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ABSTRACT 
Osteoarthritis is a serious joint disease that causes pain and functional disability for a 
quarter of a billion people worldwide1, with no disease-stratifying tools nor modifying 
therapy. Here, we use primary chondrocytes, synoviocytes and peripheral blood from 
patients with osteoarthritis to construct a molecular quantitative trait locus map of gene 
expression and protein abundance in disease. By integrating data across omics levels, we 
identify likely effector genes for osteoarthritis-associated genetic signals. We detect stark 
molecular differences between macroscopically intact (low-grade) and highly degenerated 
(high-grade) cartilage, reflecting activation of the extracellular matrix-receptor interaction 
pathway. Using unsupervised consensus clustering on transcriptome-wide sequencing, we 
identify molecularly-defined patient subgroups that correlate with clinical characteristics. 
Between-cluster differences are driven by inflammation, presenting the opportunity to 
stratify patients on the basis of their molecular profile for tailored intervention. We 
construct and validate a 7-gene classifier that reproducibly distinguishes between these 
disease subtypes. Finally, we identify potentially actionable compounds for disease 
modification and drug repositioning. Our findings contribute to both patient stratification 
and therapy development in this globally important area of unmet need.  
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Osteoarthritis, the most common form of arthritis, is a severe, debilitating disease 
hallmarked by cartilage degeneration and synovial hypertrophy, and affects ~240 Million 
people worldwide1. Osteoarthritis is a heterogeneous disease2. The lifetime risk of 
developing symptomatic knee and hip osteoarthritis is estimated to be 45% and 25%, 
respectively3,4, and is on an upward trajectory commensurate with rises in obesity and the 
ageing population. Older age, female sex, obesity, joint morphology and injury are well-
established risk factors for osteoarthritis, and genome-wide association studies (GWAS) 
have identified ~90 robustly-replicating risk loci. 
 
There is no cure for osteoarthritis. Disease management focusses on alleviating pain, and in 
end-stage disease the only treatment is joint replacement surgery. Two million 
arthroplasties are carried out in the European Union annually5, emphasising the clear and 
urgent need to develop new therapies that alter the natural history of the disease rather 
than deal with its consequences. To achieve this, we need to improve our understanding of 
the underlying molecular mechanisms of osteoarthritis pathogenesis and progression from 
low- to high-grade disease, which remain poorly characterised. Successful future treatment 
of early disease needs to reflect the heterogeneity of osteoarthritis and will require the 
identification of biological endotypes that match to the relevant therapeutic modality. 
 

Molecular hallmarks of primary tissue 
To improve our understanding of the molecular profile of key osteoarthritis cell types, we 
collected low-grade (macroscopically intact) and high-grade (highly degraded) cartilage and 
synovial tissue samples from 115 patients undergoing joint replacement for osteoarthritis. 
All cartilage samples were collected from weight-bearing areas of the joint. All three tissues 
were profiled by RNA sequencing, and cartilage samples were also profiled by isobaric 
labelling proteomics (Supplementary Figure 1). After quality control, we detected RNA-level 
expression of 15,249 genes in cartilage and 16,004 genes in synovium. We detected and 
quantified the abundance of 1,677 proteins across all patients, and of 4,801 proteins in at 
least 30 patients. We generated genome-wide genotype data from peripheral blood, 
imputing to 10,249,108 autosomal sequence variants to discover molecular quantitative 
trait loci (QTLs) in each tissue and omics type.  
 
To identify molecular signatures associated with disease severity, we tested paired samples 
of high- versus low-grade cartilage for differential gene expression and protein abundance 
across 83 and 99 patients, respectively. We detected gene expression differences for 2,557 
genes, and protein abundance differences for 2,233 proteins at 5% false discovery rate 
(FDR) (Figure 1a, Methods, Supplementary Figure 2). We identified significant cross-omics 
differential expression (i.e. at both the RNA and the protein level) for 409 of these genes 
(Supplementary Table 1). We found strong evidence for concordant direction of expression 
changes across the two omics levels (Figure 1b), providing internal cross-validation for the 
approaches used. 
 
COL1A2, which showed significantly higher expression in high-grade cartilage at both omics 
levels, encodes the pro-alpha2 chain of type I collagen that is a prominent feature of 
disordered fibrocartilage repair in late osteoarthritis but is absent from intact articular 
cartilage6. COL9A1 demonstrated lower cross-omics expression in high-grade cartilage, and 
encodes one of the type IX collagen alpha chains of hyaline cartilage, which is severely 
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degenerated in osteoarthritis. MMP19, a matrix metalloproteinase involved in the 
breakdown of the extracellular matrix (ECM)7, also demonstrated higher cross-omics 
expression in high-grade cartilage, in agreement with matrix disintegration processes 
playing a central role in cartilage degradation. 
 
We generated genetically-modified mice with mutant alleles in orthologues of 7 further 
genes with significant expression differences between high- and low-grade cartilage. Adult 
mice from these 7 lines underwent detailed phenotyping (Supplementary Methods). We 
identified at least one abnormal joint phenotype at nominal significance for each of the 7 
genes studied (Supplementary Figure 3-4, Supplementary Note), functionally validating 
their role in the pathogenesis of musculoskeletal disease. 
 
To identify key biological processes driven by molecular differences between high- and low-
grade cartilage, we carried out gene set enrichment analyses based on differentially 
expressed (DE) genes (see Methods). ECM-receptor interaction emerged as the primarily 
activated pathway across omics levels in high-grade compared to low-grade cartilage (Figure 
1c, Supplementary Table 2, Supplementary Note, Supplementary Figure 2).  
 

Molecular QTLs in osteoarthritis tissues 
Identification of expression QTLs can help elucidate effector genes for genetic association 
signals, and provide a better understanding of the transcriptional regulation of key cell types 
in health and disease. We identified cis expression QTLs (cis-eQTLs) for 1,891 genes in at 
least one tissue, with high correlation across the tissues studied (Supplementary Figure 5a-
c). For example, the direction of effect was concordant across all 92,758 cis-eQTLs detected 
in both low- and high-grade cartilage (Pearson r=0.98, p<2.2x10-16). We identified cis protein 
QTLs (cis-pQTLs) for 38 genes in at least one tissue, with similarly strong correlation across 
low- and high-grade cartilage (Pearson r=0.99, p<2.2x10-16, Supplementary Figure 5d-e). 
This provides a first in-depth map of genetically-determined gene and protein level 
regulation in osteoarthritis-relevant tissues. 
 
To further identify differential regulation of gene expression between high- versus low-
grade cartilage, we examined variants with strong evidence for an eQTL effect in one tissue 
(posterior probability >0.9), but not in the other (posterior probability <0.1). We found 172 
variants with differential effects on gene expression for 32 genes (differential eQTLs; 
Supplementary Table 3, Figure 2a, Figure 2b). Sixteen genes had differential eQTLs located 
in a cis-acting regulatory region, and key genes in which this effect was observed were 
involved in development (transcription factor HOXB2), inflammation (IL4I1), and fibrosis 
(CRLF1). These genotype-dependent, divergent patterns of gene regulation between high- 
and low-grade cartilage underline the importance of cell type and disease stage when 
investigating regulatory variant function.  
 

Resolving GWAS signals 

The majority of osteoarthritis genetic risk variants reside in non-coding sequence, making it 
challenging to identify the gene through which they confer their effect. Colocalisation 
analysis using molecular QTLs (molQTLs) can help clarify the mechanisms driving a GWAS 
locus by indicating whether the same variant is causal for both association with disease and 
for association with gene expression levels. We found strong evidence for colocalisation of 5 
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osteoarthritis loci with cartilage molQTLs for ALDH1A2, NPC1, SMAD3, FAM53A, and 
SLC44A2 (Figure 2c-d). In all five instances, the GWAS index variant is non-coding. In three 
cases (ALDH1A2, SMAD3 and SLC44A2) the likely effector gene is that residing closest to the 
lead variant. For the NCP1 and FAM53A loci, the lead variants reside in introns of the 
TMEM241 and SLBP genes, 141 kb and 18 kb away from the likely effector gene, 
respectively. This work helps pinpoint the identity of causal genes for hitherto unsolved 
association signals. In addition, our findings highlight the importance of generating molQTL 
data in disease-relevant tissue, as, in this case, using eQTLs from cartilage outperforms using 
the rich GTEx resource8 (which does not include cartilage; see Supplementary Note).  
 
Ninety-one of the genes with significantly different expression profiles between high-and 
low-grade cartilage were found to also be associated with genetic risk of osteoarthritis in a 
recent GWAS meta-analysis9 (see Methods, Supplementary Table 4). For ALDH1A2, in which 
the GWAS signal and cartilage eQTLs colocalise, the risk-associated variants increase gene 
expression, in agreement with the higher gene expression levels we observe in high-grade 
cartilage. For SLC39A8, the GWAS signal is fine-mapped to a single missense variant with 
posterior probability of 0.999 and the gene demonstrates higher expression levels in high-
grade cartilage. These findings highlight the value of integrating multi-omics data with 
genetic association summary statistics to identify likely effector genes for GWAS signals.  
 

Patient stratification  
Better stratification of patients by molecular endotype can provide opportunities for 
tailored therapeutic intervention. Primary tissue samples offer the opportunity to stratify 
patients on the basis of their molecular profiles. Here, we applied a clustering analysis to 
identify discrete subgroups across our patient tissue samples. Based on RNA sequencing 
data, we identified 2 clusters in synovium (42 and 34 samples, respectively), each of which 
further formed 2 sub-clusters (Figure 3a, Supplementary Figure 6a,c). We identified 2 
clusters within low-grade cartilage (45 and 42 samples, respectively; Figure 3b, 
Supplementary Figure 6a,c), and no clear sub-clustering within high-grade cartilage 
(Supplementary Figure 6a,b). The identified cartilage clustering was independent of the 
synovium clusters (Fishers p-value >0.66).  
 
Gene expression analysis showed large differences between the synovium clusters and sub-
clusters, with over 5,000 genes differentially expressed at 5% FDR (Supplementary Figure 
7). The differences between the two clusters relate to inflammation, while differences 
between the sub-clusters relate to the extracellular matrix and to cell adhesion (Figure 3c-d, 
Supplementary Table 5). Gene expression analysis also identified strong differences 
between the two low-grade cartilage clusters, with over 7,500 genes differentially expressed 
at 5% FDR. This clustering is also robustly associated with inflammation, extracellular 
matrix-related and cell adhesion pathways (Figure 3e, Supplementary Table 5).  
 
When comparing our results to two smaller studies10,11 that analysed data from gene 
expression arrays or RNA sequencing in low-grade cartilage, we find that there is consistent 
evidence for the clustering of patients based on inflammation-related molecular profiles 
(Supplementary Note, Supplementary Table 6). The presence of an inflammatory endotype 
axis within osteoarthritis provides an opportunity for patient selection for clinical trials of 
inflammation-modulating investigational therapies in appropriately selected patients.  
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Disease endpoints and discrete endotypes represent underlying processes that may be 
more sensitively captured by continuous axes of variation within the molecular data rather 
than binary or categorical classifiers. Such an approach may help define disease trajectories 
earlier on in the natural history of osteoarthritis. To evaluate this, we applied multi-omics 
factor analysis (MOFA)12, an integrative method that can discover drivers of variability 
between samples or patients (latent factors) that is akin to a cross-data principal 
component analysis. The first two factors (axes of variation) were strongly associated with 
immune system processes and the extracellular matrix (see Methods, Supplementary 
Note), in keeping with the biological pathways identified to play an important role above. 
We also found the continuous axes of variation within low-grade cartilage and synovium to 
correspond strongly with cluster assignment (Figure 3f, Supplementary Figure 7c,8, 
Supplementary Note). This is consistent with variation within tissues being better captured 
as a continuous spectrum rather than as discrete clusters.  
 

7-gene classifier predicts clustering 
Based on the above findings, we sought to develop a molecular tool based on the 
expression of a small number of genes that can predict cartilage cluster assignment for 
osteoarthritis patients. We used a soft-thresholding centroid-based method, PAMR13, to 
develop a gene expression-based classifier capable of distinguishing between the two 
cartilage clusters. We identified 7 genes, the expression levels of which could be combined 
to predict cluster assignment for each patient sample (Figure 4a, Supplementary Figure 9): 
MMP1, MMP2, and MMP13, known to be involved in cartilage degradation14; IL6, a pro-
inflammatory cytokine; CYTL1, a cytokine-like gene, loss of which has been found to 
augment cartilage destruction in surgical osteoarthritis mouse models15; APOD, a 
component of high-density lipoprotein found to be strongly up-regulated by retinoic acid16, 
which is in turn regulated by ALDH1A217, an osteoarthritis risk locus9,18; and C15orf48, with 
currently unknown function. Notably, the posterior probabilities for cluster assignment 
output by the classifier captured the main continuous spectrum of variation in this tissue 
(Figure 4b). 
 
To validate the 7-gene classifier, we obtained an independent gene expression dataset of 
low-grade cartilage samples from 60 knee osteoarthritis patients undergoing joint 
replacement surgery11. The samples had been assigned into two groups, reflecting 
differences in complement activation and innate immunity. This group assignment 
corresponded to the 7-gene classifier cluster assignment for 73% of the samples (32 out of 
44 samples with available data). In addition, the posterior probabilities for cluster 
assignment had good correspondence to the main continuous spectrum of variation (Figure 
4c). These findings indicate strong agreement and support the predictive potential of the 7-
gene classifier in this independent dataset.  
 

Clinical profiles of molecular clusters  
We investigated whether the stratification of patients into different tissue-based 
transcriptional profile clusters was associated with clinical characteristics. We compiled 
information on sex, age, height, weight, body mass index and pre-operative American 
Society of Anesthesiologists (ASA) grade19, and electronic health records information on 
prescribed medications at the time of joint replacement surgery. Cartilage cluster 
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assignment was associated with patient sex (OR=4.12, p=0.0024), with women more likely 
to be members of the cluster characterised by higher inflammation. One explanation for this 
observation may be the lower concentration of oestrogen and androgens, which have 
established anti-inflammatory effects, in post-menopausal women20-22. This is in line with 
the disproportionate increase in the incidence of osteoarthritis in women after the 
menopause. Patients in the high-inflammation cluster were also more likely to be prescribed 
proton pump inhibitors (OR=4.21, p=0.0040; Supplementary Table 7). Several further 
clinical characteristics were associated with cluster assignment at nominal significance: 
patients in the high-inflammation cluster were more likely to be prescribed a higher number 
of drugs (OR=1.21 per additional drug, p=0.023) and to be older (OR=1.06 per year, 
p=0.0036). 
 
Although the mechanisms of these associations remain unclear, there is an established 
association between osteoarthritis, multimorbidity and polypharmacy23,24. The association 
of molecularly-defined patient clusters with clinical characteristics lends initial evidence to 
support the integration of omics biomarkers to drive precision medicine approaches in 
osteoarthritis, and indicates that post-menopausal women and patients with polypharmacy 
may provide an opportunity for targeted disease-modifying interventions. 
 

Candidate therapeutic compounds  
We aimed to identify compounds with the potential to reverse the spectrum of molecular 
differences between high- and low-grade patient cartilage based on existing in vitro drug 
screen data. We used ConnectivityMap25, a dataset of 2,684 gene expression perturbations 
induced by compounds across 9 human cell lines, to assess each perturbation profile against 
our differentially expressed genes. We identified 19 compounds that induced strong 
opposing gene expression signatures to the differences between high- and low-grade 
cartilage, reducing the expression of genes with cross-omics higher expression in high-grade 
cartilage (Table 1, Supplementary Table 8). These include oestrogen receptor agonists 
diethylstilbestrol and alpha-estradiol, the latter of which targets KCNMA1, coding for the 
pore-forming alpha subunit of a calcium-sensitive potassium channel, and demonstrating 
significantly lower gene expression and protein abundance in high-grade cartilage. These 
findings are consistent with our clinical classifier, molecular clustering, and with established 
epidemiological data showing an association between osteoarthritis and oestrogen 
deficiency26. Although studies of oestrogen therapy for osteoarthritis have been largely 
inconclusive27,28, identification of cartilage-specific oestrogen-mediated pathways, such as 
through KCNMA1, may allow more focussed investigational molecule development. 
 
Several further drugs with molecular signatures potentially capable of reversing those 
observed in our differential expression analysis have known links to osteoarthritis (Table 1): 
IB-MECA (an adenosine receptor agonist used as an anti-inflammatory drug in rheumatoid 
arthritis)29, VEGF-receptor-2-kinase-inhibitor-IV, RHO-kinase-inhibitor-III[rockout] (a rho 
associated kinase inhibitor), and nornicotine (an acetylcholine receptor agonist extracted 
from tobacco and related to nicotine)30. In a rat model of chemically-induced osteoarthritis, 
IB-MECA prevented cartilage damage, osteoclast/osteophyte formation, and bone 
destruction31. VEGF modulates chondrocyte survival during development and is essential for 
bone formation and skeletal growth. However, dysregulation of VEGF expression in the 
adult joint is a feature of osteoarthritis32. Conditional knock-down of Vegf attenuates 
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surgically-induced osteoarthritis in mice, with intra-articular anti-VEGF antibodies as well as 
oral administration of the VEGFR2 kinase inhibitor Vandetanib suppressing osteoarthritis 
progression33. In a rat model of osteoarthritis, a rho kinase inhibitor was found to reduce 
knee cartilage damage34. Finally, there is a well-established effect of smoking on 
osteoarthritis9,35. Together, these results identify candidate compounds that warrant 
investigation, and provide evidence for the validity of this approach. 
 
In addition to signatures induced by compounds, ConnectivityMap contains gene expression 
profiles induced by in vitro gene knock-down or over-expression. We identified 36 genes for 
which the experimental perturbation induces changes in the opposite direction to molecular 
differences between high-grade and low-grade cartilage (Supplementary Table 8), notably 
including knock-down of IL11. Variation in IL11 is associated with increased risk of hip 
osteoarthritis9, and the gene is up-regulated in osteoarthritis knee tissue36, with a similar 
trend observed here. IL11 is a cytokine with a key role in inflammation, and monoclonal 
anti-IL11 antibodies have been developed for use in several diseases. These findings provide 
strong supportive evidence for down-regulation of IL11 as a potential therapeutic 
intervention for osteoarthritis.  
 

Discussion 

Osteoarthritis is a globally important condition of huge public health relevance. As a 
heterogeneous disease, it requires patient stratification for successful therapy development 
and translation. Here, we have leveraged the accessibility of primary disease tissue to create 
a comprehensive molecular portrait of key cell types relevant to osteoarthritis. We have 
combined genome-wide genotyping with RNA sequencing and quantitative proteomics to 
construct the first deep molecular quantitative trait locus map of cell types directly involved 
in disease. We have identified molecular drivers of disease grade and have stratified 
patients on the basis of their omics profile. We have built and independently replicated a 7-
gene classifier that captures patient heterogeneity and distinguishes between two patient 
clusters with distinct clinical characteristics. By integrating multiple layers of omics data, we 
have helped resolve genetic association signals by identifying likely effector genes, and have 
highlighted opportunities for new targets and for repositioning. Our findings identify drug 
repurposing opportunities and allow the identification of novel investigational avenues for 
patient stratification, disease severity, and therapy development, responding to the global 
challenge of osteoarthritis and the clear unmet clinical need. 
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Online Methods 
 

Data reporting 
No statistical methods were used to predetermine sample size. The experiments were not 
randomized and the investigators were not blinded to allocation during experiments and 
outcome assessment. 

 

Study participants 
We collected tissue samples from 115 patients undergoing total joint replacement surgery 
(102 knee and 13 hip osteoarthritis patients from 4 cohorts, Supplementary Methods). All 
patients provided written, informed consent prior to participation in the study. Matched 
low-grade and high-grade cartilage samples were collected from each patient, while 
synovial lining samples were collected from patients in cohorts 2 and 4. Full details for 
confirmation of joint replacement for osteoarthritis and cartilage tissue scoring are listed in 
Supplementary Methods. We followed previously established protocols to isolate 
chondrocytes37,38, and synoviocytes39, summarised in Supplementary Methods. 
Cohorts 1, 2, 4 (knee osteoarthritis)  
This work was approved by Oxford NHS REC C (10/H0606/20 and 15/SC/0132), and samples 
were collected under Human Tissue Authority license 12182, Sheffield Musculoskeletal 
Biobank, University of Sheffield, UK.  
We obtained information on patient clinical characteristics (age, height, weight, body mass 
index (BMI), American Society of Anaesthesiologists (ASA) grade19) from the electronic 
patient records. For each patient, a list of drugs prescribed on the date of sample collection 
was also compiled from the electronic patient record and cross referenced with the patient 
medical history.  
Cohort 3 (hip osteoarthritis) 
Samples were collected under National Research Ethics approval reference 11/EE/0011, 
Cambridge Biomedical Research Centre Human Research Tissue Bank, Cambridge University 
Hospitals, UK.  
 

DNA, RNA and protein extraction 
DNA, RNA, and protein extraction was carried out using Qiagen AllPrep DNA/RNA/Protein 
Mini Kit following manufacturer’s instructions, with small variations for cohort 3 as 

previously described38. Samples were frozen at -80C (cohorts 1, 2, 4) or -70C (cohort 3) 
prior to assays. 
 

RNA sequencing 
We performed a gene expression analysis on samples from 113 patients (Supplementary 
Table 9). We purified poly-A tailed RNA (mRNA) from total RNA using Illumina's TruSeq RNA 
Sample Prep v2 kits. After fragmentation and standard Illumina library prep (see 
Supplementary Methods), multiplexed libraries were sequenced on the Illumina HiSeq 2000 
for cohort 1 and HiSeq 4000 for cohorts 2-4 (75bp paired-ends). Sequenced data underwent 
initial analysis and quality control on reads as standard. The sequencing depth was similar 
across samples, with 90% of samples passing final QC (see below) having 87.2-129.2 million 
reads. 
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Proteomics 
Proteomics analysis was performed on cartilage samples from 103 patients (Supplementary 
Table 9). For cohort 1, all steps of protein digestion, 6-plex TMT labelling, peptide 
fractionation and LC-MS analysis on the Dionex Ultimate 3000 UHPLC system coupled with 
the high-resolution LTQ Orbitrap Velos mass spectrometer (Thermo Scientific), were 
previously described37. The sample preparation protocol formed the basis of processing for 
cohorts 2-4 using 10-plex TMT labelling and an Orbitrap Fusion Tribrid Mass Spectrometer 
(Thermo Scientific) with otherwise only minor alterations (e.g. 0.05% SDS in protein pellet 
re-suspension for cohort 1, with 0.1% SDS in cohorts 2-4, see Supplementary Methods). 
 

Genotyping 
We used Illumina HumanCoreExome-12v1-1 for genoting cohort 1 and Illumina 
InfiniumCoreExome-24v1-1 for genotyping cohort 2-4 patients. 
 

Statistical Analyses 

Quantification of RNA levels 
We used samtools v1.3.140 and biobambam v0.0.19141 to convert cram to fasq files after 
exclusion of reads that failed QC. We applied FastQC v0.11.5 to check sample quality42 and 
excluded 9 samples (Supplementary Table 9). We quantified expression levels using salmon 
v0.8.243 and the GRCh38 cDNA assembly release 87, obtaining gene-level scaled transcripts 
per million (TPM) estimates from tximport 1.4.044 (details see Supplementary Methods). 
We excluded 43 samples due to low mapping rate (<80%), non-European ancestry, low RIN 
(<5), duplicates and abnormal gene read density plots (see Supplementary Methods, 
Supplementary Table 9). The final gene expression dataset included 259 samples 
(Supplementary Figure 1; 87 patients’ low-grade and 95 high-grade cartilage samples with 

15,249 genes that showed counts per million (CPM) of 1 in 40 samples, and 77 patients’ 

synovium samples with 16,004 genes that showed CPM 1 in 20 samples).  
 

Quantification of protein levels 
We used SequestHT in Proteome Discoverer 2.1 for protein identification and quantification 
(details see Supplementary Methods), searching all spectra against a UniProt fasta file with 
20,165 reviewed human entries. We only used peptides uniquely belonging to protein 
groups for quantification. We excluded samples from 4 patients due to non-European 
ancestry (Supplementary Table 9). The final dataset included low-grade and high-grade 

cartilage samples each from 99 patients, with 4,801 proteins was observed in 30% of 
samples, and 1,677 proteins in all samples. To account for protein loading, abundance 
values were normalised by the sum of all protein abundances in a given sample, then log2-
transformed and quantile normalised. 
 

Genotype analysis and quality control 
Genotypes were called using GenCall (Illumina) and mapped to GRC37/hg19, with quality 
control (QC) including checks for identity, sex, call rate, heterozygosity rate, Hardy-
Weinberg equilibrium, relatedness, and European ancestry (Supplementary Methods). The 
resulting dataset containing 111 patients and 504,235 overlapping variants across both 
arrays. We imputed up to HRC panel v1.145 using the Michigan imputation server46 with 
Eagle2 phasing. After post-imputation variant QC (Supplementary Methods), we excluded 
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two patients due to absence of RNA and protein data. The resulting final dataset contained 
109 patients and 10,249,108 autosomal variants. 
 

Differential RNA expression between low-grade and high-grade cartilage 
We tested differential expression of 15,249 genes between low-grade and high-grade 
cartilage using paired samples from 83 patients. To identify robust results, we carried out 
multiple analyses using different software packages, as recommended in a landmark survey 
of best practices47, applying limma48, edgeR49, and DESeq250. We tested 5 analysis designs 
with different options to account for technical variation, including SVAseq51, see 
Supplementary Methods. In each analysis design and method, we used a 5% False 
Discovery Rate (FDR) threshold to correct for multiple testing. This yielded 2,557 genes with 
significant differential expression between low-grade and high-grade cartilage across all 
analysis designs and testing methods (2,418 with uniquely corresponding Ensembl gene ID 
and gene name, see Supplementary Methods). 
 

Differential protein abundance between low-grade and high-grade cartilage 

We performed differential analysis for 4,801 proteins that were measured in 30% of 
patients, applying limma48 to paired samples from 99 patients. Significance was defined at 
5% FDR to correct for multiple testing, yielding 2,233 proteins with significant differential 
abundance (2,019 proteins with uniquely corresponding Ensembl gene ID and gene name). 
Paired samples from any patient were always assayed in the same multi-plex and we used a 
sensitivity analysis to confirm adjustment for patient effects captured between-plex batch 
effects (Supplementary Methods). 
 

Pathway associations for differences between low-grade and high-grade cartilage 
To identify the biological processes with significant molecular differences between low-
grade and high-grade cartilage, we carried out gene set enrichment analyses based on the 
differential expression (DE) on RNA, protein, and cross-omics levels, using several FDR DE 
thresholds for robustness checks (5%, 1%, 0.5%, 0.1%; Supplementary Methods). 
We applied Signalling Pathway Impact Analysis (SPIA)52 to test for association with KEGG 
signaling pathways. SPIA combines enrichment p-values with perturbation impact on the 
pathway based on log-fold-changes of the DE genes, with low p-values when both over-
representation and pathway impact p-values are low. Significance of pathway association 
was defined as a threshold of 5% FDR applied to the combined p-values in each analysis. We 
also tested enrichment in Gene Ontology terms using GOseq53, separately for genes with 
higher or lower expression in high-grade compared to low-grade cartilage (Supplementary 
Methods). Significance was defined as a threshold of 5% FDR in each analysis. The results 
showed broad agreement with the results of the SPIA analysis (Supplementary Table 2). 

 

Identification of cis-eQTLs and cis-pQTLs 
We followed a similar method to GTEx8,54, see Supplementary Methods for details. Briefly, 
for eQTLs, we processed low-grade and high-grade cartilage together for exclusion of genes 
with low expression and between-sample normalisation, then normalised each gene across 
samples within the same tissue. We applied PEER55 to infer hidden factor due to any 
technical differences, using 15 PEER factors in each tissue, sex, and genotype array as 
covariates in eQTL analyses. We applied the GTEx modified version of FastQTL56 to detect 
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eQTLs. We determined the transcription start site (TSS) for each gene using empirical 
transcript level expression information and defined the cis-mapping region to be 1Mb in 
either direction from the TSS. Genes with significant eQTLs (“eGenes”) and proteins with 
significant pQTLs (genetic variants associated with protein abundance levels) (“pGenes”) 
were defined at the 5% False Discovery Rate (FDR) threshold for q-values obtained from 
permutations. For each eGene, significant eQTLs were defined as variants with nominal p-
value below the nominal p-value threshold for that gene generated in FastQTL. The 
normalised effect size (NES) of the eQTL is reported for the alternate allele according to 
GRC37/hg19. 
We followed a similar protocol for pQTLs, using 26 PEER factors for each tissue. For low-
grade and high-grade cartilage, we included 1677 proteins that were measured across all 
samples. We used the TSS established for the eQTL analysis, taking forward 1461 proteins 
with a unique mapping. 
For both eQTLs and and pQTLs, we verified that the results were robust by carrying out a 
sensitivity analysis including age and joint as covariates (Supplementary Methods). 
To identify cis-eQTLs active exclusively in low-grade or high-grade cartilage, we used Meta-
Tissue57 and METASOFT58, as described in the Supplementary Methods. The m-value 
calculated by METASOFT for gene-variant pair in each tissue provides a posterior probability 
of an effect in that tissue. Consequently, we aimed to identify eQTLs present in one tissue 
(defined as m>0.9), and absent in the other (defined as m<0.1). We note that there were no 
cis-eQTLs present in both tissues (m>0.9) with opposing direction of effect. To identify 
variants located in regulatory regions, we used Ensembl Variant Effect Predictor 
(http://grch37.ensembl.org/Homo_sapiens/Tools/VEP/).  
 

Colocalisation between molQTLs and osteoarthritis GWAS associations 
To examine colocalisation between molQTLs and GWAS associations, we used genome-wide 
summary statistics from the largest osteoarthritis meta-analysis to date, based on UK 
Biobank and arcOGEN data9. We analysed all 64 genome-wide significant signals using 
coloc59, separately for each tissue and omics level (Supplementary Methods). We 
considered a 80% posterior probability of GWAS and molQTL shared association at a single 
variant (“PP4≥0.8”) to indicate evidence of colocalisation. 
 

Identification of genes with osteoarthritis GWAS gene-level association 
From the recent UK Biobank and arcOGEN GWAS meta-analysis9, we obtained the results of 
a gene-level analysis for each of the four osteoarthritis phenotypes (self-reported plus 
hospital diagnosed, hospital diagnosed knee or hip, hospital diagnosed knee, hospital 
diagnosed hip), as described in the GWAS paper. Briefly, this analysis used MAGMA v1.0660 
and was based on the mean SNP log-p-value in the gene, accounting for LD. After 
accounting for the effective number of tests across phenotypes and genes using a 
Bonferroni correction (Supplementary Methods), 320 of 18,449 genes showed significant 
association with at least one phenotype. Of these genes, 238 genes were compared 
between low-grade and high-grade cartilage on at least one omics level and had uniquely 
corresponding Ensembl gene ID and gene name. 
 

Sample clustering  
For RNA data, we normalised each tissue separately, using limma-voom61 to remove 
heteroscedasticity from scaled TPM values, followed by pSVA62 and regressing out RNA 
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sequencing batches and clinical batches (Supplementary Methods). For the proteomics 
data, we regressed out batches from the log2-transformed normalised abundance values, 
then quantile normalised the residuals as analogous step to the differential expression 
analysis; all analyses were also done without quantile normalisation, with no appreciable 
difference in results. 
 
For each tissue and omics level, we applied ConsensusClusterPlus63, a consensus clustering 
method that splits samples into a discrete number of groups, so that samples within a group 
are more similar to each other than to samples outside the group (with standard settings, 
see Supplementary Methods). The final number of clusters was chosen based on the 
Consensus Cumulative Distribution Function plots, the Delta Area Plot, and a visual 
investigation of the Consensus Matrices, as advised in the manual. Results were confirmed 
via additional analysis using a distance metric based on Pearson correlation. 
 

Differential gene expression between tissue clusters 
To follow up the clustering results for low-grade cartilage and synovium, we tested gene 
differential expression between sets of samples based on cluster assignment (applying 
limma to the normalised expression values underlying the clustering, i.e. gene expression 
after voom, pSVA, and regression of batch covariates). The differential expression analysis 
was followed up by gene set enrichment analyses using SPIA and GOseq, with 8 gene 
differential expression FDR thresholds to assess robustness of the association (5%, 0.5%, 
5x10-3, …, 5x10-7). In each analysis, gene set association was defined at the 5% FDR 
threshold. As before for GOseq, genes with positive and negative log-fold-change between 
clusters were analysed separately. 
 

Multi-omics factor analysis (MOFA) and correspondence to sample clustering 
To test for patient heterogeneity using a method that can detect both discrete clustering 
and a continuous spectrum of variation, we used multi-omics factor analysis (MOFA)12. 
MOFA can integrate data across omics levels and across tissues to discover drivers of 
variability between samples or patients. MOFA was run i) jointly on all RNA and protein 
data; ii) jointly on RNA data across all three tissues; iii) on RNA and protein data within each 
tissue (see Supplementary Methods for settings). MOFA identifies a factor score for each 
sample or patient, calculates the variance explained by each factor in each omics level and 
tissue, calculates weights of genes on each factor from each omics level and tissue, carries 
out a gene set enrichment for each factor in each omics level and tissue based on gene 
weights. 
 
We further investigated the correspondence between the continuous spectrum of variation 
identified by the MOFA and the discrete clusters identified by ConsensusClusterPlus by 
calculating the correlation between RNA gene weights on MOFA factors and gene 
expression differences between or within clusters (Supplementary Methods, 
Supplementary Note). 
 

Construction of classifier to reflect sample clustering 
We applied PAMR13, a soft-thresholding centroid-based method, to identify a smaller subset 
of genes which could distinguish the low-grade cartilage clusters. To train a classifier, we 
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restricted the analysis to 1,063 genes with high expression levels and 83 samples with 
cluster silhouette score >0.2 (Supplementary Methods). 
 
Based on the resulting 7-gene classifier, we used the pamr.predict function to predict 
cartilage-Cluster1 and cartilage-Cluster2 probabilities for all 87 low-grade samples, with an 
agnostic prior setting of 0.5 for both clusters. We also calculated Spearman correlations for 
the PAMR cluster probabilities and MOFA Factor1 for low-grade cartilage. 
 

Replication of clustering classifier 
We obtained RNA expression data from low-grade cartilage tissue of 60 knee osteoarthritis 
patients undergoing joint replacement (27 women, 33 men, age range 63-85 years), 
sequenced on Illumina HiSeq 2500, with transcript quantification using kallisto and quality 
control as described previously11. We obtained gene-level data and removed batch effects 
as for the discovery data (Supplementary Methods). We applied the pamr.predict function 
to predict cartilage-Cluster1 and cartilage-Cluster2 probabilities for all 60 samples using the 
trained 7-gene classifier, with an agnostic prior setting of 0.5 for both clusters. We also 
applied MOFA (with the same parameters and options as above) to the data post batch 
effect removal. Finally, we calculated Spearman correlations for the PAMR cluster 
probabilities and MOFA factor 1. The original publication also included a division of samples 
into 2 groups using non-negative matrix factorisation based on known biological networks. 
This assignment was compared to a cluster assignment based on PAMR 7-gene classifier 
posterior probabilities. 

 

Associations between tissue cluster assignment and clinical data 
We tested for association between low-grade cartilage dichotomous cluster assignment 
(high-inflammation cartilage-Cluster1 versus low-inflammation cartilage-Cluster2) and 
clinical characteristics using a generalised linear model (via the glm function in R with option 
family=”binomial”). To consider the association of tissue clusters with drug prescription, 
drugs were grouped by pharmacological mechanism into 58 categories by two clinical 
experts (AF & JMW). We restricted the analysis to 9 drug categories, each with at least 20 
patients who were also assigned a low-grade cartilage or synovium cluster (Supplementary 
Table 7). We calculated the effective number if tests across clinical characteristics and the 9 
drug categories as Neff<10.54 (Supplementary Methods), and thus used a Bonferroni-
corrected threshold of p<0.05/10.54=0.0047 to define significance. We carried out a 
sensitivity analysis including sex or sex and age as covariates to verify the robustness of 
associations detected for low-grade cartilage clustering (Supplementary Methods, 
Supplementary Note). 
For association with synovium cluster assignment, we carried out analogous tests for the 
two clusters, with the same Bonferroni-corrected significance threshold. 

 

ConnectivityMap analysis 
To identify opportunities for drug repurposing, we used ConnectivityMap25 to identify 
compounds and perturbagen classes (PCL) that could possibly reverse the differences 
identified between high-grade and low-grade cartilage. Using the online interface clue.io 
(accessed 03/03/2019), we submitted the 148 genes with significantly higher expression on 
both RNA and protein level to calculate a “tau” connectivity score to gene expression 
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signatures experimentally induced by various perturbations in 9 cell lines. A positive tau 
score indicates similarity between the gene expression signature of a perturbation and the 
submitted query (i.e. up-regulation of the genes with higher expression in high-grade 
compared to low-grade cartilage). A negative tau score indicates that gene expression 
signature of a perturbation opposes the submitted query (i.e. down-regulation of the genes 
with higher expression in high-grade compared to low-grade cartilage). Recommended 
thresholds for further consideration of results are tau of at least 90, or below -90, 
respectively (https://clue.io/connectopedia/connectivity_scores, accessed 03/03/2019). A 
total of 2837 compound and 171 PCL perturbations were evaluated in clue.io. We 
shortlisted perturbations where both the summary tau and the median tau across cell lines 
were higher than 90 or lower than -90 for perturbagen classes, with more conservative 
thresholds of higher than 95 or lower than -95 for compounds. The clue.io platform also 
contained perturbation data from 3799 gene knock-down and 2160 over-expression 
experiments (with 2111 genes in both, i.e. 3848 genes total). These data were used to 
shortlist genes where both the summary and median tau were higher than 95 or lower than 
-95. 
 

Data Availability 
The RNA sequencing data reported in this paper have been deposited to the EGA (accession 
numbers EGAS00001002255 (https://wwwdev.ebi.ac.uk/ega/studies/EGAS00001002255), 
EGAD00001003355, EGAD00001003354, EGAD00001001331). The proteomics data 
reported in this paper have been deposited to PRIDE (accession numbers PXD014666, 
PXD006673, PXD002014). The genotype data reported in this paper have been deposited to 
the EGA (accession numbers EGAD00010001746, EGAD00010001285, EGAD00010001292, 
EGAD00010000722). 
 
Code Availability  
All software used in this study is available from free repositories or from manufacturers as 
referenced in the Methods section.  
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Figures 
 

 
Figure 1. Molecular differences between high-grade and low-grade cartilage 

a) Wide-spread RNA-level (left) and protein-level (right) differences between high-
grade and low-grade cartilage. The RNA plot shows conservative results based on 
different approaches (see Methods).  

b) RNA- and protein-level log-fold-changes for 409 genes with significant cross-omics 
differences between high-grade and low-grade cartilage (see Supplementary Figure 
2a for all genes). The direction of difference agrees for 290 of the 409 genes (71%; 
binomial p<1.0x10-17). 

c) Signalling Pathway Impact Analysis (SPIA) identified biological pathways associated 
with differences between high-grade and low-grade cartilage. Pathways with 
significant results at 5% FDR based on RNA-level changes are shown, all activated in 
high-grade cartilage. Boxes on the outside circles represent individual genes, with 
arches connecting the same gene across pathways. See also Supplementary Figure 
2b and full results in Supplementary Table 2.  
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Figure 2. Molecular QTLs in osteoarthritis disease tissue 
a) An example of differential QTL effect: an association present in high-grade, but not 

low-grade cartilage. The boxplots show normalised expression at 25th, 50th and 
75th percentiles, and whiskers extend to 1.5 times the interquartile range. 

b) Genes with at least 5 differential eQTL variants, i.e. posterior probability for 
presence of an eQTL effect is high in high-grade cartilage (m>0.9) and low in low-
grade cartilage (m<0.1), or vice versa. Full results see Supplementary Table 3. 

c) Osteoarthritis GWAS signals with high posterior probability for colocalisation with 
molecular QTLs. Risk allele effect: “+” for increase of expression with risk allele, “-“ 
for decrease. 

d) GWAS and molecular QTL p-values in regions with colocalisation of the 
associations. Plots show 1Mb regions centered around the GWAS index SNPs 
(purple), with one point per genetic variant. PP4: posterior probability for 
colocalisation. For rs10502437 and rs12901372, colocalisation between GWAS and 
low-grade cartilage molecular QTLs is shown in Supplementary Figure 5f. 
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Figure 3. Distinct clusters identified in low-grade cartilage and synovium tissue 

a) Synovium tissue samples from patients are separated into two clusters based on 
RNA data (synovium-Cluster1 and synovium-Cluster2). Each cluster formed 2 sub-
clusters (synovium-Cluster1a and synovium-Cluster1b; separately synovium-
Cluster2a and synovium-Cluster2b). Cluster 0: one outlier sample.  

b) Low-grade cartilage tissue samples from patients are separated into two clusters 
based on RNA data (cartilage-Cluster1 and cartilage-Cluster2). 
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c) Gene expression differences between synovium clusters shows several significant 
associations related to inflammation and osteoclast differentiation.  

d) Gene expression differences between the synovium sub-clusters within each cluster 
show similar pathway associations, including to ECM-receptor interaction and focal 
adhesion pathways.  

e) Gene expression differences between low-grade cartilage clusters show several 
significant pathway associations, including inflammation and osteoclast 
differentiation.  

f) An analysis of low-grade cartilage samples using MOFA identifies a continuous 
spectrum of variation between samples. Samples with high MOFA Factor 1 scores 
are mostly in cartilage-Cluster1 and those with low MOFA Factor 1 scores mostly in 
cartilage-Cluster2. Samples with intermediate MOFA Factor 1 scores have lower 
Silhouette Scores, showing more uncertainty in cluster assignment. For synovium, 
see Supplementary Figure 7c. 

Enrichment p: SPIA p-value for over-representation analysis of genes; Perturbation p: SPIA 
p-value for perturbation of the pathway based on gene log-fold-changes; Combined p: SPIA 
p-value from combining enrichment and perturbation p-values. 
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Figure 4. Variation within low-grade cartilage can be recovered using a 7-gene classifier 

a) Using PAMR, we constructed a 7-gene classifier to predict cluster assignment for 
low-grade cartilage samples. The barplot shows the PAMR score for each gene, the 
right panel the differential expression of the genes between the two low-grade 
cartilage clusters. See also Supplementary Figure 9 for classifier performance. 

b) The PAMR posterior probabilities for cluster assignment are highly correlated with 
MOFA Factor 1 scores for low-grade cartilage samples, capturing the continuous 
spectrum of variation between samples. Inset: Spearman correlation. 

c) In an independent set of 60 low-grade cartilage samples from 60 osteoarthritis 
patients undergoing total-knee-replacement, the posterior probabilities for cluster 
assignment from the 7-gene classifier are well-correlated with the continuous 
spectrum of variation in these samples, as quantified by MOFA Factor 1 in an ab 
initio analysis. Inset: Spearman correlation. 
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Tables 

 
Table 1. Compounds with strongest evidence for inducing gene expression signatures that 
counter differences between high-grade and low-grade cartilage.  
Results based on data from ConnectivityMap25. DE targets: drug targets as listed in 
ConnectivityMap with RNA (R) or protein (P) differences between high-grade and low-grade 
cartilage, “+” and “-“ indicate higher or lower expression high-grade cartilage, respectively. 
The 10 compounds with lowest median tau scores are shown; the full list of compounds is in 
Supplementary Table 8. 
  

Name Description DE targets 

Emetine protein synthesis inhibitor RPS2 (P+) 

Rucaparib PARP inhibitor PARP2 (R-) 

Alpha-estradiol estrogen receptor agonist KCNMA1 (R-, P-) 

VEGF-receptor-2-kinase-inhibitor-IV VEGFR inhibitor 
 

IB-MECA adenosine receptor agonist, 
granulocyte colony 
stimulating factor agonist 

 

Diethylstilbestrol estrogen receptor agonist, 
chloride channel blocker 

 

KIN001-220 Aurora kinase inhibitor 
 

SB-216763 glycogen synthase kinase 
inhibitor 

GSK3B (R+, P+), 
CDK2 (P-) 

RHO-kinase-inhibitor-III[rockout] ROCK inhibitor IMPDH2 (P-) 

Nornicotine acetylcholine receptor 
agonist 
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Supplementary information 

 

Supplementary Figures 
Supplementary Figure 1. Large-scale multi-omics characterisation of osteoarthritis disease 
tissue: study approach 

a) We examined the molecular characteristics of osteoarthritis by profiling mRNA and 
proteins from low-grade cartilage, high-grade cartilage, and synovium tissue of over 
100 patients undergoing total-joint-replacement for osteoarthritis, and combining 
these data with patient genotypes and information from electronic health records 
(EHRs). We identified genetic variants influencing mRNA or protein levels, several of 
which co-localise with genetic risk variants for osteoarthritis. We also identified 
molecular markers of cartilage degeneration, creating a gene expression profile of 
degeneration, and shortlisting existing drugs or compounds that reverse this profile 
in cell experiments. We generated mouse lines of several markers of cartilage 
degeneration, extensively profiling the bone and cartilage phenotypes of the mutant 
mice. Finally, we identified patient heterogeneity based on the molecular data, 
constructed and replicated a 7-gene probabilistic classifier to capture the 
heterogeneity, and identified associations with the patients’ clinical characteristics 
extracted from EHRs. 

b) Number of patients with data for each tissue and omics type after quality control. All 
109 patients also have genome-wide genotype data. See Supplementary Table 9 for 
patient-level details. 

 
Supplementary Figure 2. Molecular differences between low-grade and high-grade 
cartilage 

a) RNA- and protein-level log-fold-changes for all genes measured on both omics levels. 
The x-axis shows gene expression differences between low-grade and high-grade 
cartilage as quantified by limma in an analysis including the technical covariates as 
identified by pSVA as well as pairing samples from the same patients (see 
Supplementary Methods). The genes highlighted black or red were significant on 
both RNA- and protein-level, see also Figure 1b. 

b) Signalling Pathway Impact Analysis (SPIA) identified biological pathways associated 
with low-grade/high-grade differences. All pathways shown are activated in high-
grade compared to low-grade cartilage. Enrichment p: p-value from over-
representation analysis of genes; Perturbation p: p-value for perturbation of the 
pathway based on gene log-fold-changes; Combined p: p-value from combining 
enrichment and perturbation p-values. Pathways with significant results at 5% FDR 
based on RNA-level changes are shown.  

 
Supplementary Figure 3. Mouse models of implicated genes display osteoarthritis-
relevant abnormal joint phenotypes. 

a) Overview of the abnormal mouse joint phenotypes displayed by mouse models for 7 
genes with differential expression between low-grade and high-grade cartilage. For 
each of the genes (in rows), 9 phenotypes were assayed on the lateral tibial plateau 
(LTP) and medial tibial plateau (MTP). For each joint parameter (in columns), the plot 
shows the ratio of the mean value of each mutant strain to the mean value of the 
wild-type background strain, where the differences were significant (p<0.05). 
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Borders around boxes show phenotype difference significant after multiple-testing 
correction for the effective number of tests within each line (p<0.00568). BMC: bone 
mineral content; BMD: bone mineral density; vol: volume. Technical details of each 
mouse mutant line and plots of all individual values for abnormal phenotypes at 
p<0.05 see Supplementary Figure 4. 

b) Iodine contrast enhanced micro computed tomography (ICE-µCT) detects differences 
in articular cartilage volume and thickness (red volumes), and subchondral bone 
morphology (blue volumes); scale bar 100µm. Matn4-/- mice show decreased 
subchondral BV/TV (bone volume/tissue volume) and trabecular thickness (black 
arrow) compared to wild-type controls, whereas Pdlim1-/- mice display increased 
articular cartilage thickness (black arrow). 

c) Joint surface replication (JSR) detects damage to the articulating surfaces of the tibial 
plateaux; scale bar 100um. Htra3-/- mice show increased articular cartilage surface 
damage (black arrows, C) compared to wild-type controls. 

d) Subchondral X-ray microradiography (scXRM) detects changes in BMC within the 
subchondral region. White boxes represent the subchondral regions analysed; scale 
bar 1mm. Matn4-/- mice show decreased subchondral BMC compared to wild-type 
controls.  

e) All abnormal phenotypes displayed by Matn4-/-, Pdlim1-/- and Htra3-/- (p<0.00568). 
The boxplots show phenotype values for 100 mice from the background strain, with 
error bars for the 25%-75% interquartile range. Red diamonds: phenotypes of 
mutant mice. BV/TV: bone volume / tissue volume. 

 
Supplementary Figure 4. Mouse models of implicated genes display osteoarthritis-
relevant abnormal joint phenotype 

a) Technical details for each mouse mutant line, including targeting method and allele 
name. 

b) The figure shows all abnormal phenotypes displayed at p<0.05 which were not 
shown in the main figure. The boxplots show phenotype values for 100 mice from 
the background strain, with error bars for the 25%-75% interquartile range. Red 
diamonds: phenotypes of the mouse lines. 

 
Supplementary Figure 5. Molecular QTLs in osteoarthritis disease tissue 

a) eQTL overlap between tissues, for a total of 1,891 genes with a least one eQTL 
(left) and 219,709 eQTL gene-variant pairs (right). 49% of detected eQTLs are not 
tissue-specific. 

b) High correlation of eQTL normalized effect sizes (NES) between low-grade and 
high-grade cartilage. Inset: Spearman correlation 𝜌=0.94 between NES effect sizes 
across all eQTLs. 

c) High correlation of eQTL normalized effect sizes (NES) between low-grade cartilage 
and synovium (left), and between high-grade cartilage and synovium (right). Inset: 
Spearman correlation between NES effect sizes across all eQTLs. 

d) pQTL overlap between tissues, for a total of 38 genes with a least one pQTL (left) 
and 3,211 pQTL protein-variant pairs (right). 

e) High correlation of pQTL NES between low-grade and high-grade cartilage. Inset: 
Spearman correlation between NES effect sizes across all eQTLs.  
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f) Plots of GWAS and low-grade cartilage eQTL p-values for regions surrounding 
rs10502437 and rs12901372. For both GWAS signals, we observed colocalisation 
with eQTLs in both low-grade and high-grade cartilage, and the plots for high-
grade cartilage are shown in Figure 2d. Each plot shows 1Mb region centered 
around the GWAS index SNP (purple); each point represents a genetic variant. Top 
panels show GWAS p-values, bottom panels QTL p-values for the indicated gene. 
Here and in Figure 2d, LD between variants was calculated using UK Biobank. PP4: 
posterior probability for colocalisation. 

 
Supplementary Figure 6. Technical details of the clustering analysis of samples within 
tissues 

a) Cluster consensus plots for clustering in low-grade cartilage, synovium, and high-
grade cartilage based on RNA data. The x-axis shows the number k of clusters, the y-
axis the cluster consensus value (higher values showing stronger clustering). For 
clustering in low-grade cartilage and synovium, but not high-grade cartilage, the 
cluster consensus value is above 0.8 for both clusters when k=2. 

b) High-grade cartilage tissue samples from patients do not show a separation into two 
clusters by ConsensusCluster analysis based on RNA data. 

c) Cluster tracking plots for low-grade cartilage and synovium based on RNA data. Each 
column is a sample, coloured by the cluster assignment when separating samples 
into k=2,…,10 clusters (k values in rows). 

d) Low-grade cartilage tissue samples from patients do not show a separation into 
clusters by ConsensusCluster analysis based on protein data. k: number of clusters. 

e) High-grade cartilage tissue samples from patients do not show a separation into 
clusters by ConsensusCluster analysis based on protein data. k: number of clusters. 

 
Supplementary Figure 7. Distinct clusters identified in low-grade cartilage and synovium 
tissue  

a) Gene expression differences between low-grade and high-grade cartilage do not 
depend on the low-grade cartilage cluster. Plots show log-fold-changes for all genes 
based on the analysis of all patients (x-axis) versus log-fold-changes for all genes 
based on the analysis of all patients with low-grade cartilage in only one of the two 
clusters (y-axis). In each within-cluster analysis, 99% of the genes significant in the 
all-patient analysis had the same direction of effect. Inset: Spearman correlation of 
log-fold-differences, p<1.0x10-10.  

b) Gene expression differences between the synovium sub-clusters within each cluster 
are highly correlated. Plot shows log-fold-changes of each gene in the comparison of 
sub-clusters within the larger (x-axis) and smaller (y-axis) cluster. Over 99% of the 
genes with significant differences between synovium-Cluster1a and synovium-
Cluster1b also had directionally concordant differences between synovium-Cluster2b 
and synovium-Cluster2a, and over 80% were also significant at 5% FDR, and vice 
versa (i.e. genes with higher expression in synovium-Cluster1a compared to 
synovium-Cluster1b also had higher expression in synovium-Cluster2b compared to 
synovium-Cluster2a). 

c) An analysis of synovium samples using MOFA identifies a continuous spectrum of 
variation between samples. This variation corresponds well to the clustering: MOFA 
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synovium factor 1 captures differences between sub-clusters, while synovium factor 
2 captures variation between clusters. 

 
 

 
Supplementary Figure 8. Multi-omics factor analysis (MOFA) RNA gene weights are 
correlated with gene expression differences between tissue clusters 

a) Correlation between MOFA low-grade cartilage Factor 1 gene weights for RNA data 
and gene expression differences between low-grade cartilage clusters. logFC: log-
fold-change. Inset: Spearman correlation, p<10-15. Genes with significant differential 
expression between low-grade and high-grade cartilage are coloured red. 

b) Gene expression differences between low-grade cartilage samples in the same 
clusters, divided by MOFA low-grade cartilage factor 1 values >0 and <0, are 
correlated with gene expression differences between clusters. logFC: log-fold-
change. Inset: Spearman correlation, p<10-10. Left shows results for low-grade 
cartilage-Cluster1, right for cartilage-Cluster2. Genes with significant differential 
expression between low-grade and high-grade cartilage are coloured red. 

c) Correlation between MOFA synovium Factor 1 and 2 gene weights for RNA data and 
gene expression differences between synovium clusters and subclusters. logFC: log-
fold-change. Inset: Spearman correlation 𝜌, p<10-15. 

C-Cluster: cartilage-Cluster. 
 
Supplementary Figure 9. PAMR 7-gene low-grade cartilage classifier performance 
PAMR diagnostic plots for a classifier of low-grade cartilage based on RNA. Left: Sample 
classification error based on the PAMR internal threshold and the corresponding number of 
genes in the classifier. The top panel shows the overall error estimate, the bottom panel 
error rates separately for cartilage-Cluster1 and cartilage-Cluster2. The optimal selection as 
used in the paper included 7 genes and an internal threshold of 6.67 (vertical line). Right: 
False Discover Rate (FDR) for between-cluster differences for the genes in the classifier as 
calculated by PAMR. C-Cluster: low-grade cartilage-Cluster. 
 

Supplementary Information 
Supplementary Methods and Supplementary Notes. This file contains the Supplementary 
Methods, details of mouse models and identification of abnormal joint phenotypes, a note 
on resolving GWAS signals, additional details for patient stratification analysis and the 7-
gene classifier for low-grade cartilage. 
 

Supplementary Tables 
Supplementary Table 1. Genes with significant cross-omics differences between high-
grade and low-grade cartilage. 
 
Supplementary Table 2. Pathways and gene sets associated with significant RNA-level 
and/or protein-level differences between high-grade and low-grade cartilage. 
 
Supplementary Table 3. Detailed list of differential eQTLs, i.e. variants with high posterior 
probability for presence of eQTL effect in high-grade cartilage (m>0.9) and low for 
presence in low-grade cartilage (m<0.1), or vice versa. 
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Supplementary Table 4. Genes with significantly different expression profiles between 
high-and low-grade cartilage that were also found to be associated with genetic risk of 
osteoarthritis in a recent GWAS (multiple-testing corrected significance threshold of 
p<1.02x10-6).  
 
Supplementary Table 5. Pathways associated with gene expression differences between 
low-grade cartilage clusters or between synovium clusters. 
 
Supplementary Table 6. Expression differences between low-grade cartilage clusters for 
genes highlighted in previous cartilage clustering analyses. 
 
Supplementary Table 7. Full association results between patient clinical characteristics 
and low-grade sample cluster assignment or synovium cluster assignment, including 
individual drugs assigned to drug classes. 
The nine drug classes which were tested for association are shown (see Methods). 
 
Supplementary Table 8. Comparison of perturbations by compounds, gene knockdown or 
overexpression, to differences between high-grade and low-grade cartilage.  
The comparison was based on data from ConnectivityMap and genes with higher expression 
in high-grade than in low-grade cartilage on both RNA- and protein-level, see Methods. 
 
Supplementary Table 9. List of all assayed patient tissue samples with detailed 
information including cohort, batch, and quality control exclusions. 
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