
	 1	

Correcting	reference	bias	from	the	Illumina	Isaac	aligner	enables	analysis	of	cancer	genomes	

	

Alex	 J.	 Cornish1,*,‡,	 Daniel	 Chubb1,*,‡,	 Anna	 Frangou2,	 Phuc	 H.	 Hoang1,	Martin	 Kaiser3,	 David	 C.	

Wedge2,	Richard	S.	Houlston1.		

	

1. Division	of	Genetics	and	Epidemiology,	The	Institute	of	Cancer	Research,	London,	UK.	

2. Big	Data	Institute,	University	of	Oxford,	Oxford,	UK.		

3. Division	of	Molecular	Pathology,	The	Institute	of	Cancer	Research,	London,	UK.	

	

*	These	authors	contributed	equally	to	this	work.		

	

‡	To	whom	correspondence	should	be	addressed.		

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2019. ; https://doi.org/10.1101/836171doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2019. ; https://doi.org/10.1101/836171doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2019. ; https://doi.org/10.1101/836171doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2019. ; https://doi.org/10.1101/836171doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2019. ; https://doi.org/10.1101/836171doi: bioRxiv preprint 

https://doi.org/10.1101/836171
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/836171
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/836171
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/836171
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/836171
http://creativecommons.org/licenses/by/4.0/


	 2	

ABSTRACT	

	

Estimating	 the	 fraction	 of	 cancer	 cells	 with	 individual	 somatic	 mutations	 is	 central	 to	 many	

analyses	 in	 cancer	 genomics,	 including	 characterisation	 of	 clonal	 architecture	 and	 timing	 of	

mutational	 events.	 Estimation	 of	 these	 cancer	 cell	 fractions	 (CCFs)	 is	 contingent	 on	 unbiased	

assessment	of	the	fraction	of	reads	supporting	variant	alleles	(VAFs).	We	demonstrate	that	VAFs	

computed	by	 the	 Illumina	 Isaac	pipeline,	used	 in	many	 large-scale	sequencing	projects	 including	

The	 100,000	 Genomes	 Project,	 are	 biased	 by	 the	 preferential	 soft	 clipping	 of	 reads	 supporting	

non-reference	alleles	(semi-aligned	reads).	We	show	that	these	biased	VAFs	can	have	deleterious	

effects	 on	 downstream	 analyses	 reliant	 on	 unbiased	 CCF	 estimates.	 While	 Isaac	 bias	 can	 be	

corrected	through	realignment	with	alternative	parameters,	this	is	computationally	intensive.	We	

therefore	developed	FixVAF,	a	tool	for	removing	bias	 introduced	by	soft	clipping	of	semi-aligned	

reads,	 facilitating	 downstream	 analyses	 without	 the	 need	 for	 realignment.	 FixVAF	 is	 freely	

available	at	https://github.com/danchubb/FixVAF.	

	

Contact:	alex.cornish@icr.ac.uk	or	daniel.chubb@icr.ac.uk.	

	 	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2019. ; https://doi.org/10.1101/836171doi: bioRxiv preprint 

https://doi.org/10.1101/836171
http://creativecommons.org/licenses/by/4.0/


	 3	

1.	INTRODUCTION	

	

The	 Illumina	 Isaac	 pipeline	 (Raczy	 et	 al.,	 2013)	 has	 been	 used	 in	 a	 number	 of	 large-scale	

sequencing	 projects,	 most	 notably	 The	 100,000	 Genomes	 Project	 (100KGP),	 a	 £300	 million	

endeavor	tasked	with	transforming	genomic	research	and	clinical	application	in	the	UK	(Klintman	

et	al.,	2018;	Turnbull	et	al.,	2018).	Additionally,	the	Isaac	pipeline	has	been	employed	in	numerous	

cancer-sequencing	 studies	 (Burns	 et	 al.,	 2018;	 Quigley	 et	 al.,	 2018;	 Ross-Innes	 et	 al.,	 2015),	 to	

evaluate	genome	editing	and	characterise	off-target	effects	(Kim	et	al.,	2015;	Kim	et	al.,	2017;	Ma	

et	al.,	2017),	and	 in	the	validation	of	embryo	screening	techniques	 (Fiorentino	et	al.,	2014).	The	

pipeline	was	 developed	primarily	 as	 a	 faster	 alternative	 to	 approaches	 such	 as	 the	 community-

standard	 combination	 of	 Burrows-Wheeler	 Alignment	 (BWA)	 (Li	 and	 Durbin,	 2009)	 and	 the	

Genome	 Analysis	 Tool	 Kit	 (GATK)	 (McKenna	 et	 al.,	 2010).	 Whilst	 the	 Isaac	 pipeline	 has	 been	

benchmarked	with	respect	to	variant	calling	(Klintman	et	al.,	2018;	Mainzer	et	al.,	2015;	Raczy	et	

al.,	2013),	there	has	been	less	extensive	evaluation	of	 its	suitability	for	other	analyses	routine	 in	

genomic	research,	particularly	those	applied	in	cancer	genomics.				

	

Many	 analyses	 that	 use	 tumour	 sequencing	 data,	 including	 the	 characterisation	 of	 clonal	

architecture	(Dentro	et	al.,	2018;	Jamal-Hanjani	et	al.,	2017;	Nik-Zainal	et	al.,	2012;	Williams	et	al.,	

2018),	 assessment	 of	 cancer	 drivers	 and	 mutational	 processes	 (McGranahan	 et	 al.,	 2015),	 and	

timing	of	mutational	events	(Gerstung	et	al.,	2018;	Mitchell	et	al.,	2018)	are	reliant	on	an	unbiased	

estimation	 of	 the	 proportion	 of	 cancer	 cells	 containing	 individual	 mutations.	 Such	 cancer	 cell	

fractions	 (CCFs)	 are	 computed	 using	 the	 fraction	 of	 aligned	 reads	 supporting	 the	 variant	 allele	

(VAF),	 the	tumour	copy	number	profile	and	the	tumour	sample	purity	 (Dentro	et	al.,	2017).	Any	

bias	 in	 the	alignment	of	 reads,	 favoring	either	 the	 reference	or	non-reference	 (alternate)	 allele,	

could	therefore	bias	CCF	estimates	and	negatively	impact	analyses.	

	

We	assessed	the	Isaac	pipeline	to	determine	its	suitability	for	analyses	reliant	on	CCF	estimation.	

After	 demonstrating	 that	 the	 soft	 clipping	of	 semi-aligned	 reads	performed	by	 the	 Isaac	 aligner	

introduces	reference	bias,	we	characterise	potential	negative	effects	of	this	bias	on	downstream	

analyses,	 including	 calling	 of	 copy	 number	 variants	 (CNVs),	 purity	 estimation	 and	 clonality	

reconstruction.	To	address	this	shortcoming	we	developed	FixVAF,	a	tool	that	removes	sources	of	

bias	from	VAFs	computed	from	Isaac	sequence	alignments,	facilitating	robust	CCF	estimation.	
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2.	MATERIALS	AND	METHODS	

	

2.1.	Sequencing	data		

Whole	genome	sequencing	(WGS)	data	were	obtained	from	25	tumour-normal	multiple	myeloma	

(MM)	pairs	from	the	UK	National	Cancer	Research	Institute	Myeloma	XI	trial	(Jackson	et	al.,	2019).	

Subjects	 were	 included	 on	 the	 basis	 of	 DNA	 sample	 availability,	 and	 informed	 consent	 was	

obtained	 from	 all	 patients.	 Tumour	 DNA	 was	 extracted	 from	 plasma	 cells	 selected	 and	 sorted	

using	CD138	micro	beads	 (Walker	et	al.,	2010),	whilst	germline	DNA	was	derived	 from	matched	

blood	 samples.	 Sequencing	 libraries	were	 prepared	 using	 Illumina	 SeqLab	 specific	 TruSeq	Nano	

High	 Throughput	 library	 preparation	 kit	 (Illumina	 Inc.,	 San	 Diego,	 CA	 92122	 USA)	 and	 Illumina	

HiSeqX	 technology	was	 used	 to	 conduct	 paired	 end	 sequencing.	 FastQC	 (v.0.11.4)	 was	 used	 to	

quality	 check	 raw	WGS	 data.	 The	Myeloma	 XI	 trial	 was	 approved	 by	 the	 Oxfordshire	 Research	

Ethics	 Committee	 (MREC	 17/09/09,	 ISRCTN49407852)	 and	 conducted	 in	 accordance	 with	 the	

Declaration	of	Helsinki	and	Good	Clinical	Practice.	

	

2.2.	Sequence	alignment	and	variant	calling	

The	 Isaac	 aligner	 (Raczy	 et	 al.,	 2013)	 has	 a	 parameter	 (--clip-semialigned)	 that	 invokes	 the	 soft	

clipping	 of	 reads	 at	 each	 end	 until	 a	 stretch	 of	 five	 consecutive	 bases	 are	 matched	 with	 the	

reference	 sequence.	When	 referring	 to	 ‘soft	 clipping	 of	 semi-aligned	 reads’,	 we	 are	 exclusively	

referring	to	soft	clipping	invoked	by	the	--clip-semialigned	parameter,	as	Isaac	also	soft	clips	reads	

for	 other	 reasons.	 This	 parameter	 is	 present	 in	 all	 Isaac	 versions	 after	 v01.13.06.20	

(Supplementary	Table	1)	and	was	used	in	the	alignment	of	100KGP	data.	

	

Sequencing	 data	 were	 aligned	 to	 the	 Homo	 sapiens	 GRCh38Decoy	 assembly	 using	 two	

approaches:	 (1)	 Isaac	v03.16.02.19	with	soft	clipping	of	semi-aligned	reads	(--clip-semialigned=1)	

and	 (2)	 Isaac	 v03.16.02.19	 without	 soft	 clipping	 of	 semi-aligned	 reads	 (--clip-semialigned=0)	

(Figure	 1).	 Illumina	 provided	 sequence	 alignments	 generated	with	 soft	 clipping	 of	 semi-aligned	

reads	 enabled	 for	 the	 25	 tumour-normal	 pairs	 as	 part	 of	 their	 sequencing	 services.	 We	

subsequently	 realigned	 these	data	using	 Isaac	without	 soft	 clipping	of	 semi-aligned	 reads.	 Isaac	

v03.16.02.19	 was	 considered	 as	 this	 software	 version	 was	 used	 in	 100KGP	 and	 therefore	 of	

particular	interest.	
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Germline	variants	were	called	by	Illumina	using	Starling	v2.4.7	(Raczy	et	al.,	2013).	Germline	single	

nucleotide	 polymorphism	 (SNP)	 VAFs	were	 calculated	 directly	 from	 Binary	 Sequence	 Alignment	

Map	 (BAM)	 files	 using	 alleleCount	 with	 minimum	 base	 and	 mapping	 qualities	 of	 20	 and	 35	

respectively	 (Van	 Loo	 et	 al.,	 2010).	 Somatic	 single	 nucleotide	 variants	 (SNVs)	were	 called	 using	

Strelka	v2.4.7	(Kim	et	al.,	2018;	Saunders	et	al.,	2012).	Parameters	used	to	run	Isaac,	Starling	and	

Strelka	 are	 detailed	 in	 Supplementary	 Table	 2.	 Differences	 in	 VAF	 distributions	 were	 assessed	

using	Wilcoxon	Signed-Rank	tests.		

	

2.3.	Removing	bias	introduced	by	soft	clipping	of	semi-aligned	reads	

The	Isaac	--clip-semialigned	parameter	invokes	the	soft	clipping	of	read	ends	until	five	consecutive	

bases	are	matched	with	the	reference	genome	(Illumina,	2016).	This	soft	clipping	therefore	results	

in	the	loss	of	support	for	alternate	alleles	occurring	within	five	bases	of	each	read	end.	To	reduce	

allelic	 bias	 introduced	 by	 this	 clipping,	 FixVAF	 soft	 clips	 all	 reads	 by	 five	 bases	 at	 each	 end,	

regardless	of	whether	any	of	the	bases	are	variant	sites	or	whether	the	reads	support	reference	or	

alternate	 alleles	 (Figures	 2	 and	 3a).	 Reads	 containing	 small	 insertions	 and	 deletions	 at	 variant	

positions	 are	 ignored.	 FixVAF	 can	be	applied	 to	 Strelka	 and	 Starling	output,	 requires	 the	pysam	

library,	and	is	available	as	a	Python3	package	from	GitHub	(https://github.com/danchubb/FixVAF).	

Required	 inputs	 are	 a	 BAM	 file	 and	 a	 Variant	 Call	 Format	 (VCF)	 file.	 Counts	 of	 all	 four	 possible	

alleles	 at	 each	 position	 are	 provided	 in	 an	 additional	 INFO	 field.	 Strelka	 provides	 two	 tiers	 of	

counts,	T1	and	T2,	requiring	read	mapping	qualities	of	≥40	and	≥5	respectively.	FixVAF	computes	

unbiased	counts	using	 these	 two	quality	 thresholds,	along	with	a	 third	 tier,	T3,	 requiring	a	 read	

mapping	quality	>0.	Providing	counts	using	different	quality	thresholds	allows	users	to	choose	how	

conservative	they	wish	the	read	filtering	to	be.	

	

2.4.	Calling	and	comparing	copy	number	profiles	

Reconstruction	of	clonal	and	subclonal	CNVs	was	conducted	using	Battenberg	v2.2.8	(Nik-Zainal	et	

al.,	2012).	Battenberg	computes	VAFs	using	alleleCount,	and	to	remove	bias	from	these	VAFs	we	

therefore	 modified	 alleleCount	 to	 ignore	 positions	 within	 five	 bases	 of	 each	 read	 end,	 as	 per	

FixVAF.	This	modified	version	of	alleleCount,	which	we	refer	to	as	alleleCount-FixVAF,	is	available	

from	GitHub	(https://github.com/danchubb/alleleCount-FixVAF).		

	

Battenberg	phases	variants	using	 IMPUTE2	(Howie	et	al.,	2012),	which	 is	 implemented	for	hg37.	

To	 call	 CNVs,	 SNP	 positions	 were	 therefore	 converted	 to	 hg37	 before	 running	 Battenberg	 and	
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output	segment	positions	were	converted	back	to	hg38.	CNVs	were	called	using	Isaac	alignments	

generated	both	with	and	without	 soft	 clipping	of	 semi-aligned	 reads,	 and	VAFs	 computed	using	

alleleCount	and	alleleCount-FixVAF	(Figure	1).	Battenberg	was	run	with	the	IMPUTE2	seed	variable	

set	to	0.			

	

We	compared	copy	number	profiles	from	the	same	samples	to	determine	whether	soft	clipping	of	

semi-aligned	 reads	 affects	 Battenberg.	We	 define	 the	 state	 of	 a	 genomic	 region	 (one	 or	 more	

contiguous	bases)	to	be	different	between	two	copy	number	profiles	 if	 (i)	subclonal	changes	are	

not	 present	 in	 either	 profile	 and	 clonal	 copy	 number	 states	 differ,	 (ii)	 subclonal	 changes	 are	

present	 in	 both	 profiles	 and	 subclonal	 copy	 number	 states	 differ,	 or	 (iii)	 a	 subclonal	 change	 is	

present	 in	 one	 profile	 but	 not	 the	 other	 (Figure	 4b).	 Comparisons	 are	 not	 limited	 to	 discreet	

segments	of	 continuous	copy	number	called	by	Battenberg,	but	are	 instead	conducted	base-by-

base.	

	

Parts	of	the	Battenberg	algorithm,	including	variant	phasing	by	IMPUTE2	(Howie	et	al.,	2012;	Nik-

Zainal	 et	 al.,	 2012),	 are	 stochastic,	 meaning	 that	 different	 copy	 number	 profiles	 are	 output	

depending	on	the	seed	variable	specified.	To	evaluate	whether	differences	between	copy	number	

profiles	 from	 alignments	 generated	 with	 and	 without	 soft	 clipping	 of	 semi-aligned	 reads	 are	

greater	than	differences	between	profiles	generated	using	different	 IMPUTE2	seed	variables,	we	

compared	 profiles	 generated	 using	 IMPUTE2	 seeds	 of	 0	 to	 profiles	 generated	 from	 alignments	

without	soft	clipping	of	semi-aligned	reads	with	ten	alternative	IMPUTE2	seed	variables	(ranging	

from	1	to	10).	If	the	state	of	a	genome	region	called	using	an	IMPUTE2	seed	of	0	is	never	observed	

in	any	of	the	profiles	generated	using	alternative	seed	variables,	then	we	consider	the	state	of	the	

region	 potentially	 erroneous.	 Such	 discrepancies	 could	 occur	 if	 multiple	 copy	 number	 states	

explain	the	observed	allele	frequencies	similarly	well,	or	be	due	to	the	soft	clipping	of	semi-aligned	

reads.	By	comparing	the	total	size	of	potentially	erroneous	regions	between	alignments	generated	

with	and	without	soft	clipping	of	semi-aligned	reads,	and	with	and	without	correction	of	VAF	bias,	

we	 assess	 firstly	 whether	 soft	 clipping	 of	 semi-aligned	 reads	 affects	 Battenberg,	 and	 secondly	

whether	computation	of	unbiased	VAFs	reduces	such	effect.		

	

2.5.	Assessing	clonality		

Subclonal	 reconstruction	was	conducted	with	DPClust	v2.2.8	 (Nik-Zainal	et	al.,	2012)	using	SNVs	

from	autosomes	and	 the	X	 chromosome.	Clusters	of	mutations	 containing	<1%	of	 all	mutations	
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were	excluded.	DPClust	was	run	using	SNVs	and	copy	number	profiles	generated	using	sequence	

alignments	with	and	without	soft	clipping	of	semi-aligned	reads	and	VAFs	from	Strelka,	and	again	

using	sequencing	alignments	with	soft-clipping	of	semi-aligned	reads	but	with	VAFs	 from	FixVAF	

(Figure	1).	Putative	clonal	mutation	clusters	were	defined	in	each	sample	as	the	cluster	with	a	CCF	

closest	to	1.	

	

2.6.	Tumour	sample	purity	re-estimation		

We	re-estimated	tumour	sample	purity	using	Ccube	v1.0	(Yuan	et	al.,	2018)	to	assess	the	effect	of	

soft	clipping	of	semi-aligned	reads	on	purity	estimation.	Ccube	requires	as	input	whether	or	not	a	

tumour	has	undergone	whole	genome	duplication,	and	we	 therefore	considered	whole	genome	

duplication	to	have	occurred	if	the	Battenberg	ploidy	estimate	was	>2.6.	Ccube	was	run	using	copy	

number	 profiles	 generated	 using	 sequence	 alignments	 with	 and	 without	 soft	 clipping	 of	 semi-

aligned	reads	and	autosomal	SNV	VAFs	from	Strelka,	and	again	using	sequencing	alignments	with	

soft	clipping	of	semi-aligned	reads	but	with	autosomal	SNV	VAFs	from	FixVAF	(Figure	1).		

	

2.7.	Software	and	data	availability	

Isaac	(v03.16.02.19),	Strelka	(v2.4.7),	alleleCount	(v4.0.0),	Battenberg	(v2.2.8),	DPClust	(v2.2.8)	and	

Ccube	 (v1.0)	 were	 downloaded	 from	 GitHub	 (Supplementary	 Table	 2).	 Homo	 sapiens	

GRCh38Decoy	 reference	 assembly	 was	 downloaded	 from	 Illumina	 (Supplementary	 Table	 2).	

FixVAF	 and	 alleleCount-FixVAF	 are	 available	 to	 download	 from	 GitHub	

(https://github.com/danchubb/FixVAF	 and	 https://github.com/danchubb/alleleCount-FixVAF	

respectively).	Analyses	were	conducted	using	R	versions	3.3.1	and	3.5.0.		
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3.	RESULTS	

	

3.1.	Soft	clipping	of	semi-aligned	reads	introduces	reference	bias	

In	 normal	 tissue	 samples,	 sequencing	 of	 reads	 supporting	 heterozygous	 SNP	 reference	 and	

alternate	 alleles	 can	 be	 expected	 to	 occur	 with	 equal	 probability.	 However,	 due	 to	 limited	

sequencing	depth,	the	exact	number	of	reads	supporting	reference	and	alternate	alleles	will	not	

be	equal	 in	many	 instances,	even	when	 the	aligner	 is	unbiased.	 It	 is	nevertheless	 reasonable	 to	

expect	 that	 the	median	 VAF	 of	 a	 large	 number	 of	 heterozygous	 SNPs	will	 approximate	 0.5.	 To	

evaluate	 the	 Isaac	 aligner,	 we	 therefore	 assessed	 heterozygous	 SNP	 VAF	 distributions	 in	

sequencing	data	 from	25	normal	 tissue	samples	 (Figure	3b;	Supplementary	 Table	3),	aligned	by	

Isaac	 using	 the	 same	 parameters	 employed	 by	 100KGP.	Median	 VAFs	 per	 sample	 ranged	 from	

0.478	to	0.479.	This	directionally	consistent	deviation	from	0.5	indicates	that	Isaac	can	exhibit	bias	

towards	the	reference	allele.	

	

Soft	clipping	of	semi-aligned	reads	was	invoked	to	generate	sequence	alignments	for	the	100KGP.	

To	test	whether	this	clipping	contributes	reference	bias,	we	realigned	the	sequencing	data	 from	

the	normal	samples	using	Isaac	without	soft	clipping	semi-aligned	reads.	When	semi-aligned	reads	

were	not	soft	clipped,	the	median	VAF	of	heterozygous	SNPs	in	each	sample	equaled	0.500	(Figure	

3b),	demonstrating	that	the	clipping	introduces	reference	bias.	Soft	clipping	of	semi-aligned	reads	

results	 in	 the	clipping	of	 the	majority	of	 reads	 supporting	 the	alternate	allele	where	 the	variant	

position	is	within	five	bases	of	either	read	end	(Figure	3a).	Fewer	reads	supporting	the	reference	

allele	are	soft	clipped	(Figure	3a)	and	VAFs	therefore	become	biased	towards	the	reference	allele.	

Such	 disparity	 in	 clipping	 rates	 between	 reads	 supporting	 reference	 and	 alternate	 alleles	 is	 not	

observed	when	semi-aligned	reads	are	not	soft	clipped	(Figure	3a).	

	

Unlike	SNPs	in	germline	samples,	we	do	not	know	the	true	VAF	of	somatic	SNVs	in	tumour	samples	

due	to	copy	number	variation,	normal	sample	contamination	and	clonal	heterogeneity.	However,	

SNV	 VAFs	 from	 alignments	 generated	with	 soft	 clipping	 of	 semi-aligned	 reads	were	 lower	 than	

SNV	VAFs	from	the	same	samples	from	alignments	generated	without	soft	clipping	of	semi-aligned	

reads	(P<2.2×10-16;	Figure	4a),	indicating	that	this	clipping	also	affects	SNV	VAFs.	
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3.2.	FixVAF	removes	bias	introduced	by	soft	clipping	of	semi-aligned	reads	

Whilst	SNP	VAFs	from	germline	sample	sequence	alignments	generated	with	soft	clipping	of	semi-

aligned	 reads	 exhibited	 reference	 bias	 (median	 VAFs	 ranged	 from	 0.478	 to	 0.479	 per	 sample),	

VAFs	computed	using	FixVAF	from	the	same	alignments	did	not	exhibit	bias	(median	VAFs	equaled	

0.500	 for	 all	 samples;	 Figure	 3b).	 Furthermore,	 in	 tumour	 samples,	 SNV	 VAFs	 computed	 using	

FixVAF	from	alignments	generated	with	soft	clipping	of	semi-aligned	reads	were	greater	than	SNV	

VAFs	 from	 Strelka	 for	 the	 same	 alignments	 (P<2.2×10-16;	 Figure	 4a).	 FixVAF	 SNV	 VAFs	 from	

alignments	generated	with	soft	clipping	of	semi-aligned	reads	were	also	greater	than	Strelka	SNV	

VAFs	from	alignments	generated	without	soft	clipping	of	semi-aligned	reads	(P<2.2×10-16;	Figure	

4a),	suggesting	the	Strelka	algorithm	may	be	a	source	of	additional	bias.		

	

3.3.	Soft	clipping	of	semi-aligned	reads	affects	downstream	analyses	

To	 assess	 whether	 soft	 clipping	 of	 semi-aligned	 reads	 affects	 Battenberg,	 we	 compared	 copy	

number	profiles	generated	using	alignments	with	and	without	soft	clipping	of	semi-aligned	reads	

to	 profiles	 generated	with	 alternative	 IMPUTE2	 seed	 values,	 to	 identify	 regions	 of	 the	 genome	

with	potentially	erroneous	copy	number	state	calls	(Figures	4b	and	4c).	The	total	size	of	genome	

regions	 with	 potentially	 erroneous	 state	 calls	 was	 greater	 when	 Battenberg	 was	 run	 using	

alignments	 generated	with	 soft	 clipping	 of	 semi-aligned	 reads	 than	without	 (P=1.8×10-5;	 Figure	

4d),	 demonstrating	 that	 soft	 clipping	 of	 semi-aligned	 reads	 affects	 Battenberg.	 Applying	

alleleCount-FixVAF	to	alignments	generated	with	soft	clipping	of	semi-aligned	reads	reduced	the	

total	 size	 of	 regions	with	 potentially	 erroneous	 states	 >10-fold	 (P=5.6×10-3;	 Figure	 4d),	 thereby	

addressing	the	bias	introduced	by	clipping.	Whilst	the	total	size	of	these	regions	was	greater	than	

in	 profiles	 generated	 without	 soft	 clipping	 of	 semi-aligned	 reads	 (P=2.8×10-3;	 Figure	 4d),	 no	

significant	difference	was	observed	between	the	total	size	of	potentially	erroneous	regions	when	

alleleCount-FixVAF	was	applied	 to	alignments	generated	with	and	without	 soft	 clipping	of	 semi-

aligned	 reads	 (P=0.72;	Figure	 4b).	 Therefore,	whilst	 the	 reduction	 in	effective	 sequencing	depth	

invoked	 by	 alleleCount-FixVAF	 may	 affect	 some	 copy	 number	 calls,	 these	 observations	 are	

consistent	with	alleleCount-FixVAF	removing	bias	introduced	by	clipping.		

	

We	ran	DPClust	using	alignments	generated	with	and	without	soft	clipping	of	semi-aligned	reads	

to	test	the	effect	of	the	clipping	on	subclonal	reconstruction.	If	SNV	VAFs	do	not	exhibit	allelic	bias,	

we	would	expect	DPClust	to	identify	clusters	of	mutations	with	CCFs	centered	on	1,	representing	

clonal	mutations.	When	DPClust	was	 run	using	alignments	generated	with	 soft	 clipping	of	 semi-
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aligned	reads,	the	median	CCF	of	putative	clonal	mutation	clusters	 in	the	25	tumours	was	0.959	

(Figure	5a).	Conversely,	when	DPClust	was	run	using	alignments	generated	without	soft	clipping	of	

semi-aligned	 reads,	 the	median	 CCF	 of	 putative	 clonal	mutation	 clusters	was	 0.983	 (Figure	 5a),	

demonstrating	that	read	soft	clipping	affects	clonal	mutation	characterisation.	When	DPClust	was	

run	 using	 FixVAF	 VAFs	 from	 alignments	 generated	with	 soft	 clipping	 of	 semi-aligned	 reads,	 the	

median	 CCF	 of	 putative	 clonal	mutation	 clusters	 was	 0.989	 (Figure	 5a),	 consistent	 with	 FixVAF	

substantially	reducing	the	effect	of	bias	on	clonality	reconstruction.	

	

Ccube	tumour	sample	purity	estimates	were	smaller	when	computed	using	alignments	generated	

with	soft	clipping	of	semi-aligned	reads	than	without	(P=1.3×10-3;	Figure	5b),	demonstrating	that	

this	clipping	also	affects	purity	estimation.	Purities	estimated	using	FixVAF	VAFs	from	alignments	

generated	 with	 soft	 clipping	 of	 semi-aligned	 reads	 were	 not	 significantly	 different	 from	 those	

estimated	from	non-soft-clipped	data	(P=0.49;	Figure	5b),	consistent	with	FixVAF	also	reducing	the	

effect	of	bias	on	purity	estimation.		
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4.	DISCUSSION		

	

Genomic	 analyses	 of	 tumors	 are	 becoming	 increasingly	 sophisticated,	 allowing	 investigation	 of	

their	histories	and	the	mutations	and	processes	that	drive	their	development	(Jolly	and	Van	Loo,	

2018;	Turajlic	et	al.,	2019).	However,	these	analyses	place	many	assumptions	on	the	data	they	use	

(Dentro	et	al.,	2017).	To	ensure	these	assumptions	are	valid,	extensive	benchmarking	of	pipelines	

that	 process	 data	 is	 required.	 Otherwise,	 as	 the	 IBM	 programmer	Wilf	 Hey	 is	 accredited	 with	

saying:	“Garbage	in,	garbage	out”	(Elliott	et	al.,	2006).		

	

Soft	 clipping	 of	 semi-aligned	 reads	 performed	 by	 the	 Isaac	 aligner	 introduces	 bias	 towards	 the	

reference	 allele.	 Such	 bias	 can	 affect	 downstream	 processes,	 potentially	 making	 conclusions	

unreliable	for	many	types	of	cancer	analysis.	While	the	Isaac	aligner	version	assessed	in	this	study	

(v03.16.02.19)	was	released	in	April	2016,	as	of	November	2019	it	 is	still	being	used	to	generate	

sequence	alignments	 in	projects	such	as	100KGP.	Whether	reference	bias	exhibited	by	the	 Isaac	

pipeline	 has	 affected	 studies	 using	 these	 data	 is	 difficult	 to	 predict.	 It	 is	 essential	 that	 aligners,	

such	as	Isaac,	be	evaluated	to	ensure	that	the	data	they	produce	are	not	systematically	biased.	

	

If	 unbiased	 VAFs	 are	 required,	 Isaac	 should	 be	 run	 with	 soft	 clipping	 of	 semi-aligned	 reads	

disabled,	or	 an	alternative	aligner	 such	as	BWA	 (Li	 and	Durbin,	 2009)	 should	be	used.	Although	

realignment	can	be	performed	where	clipped	alignments	have	been	previously	produced,	this	may	

be	 cost	 or	 time-prohibited.	 For	 example,	 projects	 such	 as	 100KGP	 have	 already	 sequenced	 and	

aligned	 >10,000	 tumour-normal	 genome	 pairs	 (Genomics	 England,	 2019).	 FixVAF	 computes	

unbiased	 VAFs	 from	 biased	 Isaac	 alignments,	 thereby	 enabling	 downstream	 analyses	 reliant	 on	

unbiased	VAFs	without	the	need	for	sequencing	data	realignment.		

	

FixVAF	has	 a	 number	of	 limitations.	 Firstly,	 it	 is	 only	 able	 to	 compute	VAFs	 for	 SNPs	 and	 SNVs.	

Estimating	VAFs	of	small	insertions	and	deletions	is	more	complex,	as	it	can	require	realignment	of	

reads	at	 the	 site	of	 the	variant	 (Saunders	et	al.,	2012).	 Secondly,	 some	variant	 callers,	 including	

Strelka,	perform	a	number	of	additional	read	filtering	steps	(Kim	et	al.,	2018;	Saunders	et	al.,	2012)	

and	 VAFs	 computed	 by	 FixVAF	 will	 therefore	 not	 necessarily	 equal	 VAFs	 computed	 using	

alternative	methods,	even	when	both	are	run	using	unbiased	alignments.	Thirdly,	we	have	so	far	

only	tested	FixVAF	with	sequencing	data	aligned	with	Isaac	v03.16.02.19.	This	pipeline	version	was	

of	 particular	 interest	 as	 it	 is	 the	 implementation	 being	 used	 to	 align	 sequencing	 data	 in	 the	
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100KGP.	Finally,	FixVAF	soft-clips	reads	supporting	reference	alleles	and	therefore	reduces	overall	

effective	sequencing	depth,	potentially	increasing	noise	in	downstream	analyses.		

	

Although	 bioinformatic	 processing	 only	 accounts	 for	 around	 12%	 of	 the	 costs	 of	 sequencing	 a	

tumor-normal	 sample	 pair	 (Schwarze	 et	 al.,	 2019),	 it	 is	 essential	 that	 rigorous	 benchmarking	 of	

bioinformatic	pipelines	is	conducted	if	expensive,	large-scale	sequencing	projects	of	human	cancer	

are	to	achieve	their	true	worth.		

	

	

	

	

	

	

	

	

	 	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2019. ; https://doi.org/10.1101/836171doi: bioRxiv preprint 

https://doi.org/10.1101/836171
http://creativecommons.org/licenses/by/4.0/


	 13	

ACKNOWLEDGEMENTS	

This	 work	 was	 supported	 by	 grants	 from	 Cancer	 Research	 UK	 [grant	 number	 C1298/A8362],	

Myeloma	UK,	Bloodwise	and	a	David	Forbes	Nixon	Foundation	Fellowship	[MK].	We	are	grateful	to	

the	National	Cancer	Research	 Institute	Haemato-oncology	group	and	 to	 those	 investigators	 that	

recruited	patients	to	the	Myeloma	XI	trial.		

	

AUTHOR	CONTRIBUTIONS	

AJC,	DC	and	RSH	conceived	and	designed	the	study.	AJC,	DC,	AF,	PHH	and	DCW	provided	code	and	

performed	 bioinformatic	 analyses.	MK	 acquired	 sequencing	 data.	 AJC,	 DC	 and	 RSH	 drafted	 the	

Article,	which	was	reviewed	and	approved	by	all	other	authors.			

	

DECLARATION	OF	INTERESTS	

Authors	declare	no	competing	interests.		

	

	 	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2019. ; https://doi.org/10.1101/836171doi: bioRxiv preprint 

https://doi.org/10.1101/836171
http://creativecommons.org/licenses/by/4.0/


	 14	

Figure	 1:	 Data	 processing	 flowchart.	 Single	nucleotide	polymorphisms	 (SNPs),	 single	nucleotide	

variants	 (SNVs)	 and	 copy	 number	 variants	 (CNVs)	 called	 using	 Starling,	 Strelka	 and	 Battenberg	

respectively.	Subclonal	architectures	were	reconstructed	using	DPClust	and	tumour	sample	purity	

was	re-estimated	using	Ccube.	VAF:	variant	allele	frequency.		
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Figure	2:	Removing	bias	introduced	by	soft	clipping	of	semi-aligned	reads.		Alignment	of	six	reads	

to	a	reference	sequence	containing	an	A/T	variant.	Bold	black	T	and	red	A	represent	reference	and	

alternate	alleles	respectively.	Soft	clipping	is	represented	by	strikethrough.	Without	soft	clipping,	

three	reads	would	support	both	the	reference	(T)	and	alternate	(A)	alleles,	resulting	in	an	unbiased	

variant	allele	frequency	(VAF)	of	3/6=0.5.	(a)	Read	R3	is	soft	clipped	until	five	consecutive	matches	

with	 the	 reference	 are	obtained.	After	 clipping,	 only	 two	 reads	 support	 the	 alternate	 allele	 (A),	

whilst	three	reads	support	the	reference	allele	(T),	resulting	in	a	biased	VAF	of	2/5=0.4.	(b)	FixVAF	

clips	 all	 reads	 by	 five	 bases,	 regardless	 of	 whether	 they	 contain	 a	 variant	 site	 or	 support	 a	

reference	or	alternate	allele.	Reads	supporting	both	the	reference	and	alternate	alleles	are	now	

clipped	 by	 five	 bases.	 In	 this	 example,	 FixVAF	would	 compute	 a	 VAF	 of	 2/4=0.5,	 and	 therefore	

remove	bias.			
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Figure	 3:	 Evidence	 of	 reference	 bias	 from	 sequence	 aligners.	 (a)	 Proportion	 of	 reads	 covering	

single-nucleotide	polymorphism	(SNP)	positions	supporting	the	reference	(blue	line)	and	alternate	

(red	 line)	 alleles	 with	 that	 read	 position	 soft	 clipped.	 (b)	 SNP	 variant	 allele	 frequency	 (VAF)	

distributions	in	whole	genome	data	from	25	normal	samples.	Sequencing	data	were	aligned	using	

Isaac	 with	 and	 without	 soft	 clipping	 of	 semi-aligned	 reads.	 VAFs	 were	 computed	 from	 Binary	

Sequence	Alignment	Map	files	using	alleleCount	or	FixVAF.	Grey	dashed	line	represents	expected	

median	VAF	of	0.5.	VAFs	computed	as	the	number	of	reads	supporting	the	alternate	allele	divided	

by	the	number	of	reads	supporting	either	the	alternate	or	reference	alleles.	Whiskers	extend	1.5	

times	inter-quartile	range	and	values	outside	of	this	range	are	not	shown.		
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Figure	4:	Effects	of	soft	clipping	of	semi-aligned	reads	on	somatic	variants.	(a)	Single	nucleotide	

variant	 (SNV)	 variant	 allele	 frequencies	 (VAFs)	 from	 25	 tumour-normal	 pairs	 aligned	 with	 and	

without	 soft	 clipping	 of	 semi-aligned	 reads.	 Only	 SNVs	 identified	 using	 both	 alignments	 were	

considered.	Whiskers	extend	1.5	times	inter-quartile	range	and	values	outside	this	range	are	not	

shown.	 Distribution	 differences	 assessed	 using	 Wilcoxon	 Signed-Rank	 tests,	 and	 for	 all	

comparisons	 P<2.2×10-16.	 (b)	 Identifying	 differences	 between	 copy	 number	 profiles.	 The	 copy	

number	state	of	a	genomic	region	is	defined	as	different	if	(i)	subclonal	changes	are	not	present	in	

either	 profile	 and	 clonal	 states	 differ,	 (ii)	 subclonal	 changes	 are	 present	 in	 both	 profiles	 and	

subclonal	states	differ,	or	(iii)	a	subclonal	change	is	present	in	one	profile	and	not	the	other.	Red	

and	 blue	 lines	 represent	 total	 and	 minor	 copy	 number	 states	 respectively.	 Thick	 and	 thin	

horizontal	 lines	 represent	 clonal	 and	 subclonal	 states	 respectively.	Dashed	 lines	demark	 regions	

with	states	that	differ	between	the	two	profiles.	(c)	Strategy	for	assessing	whether	soft	clipping	of	

semi-aligned	reads	affects	Battenberg,	and	how	application	of	alleleCount-FixVAF	influences	such	

effect.	(d)	Total	size	of	potentially	erroneous	copy	number	state	calls	from	profiles	generated	from	

each	 alignment,	 with	 VAFs	 computed	 using	 alleleCount	 and	 alleleCount-FixVAF.	 Distribution	

differences	assessed	using	Wilcoxon	Signed-Rank	tests.	CNV:	copy	number	variant.					
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Figure	5:	 Effect	of	 soft	 clipping	of	 semi-aligned	 reads	on	downstream	analyses.	 (a)	Cancer	cell	

fractions	 (CCFs)	 of	 clonal	mutation	 clusters	 identified	 by	DPClust	when	 run	with	 Strelka	 variant	

allele	 frequencies	 (VAFs)	 from	 alignments	 generated	 with	 and	 without	 soft	 clipping	 of	 semi-

aligned	 reads,	 and	 FixVAF	 VAFs	 from	 alignments	 generated	 with	 soft	 clipping	 of	 semi-aligned	

reads.	 Putative	 clonal	mutation	 clusters	were	 defined	 in	 each	 sample	 as	 the	 cluster	with	 a	 CCF	

closest	to	1.	Blue	and	grey	dashed	lines	denote	the	median	putative	clonal	mutation	cluster	CCF	

and	a	CCF	of	1	respectively.	(b)	Ccube	sample	purity	estimates	computed	using	Strelka	VAFs	from	

alignments	generated	with	and	without	soft	clipping	of	semi-aligned	reads,	and	using	FixVAF	VAFs	

from	 alignments	 generated	with	 soft	 clipping	 of	 semi-aligned	 reads.	Whiskers	 extend	 up	 to	 1.5	

times	inter-quartile	range.	Distribution	differences	assessed	using	Wilcoxon	Signed-Rank	tests.		
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