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Abstract

The adoption of deep learning techniques in genomics has been hindered by the difficulty of mecha-
nistically interpreting the models that these techniques produce. In recent years, a variety of post-hoc
attribution methods have been proposed for addressing this neural network interpretability problem in
the context of gene regulation. Here we describe a complementary way to address this problem. Our
approach is based on the observation that two large classes of biophysical models for cis-regulatory
mechanisms can be expressed as deep neural networks in which nodes and weights have explicit
physiochemical interpretations. We also demonstrate how such biophysical networks can be rapidly
learned, using modern deep learning frameworks, from the data produced by certain types of mas-
sively parallel reporter assays (MPRAs). These results suggest a scalable strategy for using MPRAs
to systematically characterize the biophysical basis of gene regulation in a wide range of biological
contexts. They also highlight gene regulation as an ideal venue for the development of scientifically
interpretable approaches to deep learning.

Deep learning – the use of large multi-layer neural networks in machine learning applications – is revolutionizing
information technology [1]. There is currently a great deal of interest in applying deep learning techniques to problems
in genomics, especially for understanding gene regulation [2–6]. These applications of deep learning remain somewhat
controversial, however, due to the difficulty of mechanistically interpreting trained neural networks.

Multiple strategies have been proposed for addressing this neural network interpretability problem [7–13]. A common
feature of these attribution strategies is that they seek to extract meaning post-hoc from neural networks that have
arbitrary architectures. However, there remains a substantial gap between the outputs of these attribution methods and
fully mechanistic models of gene regulation.

Here we advocate for a complementary approach: the inference of neural network models whose architecture reflects
explicit biophysical hypotheses for how a cis-regulatory sequence of interest might work. This strategy is based on
two key observations. First, explicit biophysical models can be naturally formulated as deep neural networks in which
nodes and weights have explicit physiochemical interpretations. This is true of standard thermodynamic models (which
rely on a quasi-equilibrium assumption) [14–19] as well as fully kinetic models [20–22], and requires no mathematical
approximations (c.f. [23, 24]). Second, existing deep learning frameworks are able to rapidly infer such models from
the data produced by certain classes of massively parallel reporter assays (MPRAs).

Thermodynamic models are specified by a set of molecular complexes, or “states”, which we index using s. Each state
has both a Gibbs free energy ∆Gs and an associated activity αs. These energies determine the probability Ps of each
state occurring in thermodynamic equilibrium via the Boltzmann distribution,1

Ps =
e−∆Gs∑
s′ e

−∆Gs′
. (1)

1To reduce notational burden, all ∆G values are assume to be in thermal units. At 37◦C, one thermal unit is 1 kBT =
0.62 kcal/mol, where kB is Boltzmann’s constant and T is temperature.
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Figure 1: A thermodynamic model of transcriptional regulation (A) Transcriptional activation at the E. coli lac promoter
is regulated by two proteins, CRP and σ70 RNA polymerase (RNAP). CRP is a transcriptional activator that up-regulates
transcription by stabilizing RNAP-DNA binding. ∆GC and ∆GR respectively denote the Gibbs free energies of the
CRP-DNA and RNAP-DNA interactions, while ∆GI denotes the Gibbs free energy of interaction between CRP and
RNAP. (B) Like all thermodynamic models of gene regulation, this model consists of a set of states, each state having an
associated Gibbs free energy and activity. The probability of each state is assumed to follow the Boltzmann distribution.
(C) The corresponding activity predicted by such thermodynamic models is the state-specific activity averaged together
using these Boltzmann probabilities. (D) This thermodynamic model formulated as a neural network. First layer nodes
present interaction energies, second layer nodes represent state probabilities, and third layer nodes represent activity.
The values of weights are indicated; gray lines correspond to zero weights. The second layer has a softmin activation,
while the third has a linear activation.

The energy of each state is, in turn, computed using integral combinations of the individual interaction energies ∆Gj

that occur in that state. We can therefore write ∆Gs =
∑

j ωsj∆Gj , where ωsj is the number of times that interaction
j occurs in state s. The resulting activity predicted by the model is given by the activities αs of the individual states
averaged over this distribution, i.e., t =

∑
s αsPs.

Fig. 1 illustrates a thermodynamic model for transcriptional activation at the E. coli lac promoter. This model involves
two proteins, CRP and RNAP, as well as three interaction energies: ∆GC , ∆GR, and ∆GI . The rate of transcription
t is further assumed to be proportional to the fraction of time that RNAP is bound to DNA (Fig. 1A). This model is
summarized by four different states, two of which lead to transcription and two of which do not (Fig. 1B). Fig. 1C
shows the resulting formula for t in terms of model parameters. This model is readily formulated as a feed-forward
neural network (Fig. 1D). Indeed, all thermodynamic models of cis-regulation can be formulated as three-layer neural
networks: layer 1 represents molecular interaction energies, layer 2 (which uses a softmin activation) represents state
probabilities, and layer 3 (using linear activation) represents the biological activity of interest, which in this case is
transcription rate.

We can infer thermodynamic models like these for a cis-regulatory sequence of interest (the wild-type sequence) from
the data produced by a massively parallel reporter assay (MPRA) performed on an appropriate sequence library [25].
Indeed, a number of MPRAs have been performed with this explicit purpose in mind [25, 27–30]. To this end, such
MPRAs are generally performed using libraries that consist of sequence variants that differ from the wild-type sequence
by a small number of single nucleotide polymorphisms (SNPs). The key modeling assumption that motivates using
libraries of this form is that the assayed sequence variants will form the same molecular complexes as the wild-type
sequence, but with Gibbs free energies and state activities whose values vary from sequence to sequence. By contrast,
variant libraries that contain insertions, deletions, or large regions of random DNA are unlikely to satisfy this modeling
assumption.

Fig. 2A summarizes the sort-seq MPRA described in [25]. Lac promoter variants were used to drive GFP expression in
E. coli. GFP-expressing cells were then sorted into 10 bins using fluorescence-activated cell sorting, after which variant
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Figure 2: Inference of a thermodynamic model from MPRA data. (A) Schematic of the sort-seq MPRA of [25]. A
75bp region of the E. coli lac promoter was mutagenized at 12% per nucleotide. Variant promoters were then used to
drive the expression of GFP. Cells carrying these expression constructs were then sorted using FACS, and the variant
sequences in each bin were sequenced. This yielded data on about 50K variant promoters across 10 bins. (B) The
neural network from Fig. 1D, but with ∆GC and ∆GR expressed as linear functions of the DNA sequence ~x, as well as
a dense feed-forward network mapping activity t to bins via a probability distribution p(bin|t). Gray lines indicate
weights fixed at 0. The weights in the second and third hidden layers have additional, hardcoded, constraints. (C) The
parameter values inferred for the CRP energy matrix ~θC , the RNAP energy matrix ~θR, and the CRP-RNAP interaction
energy ∆GI . Since increasingly negative energy corresponds to stronger binding, they y-axis in the logo plots is
inverted. Logos were generated using Logomaker [26].

promoters within each bin were sequenced, yielding about 50K sequences in total. The authors then fit the biophysical
model shown in Fig. 1C, but under the assumption that ∆GC = ~θC · ~x+ µC and ∆GR = ~θR · ~x+ µR, where ~x is a
one-hot encoding of promoter DNA sequence.

For this study, we used TensorFlow to infer the same model formulated as a deep neural network. Specifically, we
embellished the network in Fig. 1D by using same sequence-dependence for ∆GC and ∆GR as in [25]. To link t to the
MPRA measurements, we introduced a feed-forward network with one hidden layer (having softmin activation) and a
softmin output layer corresponding to the 10 bins into which cells were sorted. All model parameters were fit to the
MPRA dataset using stochastic gradient descent and early stopping. The results agreed well with those reported in
[25]. In particular, the parameters in the energy matrices for CRP (~θC) and RNAP (~θR) exhibited Pearson correlation
coefficients of 0.986 and 0.994, respectively, with those reported in [25]. The protein-protein interaction energy that we
found, ∆GI = −2.9 kcal/mol, was also compatible with the previously reported value ∆GI = −3.3± 0.4 kcal/mol.

A major difference between our results and those of [25] is the ease with which they were obtained. Training of the
network in Fig. 2B consistently took about 15 minutes on a standard laptop computer. The model fitting procedure
in [25], by contrast, relied on a custom Parallel Tempering Monte Carlo algorithm that took about a week to run on a
multi-node computer cluster (personal communication), and more recent efforts to train biophysical models on MPRA
data have encountered similar computational bottlenecks [29, 30].

Also of note is the fact that in [25] the authors inferred models using information maximization. Specifically, the authors
fit the parameters of t(~x) by maximizing the mutual information between model predictions and observed bins I[t, bin].
One practical difficulty with this strategy is the need to estimate mutual information from finite data. Instead, we used
maximum likelihood to infer the parameters of t(~x) as well as the experimental transfer function (i.e., noise model)
p(bin|t), which was modeled by a dense feed-forward network with one hidden layer. These two inference methods,
however, are essentially equivalent: in the large data regime, the parameters of t that maximize I[t, bin] are the same as
the parameters one obtains when maximizing likelihood over the parameters of both t and p(bin|t); see [31, 32].
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Figure 3: A kinetic model for transcript initiation by E. coli RNAP. (A) In this model, promoter DNA can participate in
three complexes: unbound, closed, and open. Transitions between these complexes are governed by rate constants k.
(B) A formula for the steady-state rate of mRNA production can be obtained using King-Altman diagrams [33, 34]. (C)
This formula is naturally represented using the three-layer neural network, where layer 1 represents transition rates,
layer 2 represents the weights of distinct King-Altman diagrams, and layer 3 represents promoter activity. Here, black
lines indicate weight 1, gray lines indicate weight 0, all activations are log-linear, and the dashed line represents L1

normalization of layer 2 output.

A shortcoming of thermodynamic models is that they ignore non-equilibrium processes. Kinetic models address this
problem, providing a fully non-equilibrium characterization of steady state activity. Kinetic models are specified by
listing explicit state-to-state transition rates rather than Gibbs free energies. An example is shown in Fig. 3. Fig. 3A
shows a three-state kinetic model of transcript initiation consisting of unbound promoter DNA, an RNAP-DNA complex
in the closed conformation, and the RNAP-DNA complex in the open conformation. The rate k3 going from the open to
the unbound states is the rate corresponding to transcript initiation. The resulting transcription rate in steady state is
therefore k3 times the occupancy of the open complex.

King-Altman diagrams [33, 34], a technique from mathematical enzymology, provide a straight-forward way to compute
the steady-state occupancy of any individual state. Specifically, each state’s occupancy is proportional to the sum of
spanning trees that flow to that state, where each spanning tree’s value is given by the product of rates comprising that
tree. Fig. 3B illustrates this procedure for the kinetic model in Fig. 3A.

Here we have shown how thermodynamic and kinetic models of transcriptional regulation can be formulated as deep
neural networks in which nodes and weights have explicit physiochemical meaning. We have further demonstrated
how a thermodynamic model can be rapidly inferred from MPRA data using existing deep learning frameworks. These
results suggest a new strategy for interpretable deep learning in the study of gene regulation, one complementary to
existing post-hoc attribution methods.

Our approach can be applied to a wide variety of gene regulatory systems in both prokaryotes and eukaryotes. We
demonstrated this approach in the context of a well-characterized bacterial promoter in order to avoid any uncertainty
about the underlying biology, and because previous quantitative studies have established concrete results against which
we could compare our inferred model. The same modeling approach, however, should be readily applicable to a wide
variety of biological systems, including transcriptional regulation and alternative mRNA splicing in higher eukaryotes.

Some MPRA datasets are more amenable to this modeling strategy than others. Our approach is best-suited to
mutagenesis studies of individual cis-regulatory sequences, rather than genome-wide MPRA datasets. By assaying
SNP-containing variants of a specific cis-regulatory sequence, one preserves both the overall location of regulatory
protein binding sites as well as the resulting protein-protein interactions. This greatly simplifies the biophysical models
that one needs to infer. And indeed, such MPRA data have already been generated in a variety of eukaryotic systems
[35, 36, 27, 37]. The trade-off is that the resulting neural network model can only be expected to work in a narrow
region of sequence space.

It may eventually be possible to relax this restriction while retaining biophysical interpretability via the use of
convolutional or recurrent neural networks. Indeed, [24] has recently explored the possibility of using recurrent neural
networks for biophysically modeling gene expression in flies. In principle, it should be possible to apply similar
strategies to MPRAs performed on genome-wide or random sequence libraries [38, 4, 39, 40, 6]. But across all of
biology, very few individual cis-regulatory sequences have been characterized to the level that our modeling strategy
aims to elucidate. We therefore suggest that, at least in the short term, this approach should be used for modeling
individual cis-regulatory sequences rather than genome-wide cis-regulatory codes.
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