previous 

results, the cascade of decoded representations unfolds in a manner that is consistent 

with the expected flow of information: The rule is activated during the pre-stimulus 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/835652doi: bioRxiv preprint 

https://doi.org/10.1101/835652
http://creativecommons.org/licenses/by-nc/4.0/


Conjunctive Representations 

 6 

phase, followed by a strong expression of the stimulus, and finally by the response.16, 19 

Critically, the conjunctive representation can be decoded during the entire post-stimulus 

period (Fig. 3a), and clearly peaks before response representations fully develops 

(Supplementary Fig. 7). These effects were significant even though we accounted for 

subject-specific differences in RTs between action constellations and therefore cannot 

be explained in terms of unspecific difficulty differences between action constellations 

(Supplementary Fig. 1).  

To test the prediction from event-file theory that conjunction representations are 

critical for action selection, we regressed trial-to-trial variation in RTs onto the strength 

of each expressed representation. Using multilevel modeling, we performed these 

analyses for each time-point and with all predictors entered simultaneously. The 

resulting “impact-trajectories” are shown in Fig. 3b; statistical results for a-priori selected 

time intervals are summarized in Table 1. Note that negative t-values indicating that 

stronger representations lead to faster responding. Consistent with the prediction from 

event-file theory, the conjunctive representation was the most dominant predictor of 

performance. Combined, these results indicate that conjunctive representations emerge 

during response-selection, concurrently with the representations of constituent features, 

and predict upcoming behavior over and above the influence of the constituent 

representations.   

Conjunctive Representations and Partial-Overlap Costs  

In order to directly connect the EEG-decoded conjunctive representations with 

event-files, we examined whether and how these representations relate to the partial-

overlap priming pattern. As Fig. 4a shows, the strength of decoded conjunctions 
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expresses the partial-overlap pattern. Conjunctive representations were particularly 

strong exactly in those transitions in which RTs were fast (i.e., when either everything 

repeats or everything changes, see Fig. 2). Conjunctive representations showed the 

partial-overlap pattern in the correct direction during early post-stimulus phase, b=-.024, 

SE=.010, t(20)=-2.58, but not in the late post-stimulus phase, b=-.004, SE=.010, 

t(20)=-.39, and none of the constituent features showed the critical interaction pattern, 

all ts(20)>-.21.  

Another important prediction that can be derived from the event-file model is that 

strong conjunctions should be particularly difficult to “unbind” on the following trial. Thus, 

the strength of conjunctions on trial n-1 should predict partial-overlap costs on trial 

n.  Our results, shown in Fig. 4b, confirm this prediction: A stronger conjunctive 

representation in n-1 trial, late in the selection period led to a greater RT partial-overlap 

costs on the next trial, b=-.025, SE=.011, t(20)=-2.25. Again, this pattern was unique for 

conjunction representations. None of the constituent features had comparable effects 

on next-trial performance, all t(20)>-.05. Taken together, the behavior of decoded 

conjunctive representations is highly consistent with predictions from the event-file 

model.   

Experiment 2 

The results in Experiment 1 suggest that action selection recruits conjunctive 

representations and that the strength of these representations is predictive of trial-to-

trial performance, as postulated by the event file perspective8, 11, 20. Yet, because each 

action rule specified a unique set of S-R links, the observed conjunctive representations 

could consist of any combinations of the rule and/or stimulus/response features—
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leaving it ambiguous to what degree abstract rules were integrated into conjunctive 

representations. Thus, in Experiment 2, we attempted to tease apart two different types 

of conjunctions: (1) rule-independent conjunctions between stimuli and responses (S-R 

conjunctions) and (2) rule-specific (rule-S-R) conjunctions that integrate abstract action 

rules with S-R links. To this end, we introduced four action rules (i.e., vertical, 

horizontal, clockwise, and a counterclockwise; Fig. 5a), which allowed S-R conjunctions 

that shared the same S-R links, but different abstract rules (e.g., a dot at the top-left 

corner requires a bottom-left response using either the vertical rule or the 

counterclockwise rule).10 The inclusion of such same-S-R pairs allows dissociating 

conjunctions that did integrate rules (rule-S-R) from rule-unspecific conjunctions (S-R). 

Behavior 

The same trial-exclusion criteria as in Experiment 1 were used for all analyses in 

Experiment 2. We replicate the partial-overlap costs on RTs and errors from Experiment 

1 and a previous report using the same paradigm 10 (Fig. 6): Critically, repetition of rule-

S-SR settings produced RT and error benefits, whereas any partial updates (including 

S-R repetitions) generated costs. We focused on trials in which both stimulus and 

response-features covary (i.e., complete S-R changes or repeats) as a function of 

switching of rules because they provide a direct test for potential differences in the rule-

specific and rule-independent conjunctions (for statistical analysis, see Supplementary 

Table 2).  

Decoupling Rule-specific and Rule-independent Conjunctions 

We used the same analysis approach as in Experiment 1, only that here we 

included RSA models for both rule-specific (rule S-R) conjunctions and rule-
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independent (S-R) conjunctions. We found evidence that both types of conjunctions 

emerged over and above the constituent features (Fig. 7a). The rule-S-R conjunctions 

became active right after stimulus onset and were sustained robustly during the 

selection period. Again, activation of these representations preceded the emergence of 

response information (Supplementary Fig. 7). In contrast, the rule-independent, S-R 

conjunctions appeared immediately after rule-S-R conjunctions, but remained relatively 

weak compared to other action representations. We also replicated the pattern of 

results from Experiment 1 for the constituent features, with the exception that the rule 

representations diminished after stimulus onset (Fig. 7a). Excluding conjunction models 

restored the post-stimulus rule representation, suggesting that the rule S-R conjunction 

model captures the same variance as the rule model explains in this phase of action 

selection (Fig. 7a inset). 

Next, we examined again, which representations were the main driver of action 

selection. As shown in Fig. 7b, both rue-S-R conjunctions and S-R conjunctions 

explained substantial, and independent variability in trial-to-trial RTs, over and above 

the variance explained by the constituent features (Table 2 for the statistical results and 

Supplementary Fig. 4 for results from standard decoding analyses). These results 

replicate the findings from Experiment 1 that conjunctions are indeed critical of efficient 

action selection. In addition, they clarify that both rule-independent and rule-specific 

conjunctions are about equally important in predicting behavior, with possibly a slight 

edge for the rule-specific conjunctions.   
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Conjunctive Representations and Partial-Overlap Costs 

As in Experiment 1, we also examined the relationship between conjunction 

codes and behavioral partial-overlap costs. We found that only the strength of rule-S-R 

conjunctions showed the partial-overlap costs, b=-.021, SE=.009, t(21)=-2.22, for the 

early selection phase; b=-.021, SE=.009, t(21)=-2.24, for the late selection phase (Fig. 

8a). None of the constituent features, t(21)>-.72), or S-R conjunctions showed such an 

effect, b=-.012, SE=.009, t(21)=1.27 for the early selection phase; b=-.007, SE=.010, 

t(21)=-.72, for the late selection phase. In addition, the strength of late rule-S-R 

conjunctions on the previous trial again significantly modulated RT partial-overlap costs 

on the next trail (Fig. 8b), b=.031, SE=.011, t(20)=2.81. This pattern was absent for 

constituent features, all t(21)<.38, and S-R conjunctions, b=-.009, SE=.011, t(21)=-.85. 

Thus, only the conjunctions that integrate rule information show a tight relation with the 

main behavioral indicator of event files, the partial-overlap cost.   

Discussion 

We tested whether integrated, conjunctive representations between task-relevant 

features emerge during action selection, as postulated by event-file theory7, 8.  In our 

paradigm action settings had to be updated flexibly for each trial, creating unique 

constellations between rules, stimuli and responses. We combined a standard, linear 

decoding approach with a subsequent, time-resolved RSA in order to track the 

emergence of conjunctive representations and their constituent features over time, and 

for each individual trial. In Experiment 1, conjunctions could entail any pairwise, or 

complete combination of rule, stimulus, or response features; in Experiment 2, we were 
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further able to dissociate between rule-S-R conjunctions, and rule-independent S-R 

conjunctions. 

The time course of decoded information showed a highly plausible cascade of 

action representations (rule, stimulus, and then response), and most critically, we found 

robust evidence for conjunctive representations—emerging shortly after stimulus onset 

and then persisting until response execution. Analyses with response-locked EEG data 

fully confirmed this pattern of results (Supplementary Fig. 7). The fact that conjunctive 

representations are continuously present from stimulus processing to response 

execution is consistent with their role in translating perceptual codes into response 

codes based on the current task rules. Even though the strength of conjunctive 

representations was on average much weaker than that of the constituent features, they 

were highly robust and consistent within individuals (Fig. 3 and Fig. 7 and 

Supplementary Fig. 9). Even more importantly, conjunctive representations were strong 

and unique predictors of trial-by-trial variability in RTs, over and above other constituent 

features. These results are difficult to reconcile with traditional stage theories1-5, where 

information flows in a strictly feed-forward manner and therefore does not allow the 

emergence of integrated representations. These results are also inconsistent with 

hierarchical control models that assume independent selection processes on different 

hierarchical levels. 12, 13 Instead, our results indicate that action selection is established 

by tying together disparate, task-relevant features from the entire selection event into a 

common representation.    

The fact that in Experiment 2 rule-S-R conjunctions and rule-independent, S-R 

conjunctions emerged is an important result in its own right. It suggests that integrated 
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representations that match the contingencies in the environment can develop in parallel, 

and on different levels of abstraction. This combination of both highly specific and rule-

general representations can account for the fact that S-R associations learned within 

one rule can transfer to another rule, albeit in a limited manner.10, 21 It is also consistent 

with the proposal that event files themselves can possess an internal, hierarchical 

organization.9 

A key behavioral indicator of event files is the partial-overlap priming pattern, 

which entails benefits when all action features either repeat or change and costs when 

there is partial overlap of features across trials.10, 11 In both experiments, we found that 

this pattern not only in RTs and errors (Fig. 2 and Fig. 6), but also in the strength of 

conjunctions (Fig. 4a and Fig. 8a). Even more importantly, the strength of conjunctions 

on trial n, predicts the size of partial overlap costs on trial n+1 (Fig. 4b and Fig.8b), 

suggesting the stronger action features are tied together into conjunctions, the harder it 

is to “unbind” them on the following trial in order to integrate them into a new 

conjunction. Recent behavioral studies have raised questions about whether the 

strength of partial-overlap costs is explained by the strength of the initial binding, or 

instead by difficulty of selectively retrieving integrated, action-relevant features.8 While 

the present results do not rule out the contribution of retrieval-related effects, they do 

point to the “binding strength” of the original conjunction as a critical factor that 

determines partial-overlap costs.   

It is particularly important that the tight relationship with the partial-overlap 

pattern was only found for conjunctions (i.e., rule-S-R conjunction in Experiment 2), thus 

functionally dissociating conjunctions from their constituent codes. Moreover, the results 
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in Experiment 2 also indicated that only rule-specific S-R conjunctions were related to 

the partial-overlap cost, not however the rule-independent S-R conjunctions. As noted, 

for Experiment 1, the task design did not allow firm conclusions about whether or not 

conjunctions contained rule-specific information. However, the conjunctions in 

Experiment 1 showed a similar priming pattern as the rule-S-R conjunctions in 

Experiment 2, suggesting integration of not just stimuli and responses, but also of rules 

in both experiments.   

 While our results indicate with high resolution when representations of specific 

features and feature combinations are activated, they provide no neuroanatomical 

information (see Supplementary Results). Cell-physiological work with monkeys and 

human, neuroimaging work indicates that the representation of task-relevant features, 

including rules, is distributed across large areas frontal and parietal cortex.22, 23 From 

animal models, there is substantial evidence that the hippocampus and the frontal 

cortex are particularly important for representing conjunctive information.24, 25  Human 

neuroimaging work also mainly implicates the hippocampus 26, 27; attempts to decode 

task representations in the frontal areas have proven more challenging28, but have also 

seen some recent success.29, 30 

In nonhuman primates, single cell recordings have also shown that while basic 

task features (cues, rules, stimuli, and responses) are encoded across various frontal 

and parietal areas during rule-based action selection22, 31, a substantial proportion of 

recorded neurons are tuned to the mixture of multiple features in a non-linear manner.24, 

32 Such heterogeneous, neural responses allow both efficient, linear read-out of 
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information to downstream neurons and can also code high-dimensional, conjunctive 

information33. 

An important finding from this research is that the degree of conjunctive 

information coded in recorded neurons is functionally distinct from the representation of 

linear features. For example, high-dimensional, non-linear information was found to be 

highly robust on correct trial, but was largely missing on error trials, whereas low-

dimensional information is equally strong on correct and error trials.24 This pattern is 

consistent with our finding that the strength of conjunctive representations uniquely 

predicts trial-by-trial performance, beyond the predictive strength of constituent, simple 

features (Fig. 3b and Fig. 7b). Further evidence for a functional dissociation comes the 

finding that conjunctive representations express trial-to-trial transitions (i.e., the partial-

overlap priming pattern) in a qualitatively different manner than the constituent feature 

representations (see Fig. 4 and Fig. 8).  

These results about the relevance of conjunctions for efficient action selection 

and the mismatch priming pattern also directly confirm predictions from event-file 

theory. Therefore, they provide an important, missing link between two, so-far distinct 

lines of research: The relatively abstract, event-file theory, designed to explain the 

architecture of human action selection, and the recent advances from animal research 

about the neural implementation of high-dimensional, non-linear representations. 

Beyond the current demonstration of the role of conjunctive representation in human 

action control, there is a range of important, open questions.  For example, we do not 

know how these representations are constrained by capacity limitations34, to what 

degree they allow integration of action outcomes or goals35, or how they change through 
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experience (see Supplemental Fig. 9).10 The decoding approach used here, promises 

answers to these and related questions. 

Method 

Participants 

A total of 44 people participated after signing informed consent following the 

protocol approved by the University of Oregon’s Human Subjects Committee in 

exchange for the compensation of $10 per hour and the additional performance-based 

incentive. Participants with excessive amount of EEG artifacts (more than 35% of trials) 

were removed from further analysis. As a result, we retained 20 out of 22 participants 

for Experiment 1 and 21 out of 22 for Experiment 2. 

Stimuli, Tasks and Procedure 

Participants performed a cued rule-selection task, in which one of the pre-

instructed action rules, on trial-by-trial basis, was randomly selected to determine 

possible S-R mappings10; Fig. 1b). Based on the cued rule, participants responded to 

the location of a circle (1.32° in radius) that randomly appeared in the corner of a white 

frame (6.6° in one side) by selecting one of the four response keys that were arranged 

in 2 x 2 matrix. Each action rule specified four S-R mappings using a simple spatial 

transformation rule. For instance, the vertical rule mapped the left-top circle to the 

bottom-left response as a correct response and vice versa. We used two cues for each 

rule (a pair of verbal cues in Experiment 1 and symbol/word pair in Experiment 2) that 

appeared in either even or odd trials to prevent immediate cue repetitions. Thus, cues, 

rules, responses, and stimuli were orthogonalized, and the combination of these 

features generated unique action constellations.  

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/835652doi: bioRxiv preprint 

https://doi.org/10.1101/835652
http://creativecommons.org/licenses/by-nc/4.0/


Conjunctive Representations 

 16 

In Experiment 1,”vertical”, “horizontal” and “diagonal” rules were randomly cued 

(i.e., 66.6 % switch rate). In Experiment 2, ”vertical”, ”horizontal”, “clockwise” and 

“counterclockwise” rules were used (i.e., 75% switch rate; Fig. 2c). Here, half of S-R 

links were shared across rules (e.g., a left-top circle leads to a left-bottom response in 

both the vertical and the counterclockwise rule). This allowed us to generate transitions 

between trials with rule changes but repetitions of S-R links (Fig. 1c). 

There were two practice blocks and 200 experimental blocks in both studies. 

Participants were instructed to respond as fast and accurately as possible to complete 

as many trials as possible within each 16-second block. Trials that began within the 16 

seconds were allowed to complete. Participants were given a performance-based 

incentive for trials with RTs faster than the 75th percentile of correct responses in the 

preceding blocks when 1) the overall accuracy was above 90 percent and 2) there were 

more than 7 completed trials in a given block. While performing the task, participants 

were asked to rest the index finger of their dominant hand in the center of the four keys 

in matrix and to hit the correct key. All stimuli were created in Matlab (Mathworks) using 

the Psychophysics Toolbox 36, 37 and were presented on a 17-inch CRT monitor (refresh 

rate: 60 Hz) at a viewing distance of 100 cm. 

EEG recordings and preprocessing 

Electroencephalographic (EEG) activities were recorded from 20 tin electrodes 

held in place by an elastic cap (Electrocap International) using the International 10/20 

system. The 10/20 sites F3, Fz, F4, T3, C3, CZ, C4, T4, P3, PZ, P4, T5, T6, O1, and O2 

were used along with five nonstandard sites: OL halfway between T5 and O1; OR 

halfway between T6 and O2; PO3 halfway between P3 and OL; PO4 halfway between 
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P4 and OR; and POz halfway between PO3 and PO4. Electrodes placed ~1cm to the 

left and right of the external canthi of each eye recorded horizontal electrooculogram 

(EOG) to measure horizontal saccades. To detect blinks, vertical EOG was recorded 

from an electrode placed beneath the left eye and reference to the left mastoid. The left-

mastoid was used as reference for all recording sites, and data were re-referenced off-

line to the average of all scalp electrodes. The EEG and EOG were amplified with an 

SA Instrumentation amplifier with a bandpass of 0.01–80 Hz and were digitized at 250 

Hz in LabView 6.1 running on a PC.  

EEG data was first epoched by 18 second intervals to include all trials within a 

block. After time-frequency decomposition was performed (see Time-Frequency 

Analysis section), these epochs were further segmented into trial-to-trial epochs (-600 

ms to 600 ms intervals for Experiment 1 and -800 ms and 600ms intervals for 

Experiment 2, relative to the onset of a stimulus). These trial-to-trial epochs including 

blinks (>80uv, window size = 200 ms, window step = 50 ms), large eye movements 

(>1°, window size = 200 ms, window step = 10ms), blocking of signals (range = -0.01 uv 

to 0.01 uv, window size = 200 ms) were excluded from subsequent analyses. For all 

EEG analyses, error trials, post-error trials and trials with exceedingly slow RTs (i.e., 

slower than 99.5 % of all responses) were excluded to be consistent with behavioral 

analyses.  

 Time-Frequency Analysis 

Temporal-spectral profiles of single-trial EEG data were obtained via complex 

wavelet analysis38 by applying time-frequency analysis to preprocessed EEG data 

segmented for each block (>18 seconds to exclude the edge artifacts). The power 
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spectrum was convolved with a series of complex Morlet wavelets (𝑒2𝜋𝑓𝑡𝑒−𝑡2/(2∗𝜎
2)), 

where t is time, f is frequency increased from 1 to 35 Hz in 35 logarithmically spaced 

steps, and σ defines the width of each frequency band, set according to n/2f, where n 

increased from 3 to 10. The logarithmic scaling was used to keep the width across 

frequency band approximately equal, and the incremental number of wavelet cycles 

was used to balance temporal and frequency precision as a function of frequency of the 

wavelet. After convolution was performed in the frequency-domain, we took an inverse 

of the Fourier transform, resulting in complex signals in the time-domain. A frequency 

band-specific estimate at each sample point was defined as the squared magnitude of 

the convolved signal Z(real([z(t)]2 + imag[z(t)]2) for instantaneous power.  

Representational Similarity Analysis  

Our goal was to obtain information about the strength of each feature and 

conjunction on the level of individual trials and timepoints within trials. This required a 

two-step procedure. First, we performed a linear decoding analysis to discriminate 

between all 12 different action constellations in Experiment 1, or 16 constellations in 

Experiment 2. Specifically, we performed a penalized linear discriminant analysis using 

the caret package in R39-41. At every time sample point, the power of rhythmic EEG 

activity was averaged within the predefined ranges of frequency values (1-3 Hz for the 

delta-band, 4-7 Hz for the theta-band, 8-12 Hz for the alpha-band, 13-30 Hz for the 

beta-band, 31-35 Hz for the gamma-band), generating 100 features (5 frequency-bands 

X 20 electrodes) to train decoders. Within individuals, these data points were z-

transformed across electrodes at every sample to remove the effects that uniformly 

influenced all electrodes. We used a k-fold repeated cross-validation procedure to 
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evaluate the decoding results42, by randomly partitioning single-trial EEG data into four 

independent folds. The number of observations of each action constellation was kept 

equal within and across folds by dropping trials randomly. Three folds served as a 

training set and the remaining fold was used as a test set; this step was repeated until 

each fold served as a test set. Each cross-validation cycle was repeated eight times, in 

which each step generated a new set of randomized folds. Resulting classification 

probabilities (i.e., evidence estimated for each case of S-R mapping) were averaged 

across all cross-validated results with the best tuned penalty parameters. This decoding 

step yielded a vector of “confusion profiles” of classification probabilities for both the 

correct and all possible incorrect classifications and for each time point and trial (Fig. 

1c).   

As a second step, we then applied RSAs17 to each profile of classification 

probabilities in order to determine their underlying similarity structure for each time point 

and trial. Specifically, we regressed the confusion vector onto model vectors as 

predictors, which were derived from a set of representational similarity model matrixes. 

Each model matrix uniquely represents a potential, underlying representation (e.g., 

rules, stimuli, responses and conjunctions; Fig. 1c and Fig. 5b). For example, the rule 

model predicts neural responses to be similar (i.e., more confusable) among instances 

of the same rule, but dissimilar across different rules. To estimate the unique variance 

explained by competing models, we regressed all model vectors simultaneously. Thus, 

we obtained coefficients for each of the four model vectors (e.g., rule, stimulus, 

response, conjunction for Experiment 1). These coefficients (i.e., their corresponding t-

values) allowed us to relate the dynamics of action representations to trial-to-trial 
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variability in behavior (see Multilevel Modeling section for details). In all RSAs, we logit-

transformed classification probabilities and further included a subject-specific 

“conjunction RT” model (i.e., a vector of z-scored, RTs, averaged for each subject and 

action constellation) as a nuisance predictor to reduce potential biases in decoding due 

to idiosyncratic differences in RTs among action constellations. We excluded resulting t-

values that exceeded 5 SDs from means for each sample point, which excluded 0.12% 

and 1.32% of the entire samples Experiments 1 and 2 respectively. Resulting t-values 

were averaged within in 12 ms non-overlapping time samples.  

In Experiment 1, we constructed RSA models for the rules, stimuli, responses, 

and conjunctions (Fig. 1c). In Experiment 2, the conjunction model was separated for 

the rule-specific S-R conjunction model (rule-S-R conjunction) and the rule-independent 

S-R conjunction model (S-R conjunction; Fig. 5b). Complete orthogonalization of 

features could be established within each of two equal-sized subspaces of the entire 

space of action constellations, but not across the entire space. Therefore, we performed 

the RSA within each of these subspaces independently and subsequently averaged the 

results. Specifically, one subspace (G1 in Fig. 5) contained constellations with stimuli at 

the top-left or bottom-right corner (leading to a bottom-left or bottom-right response for 

all rules), whereas the second subspace (G2 in Fig. 5) contained trials with stimuli at the 

left-bottom or top-right corner (leading to a top-left or bottom-right response). Within 

each subspace, conjunctions were defined by the combination of four rules (vertical, 

horizontal, clockwise, and counterclockwise), two stimulus positions, and two 

responses, ensuring that each S-R link could occur in the context of two different action 

rules.  
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Non-Parametric Permutation Test 

To test statistical significance of all time-resolved decoding results (Fig. 3a and 

Fig. 7a and Supplementary Fig. 3 and Supplementary Fig. 4) while accounting for 

multiple comparisons, we carried out nonparametric permutation tests using the single-

threshold method43. For each feature, we computed permutation distributions of the 

maximum statistic for every sample point from -200 ms prior to the onset of the cue to 

600 ms after the onset of the stimulus. Specifically, we first obtained classification 

results (and performed RSA for Fig. 3a and Fig. 7a) by decoding of data with randomly 

shuffled condition labels. We then performed a series of t-tests for every sample against 

the null level (i.e., the chance level). For the RSA results, the null level was 0 for t-

values. Out of the series of t-test results, we retained the maximum t-value. We 

repeated this process 10000 times by randomly drawing samples from all possible 

permutations of labels, thereby generating the permutation distributions of the maximum 

statistics. This approach allowed us to identify statistically significant time points by 

comparing scores from the correct labels to the critical threshold, which was defined as 

the 99th (i.e., alpha =.01) of the largest member of maximum statistics in the 

permutation distribution of the corresponding variable.  

Multilevel Modeling  

We used multilevel linear modeling to analyze trial-by-trial variability in decoded 

representations and their relationship to RTs. The models estimated fixed effects of 

predictors as well as subject specific intercepts and slopes as random effects. For all 

statistical tests, the dependent variable (e.g., RSA scores or RTs) was prewhitened by 

the linear and quadratic trends of experimental trials and blocks. RTs were further log-
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transformed before the fitting. We performed statistical tests for a-priori selected time 

intervals: cue-to-stimulus period from the onset of cue to the onset of stimulus (-300 to 0 

ms for Experiment 1 and -500 to 0 ms for Experiment 2), early post-stimulus period (0 to 

300 ms of the post-stimulus segment for both studies), and late post-stimulus period 

(300 to 600 ms of the post-stimulus segment for both studies). We predicted trial-to-trial 

RTs/RSA scores in the current trials with EEG signals from pre-stimulus and early post-

stimulus periods in hopes of capturing processing prior to response execution (see also 

Supplementary Fig. 7 for results using signals aligned to the response onsets). The late 

post-stimulus interval was used to assess how partial-overlap costs are modulated by 

the strength of action representations developed during selection in n-1 trials. In 

addition, we separately performed a series of regressions to visualize changes in RT 

predictability—”impact” of moment-to-moment strength of decoded feature—by fitting 

models at each sample point without random slopes (Fig. 3b and Fig. 7b).  
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Figures 

 

 

 
Fig. 1.  a, Sequence of trial events in the rule-selection task for both Experiment 1 and 2.  
b, Spatial translation rules mapping specific stimuli to responses in Experiment 1. Two different 
cue words were used for each rule. c: Schematic steps of the representational similarity 
analysis. The raw EEG signal was decomposed into frequency-band specific activity via time-
frequency analysis (see EEG recordings and preprocessing and Time-Frequency Analysis). For 
each sample time (t), a scalp-distributed pattern of EEG power was used to decode the specific 
rule/stimulus/response configuration of a given trial, producing a set of classification 
probabilities for each of the possible configurations. The profile of classification probabilities 
reflects the similarity structure of the underlying representations, where similar action 
constellations are more likely to be confused. The idealized profile of classification probabilities 
shows an example where a unique conjunction and rule information is expressed (peak at the 
correct S-R mappingi and confusion to other instances with the same rule). For each trial and 
timepoint, the profile of classification probabilities is simultaneously regressed onto model 
vectors as predictors that reflect the different, possible representations. In each matrix of model 
vectors, the x-axis corresponds to the correct constellation for the decoder to pick, and the y-
axis shows all possible constellation. The shading of squares indicates the predicted 
classification probabilities (darker shading means higher probabilities). The coefficients 
associated with each predictor (i.e., t-values) reflect the unique variance explained by each of 
the constituent features and their conjunction. 
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Fig. 2.  Mean response times (RTs) and errors for Experiments 1 as a function of rule 
repetition/change factor and the stimulus-response repetition/change factor. Error bars specify 
95% within-subject confidence intervals. 
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Fig 3. a, Average, single-trial t-values associated with each of the basic features and their 
conjunction derived from the RSA analysis (see Fig. 1c). Shaded regions specify the standard 
error around the mean. The colored squares at the bottom of the figure denote the significant 
time points using a non-parametric permutation test. The insert shows RSA fit scores when the 
conjunction was not included as predictor in the analysis. b, Time-course of t values from 
multilevel, linear models predicting the variability in trial-to-trial RTs (the “impact” of 
representations on behavior), using RSA scores of all features as simultaneous predictors. 
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Fig. 4. a, Average RSA scores of the conjunction model as a function of rule repetition/change 
and the stimulus-response repetition/change factors for two the early (0-300 ms) and the late 
(300-600 ms) periods in the post-stimulus interval b, Modulation of partial-overlap costs on RTs 
in trial n as a function of the strength of conjunction codes (median split) in trial n -1. Error bars 
specify 95% within-subject confidence intervals. 
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Fig. 5. a, Spatial translation rules mapping specific stimuli to responses in Experiment 2. Either 
words or symbols were used as cues for each rule. S-R mappings were divided into two groups: 
G1 group (cases where a dot appeared at the top-left or bottom-right corner) and G2 group 
(cases where a dot appeared at the top-right or bottom-left corner) for the decoding analysis. b, 
Models for representational similarity analysis (RSA) in Experiment 2. The S-R conjunction 
model assumes a similar pattern for the specific combination of the stimulus and response 
irrespective of rules. The rule-S-R conjunction model expects a unique pattern for the 
configuration of each rule/stimulus/response combination. To completely orthogonalize action 
features, RSA was performed separately for G1 and G2 subsets of S-R mappings, requiring 
identical 8 x 8 model matrixes for each group. Analyses were performed separately within each 
subset and coefficients were averaged within subjects. 
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Fig. 6.  Mean RTs and errors for Experiments 2 as a function of the rule repetition/change, 
stimulus repetition/change, and the response repetition/change factors. Note that, in rule-repeat 
trials, partial updates of S-R settings (e.g., S change + R repeat) are not possible. Error bars 
specify 95% within-subject confidence intervals. 
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Fig. 7. a, Average, single-trial t-values associated with each of the basic features and their 
conjunctions, derived from the RSA analysis (see Fig. 1c and 5). Shaded regions show the 
standard error around the mean. The colored squares at the bottom of the figure denote the 
significant time points using a non-parametric permutation test. The insert shows the same RSA 
fit scores when the conjunctions (i.e., rule S-R conjunction model and S-R conjunction model) 
were not included as predictors in the RSA analysis. b, Time-course of t values from multilevel, 
linear models predicting the variability in trial-to-trial RTs (the “impact” of representations on 
behavior), using RSA scores of all features as the simultaneous predictors. RSA model vectors 
for stimulus, response, rule, and conjunction representations. RSAs were performed separately 
within a subset of action constellations (i.e., G1 and G2) to orthogonalize all features (see the 
Method and Fig. 5ab for details).   
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Fig. 8. a, Average RSA scores of the rule-S-R conjunction as a function of the rule 
repetition/change and the stimulus-response repetition/change factors for early (0-300 ms) and 
late (300-600 ms) periods in the post-stimulus interval. b, Modulation of partial-overlap priming 
patterns in trial n as a function of the strength of the rule S-R conjunction in trial n -1 (median 
split). Error bars specify 95% within-subject confidence intervals.   
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Tables 
 

 
 

Table 1. 
Predicting trial-by-trial RTs using the strength of decoded representations. 
 

 Pre-stimulus Early Post-stimulus Late Post-stimulus 

Decoded variable b (se) t-value b (se) t-value b (se) t-value 

Rule -.021 (.005) -3.89 -.004 (.007) -5.71 -.037 (.007) -4.97 

Conjunction   -.061 (.008) -7.23 -.093 (.011) -8.07 

Stimulus   -.014 (.008) -1.82 -.041 (.012) -3.49 

Response     -.027 (.006) -4.12 -.068 (.012) -5.81 
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Table 2. 
Predicting trial-by-trial RTs using the strength of decoded representations. 
 

 Pre-stimulus Early Post-stimulus Late Post-stimulus 

Decoded Variable b (se) t-value b (se) t-value b (se) t-value 

Rule -.019 (.005) -3.80 -.017 (.013) -1.34 -.007 (.003) -2.54 

Rule S-R Conjunction   -.061 (.012) -5.00 -.019 (.002) -8.70 

S-R Conjunction   -.053 (.014) -3.87 -.022 (.003) -7.32 

Stimulus    -.010 (.007) -1.42 -.008 (.002) -3.94 

Response     -.037 (.014) -2.57 -.016 (.002) -6.60 
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Supplementary Results 

Decoding of basic, constituent features without RSA 

In the main paper, we used RSA analyses to distinguish conjunction 

representations from the representation of constituent features. In order to compare 

these results with a standard decoding approach, we also performed standard 

multivariate decoding analyses for each constituent feature independently1. The 

analysis procedure (i.e., cross-validation, non-parametric permutation test, and 

subsequent multilevel modeling predicting trial-to-trial RTs) was identical to the method 

for RSA except for the following points: 1) final outputs of decoding analysis were 

classification probabilities (then logit-transformed) rather than RSA fit score, and 2) 

individuals-specific mean RTs of all action constellations were included as a control 

predictor in multilevel models of RTs. 

Supplementary Fig. 3 and Supplementary Fig. 4 show the trajectories of 

classification probabilities of constituent features (rules, stimuli and responses) and their 

impact on trial-to-trial variability in RTs (see the inserts of Fig. 3a and Fig. 6a for the 

corresponding RSA results). The results were overall consistent with RSA results, when 

excluding the conjunction models (i.e., see inserts for Fig. 2a and Fig. 4a). The rule was 

activated during the pre-stimulus phase, followed by a strong expression of the 

stimulus, and finally by the response. This pattern directly replicates results using a 

more standard task-switching paradigm1. These results also confirmed that our RSA 

approach produced qualitatively similar results to the standard time-resolved decoding 

analysis2 for constituent features (when the conjunction model was excluded). 
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RSA using frequency-specific EEG activity 

Previous studies showed that specific control representations are encoded in the 

frequency-specific, rhythmic EEG activity (e.g., the ordinal position codes in the theta-

band (4-7 Hz)3. As an exploratory analysis, we analyzed how different frequency-bands 

contribute to the decoding of both conjunctions and constituent features. For this, we 

replicated the combination of decoding and RSA analyses separately for the delta (1-3 

Hz), theta (4-7 Hz), alpha (8-12 Hz), beta(13-30 Hz) and gamma (31-35 Hz) frequency 

bands. To reduce the influence of temporal smearing, which could differ across 

frequency-bands4, we averaged data over a-priori selected time intervals (i.e., pre-

stimulus, early and late post-stimulus phase) prior to the training of decoders. Other 

steps in the analysis were identical to the one described in Representational Similarity 

Analysis section.  

Supplementary Fig. 5 and Supplementary Fig. 6 summarize RSA scores of 

different action features among individuals for each time interval, compared to the 

results using all five frequency-bands. Overall, participants exhibited considerable 

variability in terms of the frequency-bands in which specific information was 

expressed.  However, the following points seem to be consistent across individuals: 1) 

stimulus positions in early post-stimulus interval were coded in the theta and the alpha-

band, a finding that is consistent with earlier decoding results5, and 2) conjunctions (i.e., 

rule-S-R conjunctions in Experiment 2) tended to be expressed most strongly in the 

delta band. The fact that the neighboring theta-band activity only weakly contributed to 

the conjunctions emphasizes the special role of delta-band activity. We had no a-priori 

predictions about frequency-specific effects.  However, we note that there are recent 
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reports suggesting that delta-band frequencies carry information about abstract decision 

variables6. Using a similar “search-light” method across electrodes (instead of 

frequency-space), we also checked for relative contribution of local scalp regions for 

expression of representations that are more localize consistent across 

individuals.  However, we found the patterns with which representations were 

expressed to be highly idiosyncratic (see Kikumoto and Mayr3 for similar results in 

hierarchical serial-control task).  

RSA time-aligned to responses 

The trajectory of RSA fit scores, summarized in Fig. 3a and Fig. 6a, revealed 

how action-relevant representations unfold in reference to the onset of stimulus. 

However, these decoding results contain a limited number of samples which responses 

were executed during the post-stimulus interval (average RT: M = 490 ms, SD = 1.46 

ms in Experiment 1; M = 490 ms, SD = 1.67 ms in Experiment 2). To ensure that our 

stimulus-locked decoding results are not affected by such early responses, and to 

provide information about how representations unfold relative to responses, we 

performed an additional RSA using EEG data that are aligned to the onset of each trial’s 

response. Supplementary Fig. 7 shows the corresponding time-course of RSA scores 

for Experiments 1 and 2. These results are highly consistent with stimulus-locked 

results in showing early peaks for rule, followed by stimulus, then conjunction, and 

finally response representations, which peaked just before responses were executed.   

Cross-session RSA 

    We know little about within-subject consistency of EEG-decoded, complex action 

representations across longer temporal intervals. In particular, given that the neural 
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patterns that we decoded were highly idiosyncratic (see Section RSA using frequency-

specific EEG activity), it is important to explicitly test the stability of such patterns within 

individuals.  We were able to recruit 9 out of the 20 participants from Experiment 1 for a 

second session, 6 months after the first session.  

Participants responded significantly faster in the second session than in the first 

session, RTs: F(1,8)=29.05, MSE=735.54, p<.001,ηp2=.78; errors: F(1,8)=.40, 

MSE<.001, p=.54, ηp2=.05 (Supplementary Fig. 7). In order to perform cross-session 

RSAs we trained decoders using data within each session separately. Supplementary 

Fig. 9 (left column) summarizes differences in RSA scores of each representation 

across sessions. Both the pre-stimulus rule representation and the conjunction in the 

stimulus-to-response phase were enhanced in the later session. Then, decoders that 

were trained separately within sessions were applied to EEG data of the other session 

at matching time points. As shown in Supplementary Fig. 9 (right column), all features, 

including the conjunctive representation, showed robust generalizability across 

sessions. This pattern indicates that the neural representation of action-relevant 

representations is remarkably stable.  An important implication of this result is that in 

future research such techniques can be applied to analyze how action-relevant 

representations are shaped through experience or consolidation.   
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Supplementary Figures 
 
 
 
 
 

 
Fig S1.  Mean RTs of individual subjects for all action constellations in Experiment 1. Subjects-
specific RT vectors were included as a nuisance predictor during RSA fitting. 
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Fig. S2.  Mean RTs of individual subjects for all action constellations in Experiment 2.  
Participants responded slowly for trials with the non-symmetric translation (clockwise and 
counterclockwise rules) compared to the symmetric rules (vertical and horizontal rules) as 
reported previously7. Subjects-specific RT vectors were included as a nuisance predictor during 
RSA fitting. 
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Fig. S3.  a, Average decoding accuracy of constituent features over time, derived from a 
standard decoding analysis in Experiment 1. Shaded regions specify the standard error around 
the mean. Squares below lines denote the significant time points correcting for multiple 
comparison using a non-parametric permutation test. b, Time-course of t values from multilevel, 
linear models predicting the variability in trial-to-trial RTs, using single-trial classification 
probability of each feature as predictors simultaneously. 
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Fig. S4.  a, Average decoding accuracy of constituent features over time, derived from a 
standard decoding analysis in Experiment 2. Shaded regions specify the standard error around 
the mean. Squares below lines denote the significant time points correcting for multiple 
comparison using a non-parametric permutation test. b, Time-course of t values from multilevel, 
linear models predicting the variability in trial-to-trial RTs, using single-trial classification 
probability of each feature as predictors simultaneously. 
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Fig. S5. Experiment 1: RSA scores when decoding EEG signals in specific frequency ranges (1-
3 Hz for the delta-band, 4-7 Hz for the theta-band, 8-12 Hz for the alpha-band, 13-30 Hz for the 
beta-band, 31-35 Hz for the gamma-band, and 1-35 Hz for all). EEG signals were averaged 
over pre-stimulus (-300 to 0 ms), early post-stimulus (0 to 300 ms) and late post-stimulus (300 
to 600 ms) time intervals before the decoding analysis. 

  

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/835652doi: bioRxiv preprint 

https://doi.org/10.1101/835652
http://creativecommons.org/licenses/by-nc/4.0/


Conjunctive Representations 

 46 

 
Fig. S6. Experiment 2: RSA scores when decoding EEG signals in specific frequency ranges (1-
3 Hz for the delta-band, 4-7 Hz for the theta-band, 8-12 Hz for the alpha-band, 13-30 Hz for the 
beta-band, 31-35 Hz for the gamma-band, and 1-35 Hz for all). EEG signals were averaged 
over pre-stimulus (-300 to 0 ms), early post-stimulus (0 to 300 ms) and late post-stimulus (300 
to 600 ms) time intervals before the decoding analysis. 
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Fig. S7.  Average, single-trial RSA scores for each representation, using EEG signals aligned to 
the onset of trial-to-trial response events. Shaded regions specify standard error of the mean.  
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Fig. S8.  Individuals’ mean RTs and group average RTs (black) between the first session and 
the second session at least 6 months later (n = 9) for Experiment 1. Error bars specify 95% 
within-subject confidence intervals. 
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Fig. S9. Average, single-trial RSA fit scores for conjunctions and constituent features across 
sessions (n = 9). Left panels: Time-course of RSA scores training decoders. Right panels: RSA 
scores from cross-decoding across sessions. Decoders are trained with EEG data from the 
session 1 (shown in red) or session 2 (shown in black) and applied on data from the counterpart 
session to test their generalizability. Shaded regions specify 95% within-subject confidence 
intervals.   
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Supplemental Tables 

 

Supplementary Table 1. 
Anovas of RTs and errors with the factors rule repeat/change and S-R repeat/change 
 

 RT Error 

 F(1,19) P η2 F(1,19) P η2 

Rule repeat/change 3.34 .083 .149 .01 .933 <.001 

S-R repeat/change 5.54 .029 .225 2.72 .116 .125 

Rule repeat/change x S-R repeat/change 67.07 <.001 .779 21.41 <.001 .530 
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Supplementary Table 2. 
Anovas of RTs and errors with the factors rule repeat/change and S-R repeat/change 
 

 RT Error 

 F(1,20) P η2 F(1,19) P η2 

Rule repeat/change 5.08 .036 .202 .07 .791 .003 

S-R repeat/change 42.28 <.001 .679 1.72 .204 .079 

Rule repeat/change x S-R repeat/change 25.56 <.001 .561 6.91 .002 .257 
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