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Many naturally-occurring bacteria lead a lifestyle of metabolic dependency, i.e., they depend
on others for crucial resources. We do not understand what factors drive bacteria towards this
lifestyle, and how. Here, we systematically explain the role of horizontal gene transfer (HGT) in
metabolic dependency evolution. Across 835 bacterial species, we map gene gain-loss dynamics
on a deep evolutionary tree, and assess the impact of HGT and gene loss on bacterial metabolic
networks. Our analyses suggest that genes acquired by HGT can affect which genes are later lost.
Dependency evolution by gene loss is contingent on earlier HGT via two steps. First, we find
that HGT typically adds new catabolic routes to microbial metabolic networks. This increases
the chance of new metabolic interactions between bacteria, which is a prerequisite for dependency
evolution. Second, we show how gaining new routes can promote the loss of specific ancestral routes
(a mechanism we call ”coupled gains and losses”, CGLs). Phylogenetic patterns indicate that both
types of dependencies — those mediated by CGLs and those purely by gene loss — are equally likely.
Our results highlight HGT as an important driver of metabolic dependency evolution in bacteria.

Naturally-occurring bacteria lead one of two metabolic
lifestyles: autonomy or dependency [1–4]. While auton-
omy reflects complete self-sufficiency in converting nutri-
ents to biomass, bacteria with dependencies often require
crucial metabolites from others [5–9]. These metabolites
are secreted by neighbouring community members. Since
such dependencies are common in bacterial communities,
it is instructive to ask: what processes and factors affect
their evolution; in other words, what drives the switch
from metabolic autonomy to dependency?

To answer this question, recent studies have put forth
the Black Queen hypothesis, which states that dependen-
cies evolve through adaptive gene loss [10–12]. Individu-
als lose costly, dispensable genes in leaky environments,
trading autonomy for better growth (or fitness). As both
experiments and models show, this is feasible — admin-
istering the loss of even a few specific biosynthetic genes
in bacteria repeatedly leads to strong metabolic depen-
dencies [13–16]. This also explains how endosymbionts
undergo severe genome reduction [2]. These bacteria lack
many biosynthetic pathways, and instead depend on their
hosts for the required biomass components.

However, many extant free-living bacterial species are
also metabolically dependent, despite the “free-living”
label [17–21]. These species do not have merely reduced
genomes, i.e., they do not differ from their ancestors only
by gene losses, as expected under the Black Queen hy-
pothesis [22–24]. Over time, they have also gained many
genes, primarily by horizontal gene transfer (HGT) [25–
29]. For these often-dependent bacteria, we ask: could
gene gains also have contributed to which dependencies
we observe today? Specifically, during dependency evo-
lution, can which genes are gained influence which genes
will later be lost?

Here we explore the role of horizontal gene transfer
in the evolution of metabolic dependencies in bacteria.
Specifically, we measure the potential of HGT to drive

dependency evolution by affecting the likelihood of sub-
sequent gene loss events. To do this, we reconstructed
the evolutionary history of 835 phylogenetically diverse,
non-endosymbiont bacterial species. By inferring ances-
tral gene content, we mapped gene gains and losses along
a large, deep-branching phylogeny, and assessed their
impact on bacterial metabolic capabilities. Our analy-
ses suggest that horizontally transferred genes can in-
deed affect which genes are later lost, and which depen-
dencies emerge as a result. We have two lines of evi-
dence to support this. First, we find that gene gains
add new catabolic routes to bacterial metabolic networks.
These gained catabolic routes increase the chance of new
metabolic interactions between bacteria, a prerequisite
for dependency evolution. Next, we show how these
new routes can promote the loss of pre-existing ances-
tral routes (a process we call “coupled gains and losses”,
CGLs). We find that phylogenetic patterns indicate that
both processes — CGLs and pure gene loss — are equally
likely to lead to dependencies. Collectively, these results
highlight horizontal gene transfer as an important driver
of metabolic dependency evolution in bacteria.

RESULTS

Horizontal gene transfer (HGT) adds new catabolic
routes to bacteria. In a metabolic dependency, a donor
organism secretes metabolites, which are in turn required
by an acceptor organism. The secreted metabolites can-
not be produced by the acceptor organism itself, but are
still necessary for survival and growth. We sought to un-
derstand how horizontal gene transfer, if at all, impacts
the emergence of new dependencies. We hypothesized
that newly acquired genes (through HGT) lead to newer
metabolic interactions. This could occur if gained genes
allowed an acceptor organism to transport and break
down previously unusable metabolites in its surround-
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FIG. 1. Horizontal gene transfer adds new catabolic routes to bacteria. a, Schematic representation of our two-pronged approach:
of combining phylogeny and bacterial metabolism. We used a well-known phylogenetic tree to infer the evolutionary relationships between
the 835 bacterial species used in our analysis. For each extant species (shown on the tips of the tree), we used gene presence-absence
data for 3,022 metabolic genes from the KEGG metabolic database. Filled circles indicate gene presence; empty indicate absence. b, We
inferred the gene presence-absence states of all internal nodes of the tree along each branch of the full tree (grey dashed circle in a); each
branch connected an ancestor (anc) to a descendant (des). Along each branch, we inferred which genes were gained (green) and lost (red).
c, Bar plot showing the position of gained genes in bacterial metabolic networks. We split metabolic genes into catabolic (first or second
reactions in a metabolic route) and anabolic (intermediate or biomass-synthesis reactions) based on the the chemical reactions they map
to. Each green bar represents the average fraction of gained (horizontally transferred) genes at that position. Each black bar represents
controls, i.e., the expected average fraction of gains at that position, given a random set of gene gains. Error bars show the standard error,
indicating the extent of variation across 1,669 phylogenetic branches.

ings. We thus first asked: does horizontal gene trans-
fer enhance the ability of a bacterial genome to utilize
metabolites secreted by surrounding donors? In other
words, does it add new catabolic routes?

To answer this, we used a two-pronged approach, com-
bining bacterial metabolism and phylogeny. We first
acquired a list of 1,031 bacterial species with complete
genomes, whose metabolic data were available in the
KEGG GENOME database. We explicitly removed from
this list: (1) endosymbionts, due to their exotic metabolic
lifestyles and genomes, and (2) closely related genomes,
to avoid phylogenetic bias (see Methods). This left us
with the 835 species genomes we used for all our sub-
sequent analyses (supplementary table 1). For each
genome, we extracted all metabolic genes present in at
least one species, corresponding to a total of 3,022 unique
genes.

Using these genomes, we inferred each species’
metabolic capabilities. For this, we reconstructed repre-
sentative metabolic networks, one for each species, using
gene presence-absence data (figure 1a). Here, we mapped
each gene to specific chemical reactions using the KEGG
REACTION database (see Methods). To identify gene
gain and loss events during the evolution of these species,
we inferred the most likely genetic makeup of their ances-
tors. For this, we first established evolutionary relation-
ships using a well-known bacterial phylogenetic tree, and
then applied ancestral reconstruction methods, to infer

which of the 3,022 metabolic genes were likely present in
each ancestor (see Methods). With the presence-absence
profiles of ancestors and descendants on each phyloge-
netic branch, we could infer which genes were gained and
lost along them (figure 1b).

We first tested whether HGT can expand the set of
externally available metabolites that a metabolic net-
work can catabolize. For this, we studied which posi-
tion horizontally transferred genes typically occupied in
each metabolic network they were gained in. Specifi-
cally, we were interested in whether the gained genes
were in catabolic or anabolic parts of a metabolic net-
work. We studied this across all phylogenetic branches.
On each branch, we asked which position in the de-
scendant’s metabolic network each gained gene occupied.
Each position corresponded to metabolic reaction order,
from catabolic to anabolic, as follows: transport, first,
intermediate or biomass-synthesis reactions (see Meth-
ods). If HGT was indeed likely to add new catabolic
routes, we would expect gained genes to be concentrated
in the catabolic parts of the network, i.e., transport and
first reactions. As controls, we measured the positions of
randomly chosen genes in the same metabolic networks.

Along each branch, we measured the fraction of gained
genes corresponding to each network position. We then
plotted, across all branches, the average fraction of gains
found to occupy each position. Consistent with our hy-
pothesis, we found that horizontally acquired genes are
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FIG. 2. HGT-enabled catabolic routes increase the likelihood of metabolic interactions. a, Distribution of the number of newly
accessible catabolic routes (routes gained along each phylogenetic branch) across all 1,669 branches. The number of routes starting from nutrients
are shown in blue, and those starting from byproducts are in red. New byproduct-driven routes would increase the chance of metabolic interactions
with other bacteria (via their byproducts). We find that new catabolic routes are more likely to be byproduct-driven (median 56, versus 51 for

nutrient-driven routes; P < 10−3; Kolmogorov-Smirnov test). b–c, Pie charts comparing new routes with their corresponding ancestral routes on
each of the 1,669 branches. We compare new and ancestral routes based on their b, path length (i.e., is the shortest new path shorter, longer or
the same length as the shortest ancestral path), and c, energy yield (i.e., does the most energy-yielding new path have a higher, lower or equal
yield than the best ancestral path).

more likely to be part of catabolic routes (mean; 69%
catabolic versus 31% anabolic; figure 1c, green bars); this
is much more than expected by chance (in controls, we
found mean 34% catabolic versus 66% anabolic; figure
1b, black bars). This suggests that HGT can expand the
number of external metabolites that bacteria can catab-
olize.

HGT-enabled catabolic routes increase the likeli-
hood of metabolic interactions. We next tested the
possibility that newly acquired catabolic routes promote
new metabolic interactions. For this, new routes should
help break down the metabolic byproducts of other bac-
teria more often than nutrients available in the environ-
ment. To test this, we first curated a list of common ex-
ternal metabolites, and classified them as byproducts or
nutrients based on their presence on the exterior or inte-
rior of microbial metabolic networks (see supplementary
table 2 for the full list; see Methods for a detailed proce-
dure). In a metabolic interaction, the received metabo-
lite should eventually help produce biomass components
(such as pyruvate, ribose-5-phosphate, and alanine). For
each ancestor-descendant pair, we analyzed how many
such biosynthetic routes were added to the descendant’s
metabolic network, when compared with its ancestral
network (see Methods). We separately counted routes
using byproducts as their starting point, from routes us-
ing nutrients.

We found that, on average, new biosynthetic routes,
enabled by HGT, are more likely to be byproduct-driven
than nutrient-driven (median number of routes, 56 and
51, respectively; P < 10−3; distributions compared via
a Kolmogorov-Smirnov test; see figure 2a). Moreover,
these new routes could often be metabolically more effi-
cient than their ancestral counterparts (see figure 1d),

i.e., they often had shorter path lengths (49%; figure
2b, left) and yielded more energy (ATP; 58%; figure 2c,
right) than the corresponding routes in their ancestors
(see Methods). This suggests that newly acquired routes
can indeed enable new metabolic interactions with other
donor bacteria. In fact, some of these interactions can
also have adaptive significance, which can encourage the
evolution of metabolic dependencies.

HGT can affect dependency evolution via coupled
gains and losses of genes. Given that newly acquired
routes have similar — and sometimes better — sizes and
energy yields, we wondered if their acquisition could pro-
mote the loss of corresponding ancestral routes. We thus
hypothesized the following mechanism through which,
contingent on earlier HGT, metabolic dependencies could
emerge by subsequent gene loss.

Consider the example illustrated in figure 3a, with an
environment that consists of a nutrient (nut, blue cir-
cle), and a byproduct (byp, purple triangle) secreted by
a donor (not shown). Consider a specific acceptor or-
ganism, that requires the biomass component (bmc, yel-
low square) either directly or indirectly, to survive. We
follow the modification of this acceptor’s metabolic net-
work, from ancestor to descendant, in three steps. First,
the ancestor uses a specific metabolic pathway (labelled
“ancestral route”) to convert the available nutrient to
the essential biomass component. Second, it gains a
catabolic route (labelled “gained route”) that uses the
byproduct, byp, to produce bmc. Third, after such a gain,
the acceptor loses the ancestral route to bmc. This is al-
lowed because bmc — crucial for survival — can still be
produced through a coupled (or alternate), byproduct-
utilizing route. Once lost, however, the acceptor will be-
come obligately dependent on its neighbours to receive
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FIG. 3. HGT can affect dependency evolution via coupled gains and losses of genes. a, Schematic illustration of coupled gains and
losses (CGLs), a new, alternate mechanism for dependency evolution driven by HGT. The grey box on the left indicates the environment, with
a nutrient (nut, blue circle) and a byproduct (byp, purple triangle). Red arrows indicate the secretion and import of metabolites by bacteria.
The three steps in the frame show how a bacterial species can evolve a dependency on another species that donates byp in the environment; by
step 3, the acceptor species eventually depends on byp. Each step follows the modification of a part of the acceptor’s metabolic network. At step
1, the acceptor uses an ancestral route (black arrows) to convert nut in the environment to a key biomass component (bmc, yellow square). At
step 2, it can alternatively use a newly gained route to convert byp to the same bmc. The ancestral and gained routes are coupled to each other,
because they both produce bmc, which is crucial for survival and growth. At step 3, the acceptor loses the ancestral route (grey arrows), but can
still produce bmc through the gained route. It thus becomes dependent on donors of byp for survival. b, Schematic illustration of dependency
evolution via pure gene loss, not driven by HGT. The environment now has bmc available as a byproduct, instead of byp (grey box on the left).
In this mechanism, step 1 is the same as a, but unlike a, at step 2, the acceptor can lose the ancestral route straight away, without requiring an
alternate coupled route. However, this requires a particular environment where bmc is available.

the byproduct.

Note that here, until the gain of an alternate route, the
ancestral route cannot be lost by the acceptor. Moreover,
gaining such a route can not only allow the loss of the
ancestral route, but also promote it. This is most likely,
for instance, when the gained route is more efficient than
the pre-existing route (which is often the case; figure 2c).
Collectively, we term this process (figure 3a, steps 1 to
3), coupled gains and losses (CGLs). CGLs demonstrate
how HGT can crucially affect metabolic dependency evo-
lution.

Contrast CGLs with pure gene loss, which relies on the
environmental availability of bmc for dependency evolu-
tion (figure 3b). Unlike CGLs, these events are unlikely
to be affected by, or depend on, HGT. Interestingly, the
same genome (or microbial species) can evolve the same
dependency via both mechanisms, but their likelihoods

are crucially environment-dependent. This is transpar-
ent in figure 3a, b, where the primary difference between
the two cases is which byproduct is available: in figure
3a, it is byp (purple triangle); in figure 3b, it is bmc (yel-
low square). The only other difference is the gain of a
route to metabolize byp, which is likely in an environment
where byp is available as a byproduct.

Metabolic dependencies are equally likely to emerge
via CGLs and pure gene loss. Given that both cou-
pled gains and losses (CGLs) and pure gene loss are pos-
sible mechanisms for metabolic dependency evolution,
we asked which of them was more likely to cause the
metabolic dependencies observed in extant bacteria. To
help answer this, we looked for two distinct, but related
phylogenetic signatures.

First, we measured what fraction of ancestor-
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FIG. 4. Metabolic dependencies are equally likely to emerge
via CGLs and pure gene loss. a, Bar plot showing the fraction
of 1,669 phylogenetic branches in which we observed gene gain-loss
patterns consistent with coupled gains and losses (CGLs; green), and
with pure gene loss (red). Each grey bar represents the corresponding
controls, i.e., the expected fraction of branches with patterns consis-
tent with CGLs and pure gene loss, given a random set of gene gains
and losses. Error bars show the standard error, indicating the level of
variation across all branches. b, Line plot showing the likelihood of
evolving dependency via CGLs (green) and pure gene loss (red) in sim-
ulated bacterial communities, as a function of the community diversity.
The likelihood of dependency is the average fraction of communities in
which the observed gains and losses along a branch led to a CGL-based
on pure gene loss-based dependency. Community diversity is the num-
ber of coexisting bacterial species in a simulated community. The grey
region has ≥ 7 species, where CGLs are more likely than pure gene loss.

descendant transitions (each represented by a phyloge-
netic branch) displayed gain-loss patterns consistent with
CGLs; we compared this with the fraction of transi-
tions consistent with pure gene loss. Here, for CGL-
consistent transitions, we asked whether a species gained
a catabolic route for at least one biomass component
which it also lost an alternate route for, during the
ancestor-descendant transition (i.e., along a phylogenetic
branch, how often did we detect any CGL events, like in
figure 3a; see Methods). For transitions consistent with
pure gene loss, we similarly asked how often we observed
a species losing a pre-existing route, without gaining an
alternate catabolic route for the same biomass compo-
nent (i.e., along a phylogenetic branch, how often did we
detect any pure gene loss events, like in figure 3b; see
Methods). To control for the likelihood of both events
occurring by chance, we also calculated the expected frac-
tions of CGL and pure gene loss events, by repeating our
measurements on simulated datasets (see Methods). In
each simulated dataset, we randomized which genes were
gained and lost along each ancestor-descendant transi-
tion, or branch. Here, we ensured that the same number
of genes were gained and lost along each branch as those
in our observed dataset. We found at least one CGL
event on 33% of all branches (figure 4a; green); in com-
parison, we found pure gene loss events on 24% of all
branches (figure 4a; red). Both kinds of events were ob-
served much more likely than expected by chance (figure
3c; greys). This suggested that by merely observing gene

gain-loss patterns, we would conclude that CGLs were
more likely to lead to dependencies than pure gene loss.

Second, we added environmental context to the ob-
served gain-loss patterns, by measuring how the likeli-
hood of metabolic dependency evolution depended on a
species’ microbial community. Specifically, we asked how
the chance of both events — CGLs and pure gene loss
— depended on the number of species in a microbe’s
community (hereafter, community diversity). We hy-
pothesized that more diverse communities would have a
higher number of available nutrients in the environment,
because more species would secrete metabolic byprod-
ucts. We expected that increasing community diversity
would thus generally favour dependency evolution via
both CGLs and pure gene loss; we did not know which
of the two would be more favoured. To measure the ef-
fect of community diversity on the chance of CGLs and
pure gene loss across several environments, we asked how
often the observed gains and losses would lead to depen-
dencies because of CGLs and pure gene loss alone across
hundreds of thousands of random, simulated microbial
communities. We used simulated communities as prox-
ies for environments, due to our lack of knowledge of
the actual environments of different species across their
evolutionary histories; in doing so, we were estimating
the typical chance of dependencies emerging via CGLs
and pure gene loss. For these simulations, we curated
1,035 environments, each with a different pair of nutri-
ents present (supplementary table 3; see Methods for de-
tails). In each environment, we randomly chose unique
sets of bacterial species from the 835 in our study as dif-
ferent communities; we chose 100 unique species sets at
each level of diversity, from 2 to 10 (see Methods).

For each phylogenetic branch, and for each
environment-community pair (roughly 100,000 per
level of community diversity), we measured how often
the observed gains and losses along the branch led to
a new dependency in the descendant; we measured
this separately for CGLs and pure gene loss. Briefly, a
dependency was CGL-mediated when the following three
conditions were satisfied: (1) the descendant gained an
alternate route while also losing a coupled route (similar
to figure 3a), (2) the gained route used a metabolic
byproduct from the community for biomass production,
and (3) the biomass component produced via the gained
route was not available as a community byproduct. In
contrast, a dependency was pure gene loss-mediated
when: (1) the descendant lost a pre-existing route for
the production of a biomass component (similar to
figure 3b), and (2) that biomass component was directly
available as a metabolic byproduct from the community
(see Methods).

To illustrate our results, we plotted the fraction of sim-
ulations where we detected dependency evolution as a
function of community diversity, i.e., we plotted the like-
lihood of dependencies via CGLs and pure gene loss with
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increasing community diversity (figure 4b). Consistent
with our hypothesis, we found that the likelihood of de-
pendencies via both CGLs and pure gene loss increased
with increasing diversity (figure 4b; CGLs in green; pure
gene loss in red); the likelihood of both events saturated
at high diversity. Strikingly, while pure gene loss was
more likely at low diversity (< 7; white region in fig-
ure 4b), we found that CGLs were more likely at high
diversity (≥ 7; grey region in figure 4b). This was be-
cause: while the number of byproducts increase with in-
creasing diversity (supplementary figure 1), byproducts
are more likely to be pathway intermediates (favouring
CGLs) than biomass components (favouring pure gene
loss); see supplementary figure 2. Collectively, our anal-
yses and simulations suggest that CGLs and pure gene
loss are equally likely mechanisms for metabolic depen-
dency evolution in bacteria.

DISCUSSION

To summarize, here we showed that horizontal gene
transfer (HGT) can play a significant role in metabolic
dependency evolution in bacteria. Specifically, if an
alternate metabolic pathway (or “route”) is gained by
HGT, it can promote the loss a pre-existing, otherwise
indispensable route. Such alternate routes often catabo-
lize metabolic byproducts from coexisting bacteria, thus
making bacteria dependent on them. Overall, this is a
new mechanism for dependency evolution: coupled gains
and losses (CGLs). Phylogenetic evidence suggests that
CGLs have occurred much more frequently across bacte-
rial evolutionary history than expected by chance (figure
4a). Further, phylogenetic evidence also suggests that
CGLs can often be adaptive, since gained pathways are
often shorter and more energy-efficient when compared
with pre-existing pathways (figure 2b–c).

As a mechanism for metabolic dependency evolution,
CGLs are contrasted with pure gene loss, also called the
Black Queen hypothesis. We found that while in commu-
nities with low diversity, pure gene loss is the more likely
cause of dependencies, in communities with high diver-
sity, CGLs are more likely (figure 4b). Our results thus
enrich and supplement the Black Queen hypothesis, by
explaining the role of prior gene gains on eventual gene
loss.

We believe that our approach also helps in classifying
different microbes by lifestyle in a more precise and eco-
logically relevant manner than what is traditional. Con-
ventionally, microbes are often classified by metabolic
lifestyle, as either free-living or symbiotic, in biological
databases. While this classification suggests that free-
living bacteria would often be independent (and sym-
biotic ones, dependent) these labels are often vaguely
defined. For instance, free-living bacteria are often
metabolically dependent [17]. In our analyses, we wanted

to avoid relying on an imprecise binary classification for
dependency (i.e., free-living or symbiotic). This is why
we systematically assessed the degree of dependency of a
bacterial genome; for this, we inferred which key biomass
components each genome could synthesize under various
nutrient environments or conditions.

The mechanism we proposed, CGLs, also makes the
following prediction about experimental evolution: when
co-evolved in a diverse community, bacteria are more
likely to lose biosynthetic pathways that they have al-
ternate pathways for; this is less likely when they are
evolved alone. As a corollary, adding alternate pathways
to bacteria will promote the loss of pre-existing pathways.
Both predictions can be tested via laboratory evolution
in a community context.

The framework we used here, combining phylogenetic
analyses with metabolic network analyses, can also help
quantify the relative contributions of drift and selec-
tion to the reduction of bacterial genomes. Progressive
genome reduction is often termed “genome streamlin-
ing”, and a key question in bacterial genome evolution
asks how parallel, or repeatable, streamlining events are;
the logic is that more parallel events reflect selection be-
ing dominant in genome reduction. We can systemat-
ically study these questions within our framework; we
can measure how often we detect the same dependencies
evolve along a phylogenetic branch, and quantify how
similar the corresponding gene loss events are. Similar,
or repeatable, gene loss events would be consistent with
selection playing a major role in streamlining: perhaps
“weeding out” genes no longer required in certain en-
vironments. Dissimilar gene loss events, on the other
hand, would suggest that drift dominates: stochastic
gene losses could take different paths to the same de-
pendencies, i.e., the same biosynthetic abilities would be
lost sometimes by losing one pathway, and sometimes by
another, in line with what is expected by chance. Such
analyses are outside the scope of this study, and the sub-
ject of future work.

Finally, our analyses focused on changes in metabolic
network architecture, but dependency evolution can also
occur via changes to gene regulatory networks. In ex-
periments, we observe that both metabolic and regu-
latory changes are responsible for evolved dependencies
[15, 30, 31]. However, we do not understand how to incor-
porate the effect of regulatory changes on bacterial phe-
notypes as well as we do the effect of metabolic changes.
Future work in this direction can help better understand
the role of regulation on metabolic dependency evolution.

METHODS

Mapping genomes to metabolic networks. We extracted a list
of all 1,031 bacterial species whose complete genomes were avail-
able in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
GENOME database [32]. We then pruned this list to remove en-
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dosymbionts and closely related genomes. To remove endosym-
bionts, we used a curated list of endosymbiont genomes based on
literature surveys [33]. To remove closely related genomes, when
multiple genomes were available for a species, we chose one at ran-
dom. This resulted in 835 genomes or species, which we used for
all subsequent analyses (see supplementary table 1 for the full list).
To infer which metabolic genes were present and absent in each
species, we extracted a list of all the genes in that species which
mapped to a corresponding metabolic reaction in the KEGG RE-
ACTION database. We found a total of 3,022 unique genes that
were present in at least one of the 835 species in our dataset. We
assumed that the set of all mapped metabolic reactions per species
was its metabolic network (figure 1a).

Inferring gene gains and losses. To obtain species’ phyloge-
netic relationships, we mapped our 835 genomes to a well-known
phylogenetic tree by matching their GenBank accession numbers
[34, 35]. To infer the most likely genetic make-up of each ancestor,
i.e., the internal nodes of the phylogenetic tree, we used a previ-
ously published ancestral state reconstruction method by Cohen
and Pupko [36]. Such a method is commonly used to study the
long-term evolutionary history of gene gains and losses on deep
phylogenetic trees [25, 27]. The parameters we used while running
the method were consistent with previous large-scale studies of bac-
terial genome evolution [28]; the full set of parameters is available
in supplementary table 4. We then calculated which genes were
gained and lost along each phylogenetic branch, i.e., between an
ancestor and its descendant(s), by comparing their gene presence-
absence profiles. We assumed a gene was gained along a branch if
it was absent in the ancestor, but present in the descendant; simi-
larly, we assumed a gene was lost along a branch if it was present in
the ancestor, but absent in the descendant (figure 1b). We verified
that using an alternate, maximum-likelihood based method to infer
gene gains and losses did not significantly affect our results (< 5%
mismatch between gain-loss patterns across all 1,699 branches).

Assessing gene positions in metabolic networks. To infer
which position in a metabolic network a gained gene was likely to
occupy, we first mapped each of the 3,022 unique metabolic genes
in our study to known metabolic routes in the KEGG MODULE
database. Each route in this database is a sequence of steps in
the metabolism of a key biomass component; here, the first few
steps are catabolic, and the next several steps are anabolic. To
each gene, we assigned a position, as follows: (1) first reaction, if
the gene corresponded to the first reaction in the route, (2) second
reaction, if the gene corresponded to the second reaction, (3) in-
termediate reaction, for all other reactions (except the last) in the
route, and (4) biomass synthesis, for the final reaction in the route.
We assumed that genes in categories (1) and (2) were catabolic,
and (3) and (4) were anabolic. This assumption is consistent with
previous analyses of metabolic gene position [25]. To avoid am-
biguity in this analysis, we took two steps. First, we only con-
sidered genes which were unique to one route. We verified that
relaxing this constraint did not significantly affect our results (sup-
plementary figure 3, where genes present in multiple routes are
assigned their most frequently observed position). Second, we ex-
cluded short routes (≤ 3 reactions, or steps) from our analysis, since
it would be difficult to distinguish catabolism from anabolism in
them. We calculated the distribution of gained genes in metabolic
networks. For this, on each phylogenetic branch, we calculated
the fraction of genes gained along that branch at each metabolic
network position. We then averaged the fraction of gained genes
at each position across all branches (figure 1c; green bars). As a
control, we plotted the expected fraction of gained genes at each
position by calculating the average fractions if the genes gained
along a branch were a random set of genes, picked from the 3,022
genes in our study; in choosing such random sets, we preserved the
number of genes gained along each branch. The average fractions
at each position across all branches are plotted as black bars on
figure 1c.

Classifying metabolites as nutrients, byproducts, and
biomass components. Of the 8,755 unique metabolites in our
study, we classified certain metabolites as nutrients, byproducts
and biomass components based on how likely functional roles
in metabolic networks. First, to classify between nutrients and
byproducts, we curated metabolites based on previously published
large-scale metabolic network analyses [37–39]. These analyses
used both manual curation and metabolic modeling to distinguish
between metabolites that were most likely to be environmentally
available nutrients, from those likely to be the metabolic byprod-
ucts of other microbes. We found that metabolites on the exterior
of metabolic networks were more likely to be nutrients, while those
in the interior, byproducts (46 nutrients, 65 byproducts; supple-
mentary table 2). Second, to classify metabolites as biomass com-
ponents, we used a database of experimentally-verified metabolic
models, BiGG [40]. We chose all metabolites listed in the biomass
composition of different microbes as biomass components (total 137
metabolites, supplementary table 2).

Calculating catabolic routes enabled by HGT. We calcu-
lated the number of new catabolic routes enabled by HGT along
each phylogenetic branch. For this, we first calculated the number
of routes in each ancestral metabolic network. We distinguished be-
tween routes starting from nutrients (nutrient-driven routes) and
byproducts (byproduct-driven routes). We calculated the total
number of unique paths in each network that started from nu-
trients and ended at one of the biomass components; similarly, we
calculated the number of paths from byproducts. We used standard
network analysis algorithms for these calculations. We then calcu-
lated the number of nutrient-driven and byproduct-driven routes in
each descendant’s metabolic network. Along each branch, we cal-
culated the difference between the number of nutrient-driven and
byproduct-driven routes between the descendant and ancestor. We
plotted the distribution of this difference (the number of newly
accessible routes) across all branches in figure 2a (nutrient-driven
in blue, byproduct-driven in red). To compare the path lengths
(number of reaction steps) and energy yields (net number of ATP
molecules produced) of the new routes, we did the following along
each branch: (1) for path lengths, we compared the lengths of the
shortest ancestral path with the shortest new path in the descen-
dant, and asked if a new path was shorter, longer, or of equal
length (figure 2b); (2) for energy yields, we compared the net num-
ber of ATP molecules produced per nutrient or byproduct, along
each route; here also we compared the most ATP-yielding ancestral
path with the most ATP-yielding new path, and asked if the new
path had a higher, lower or equal yield (figure 2c).

Detecting phylogenetic events consistent with CGLs and
pure gene loss. Along each phylogenetic branch, we asked if
there were at least one set of gene gains and losses consistent with
coupled gains and losses (CGL-consistent transitions; described
in figure 3a) and at least one set consistent with pure gene loss
(described in figure 3b). We first calculated all routes that were
lost and gained in the descendant (compared with the ancestor)
as described the previous section. A new dependency arises when
a biomass component can no longer be produced using only the
environmentally-available nutrients. We considered the possibil-
ity of a dependency for a biomass component, one component at
a time. We assumed there was a CGL-consistent transition on a
branch if, for any biomass component: (1) the ancestor had only
one nutrient-driven route to produce it and zero byproduct-driven
routes, (2) the ancestor gained at least one byproduct-driven route
to produce it, i.e., there was at least one such route in the descen-
dant, and (3) the ancestor lost the nutrient-driven route during the
transition to descendant. We assumed there was a pure gene loss-
consistent transition on a branch if, for any biomass component:
(1) the ancestor had only one nutrient-driven route to produce it
and zero byproduct-driven routes, (2) the ancestor lost this route,
and did not gain any byproduct-driven routes, i.e., the descendant
had no routes to produce the biomass component. We calculated
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the fraction of branches where we detected CGL-consistent (figure
4a; green) and pure gene loss-consistent transitions (figure 4a; red).
As controls, we calculated the expected fraction of branches with
either transitions by using a random set of gains and losses instead
(figure 4a; grey bars); in choosing such random sets, we preserved
the number of gained and lost genes along each branch.

Modelling the likelihood of dependency in simulated bac-
terial communities. Since environmental and community con-
text is crucial to determining whether a given set of gene gains
and losses will result in a metabolic dependency, we tested in how
many environments and bacterial communities, the observed CGL
and pure gene loss events on different branches (identified in the
previous section) would result in an actual dependency. For this,
we used metabolic models in ∼ 1, 000, 000 simulated environment-
community combinations. We chose 1,035 environments, each with
2 of the 46 nutrients in supplementary table 2. We chose 900 com-
munities, with 100 at each level of diversity (from 2 species to 10
species, in steps of 1); each community was a set of bacterial species
chosen randomly from the 835 in our study. For each environment-
community combination, we calculated the set of byproducts gen-
erated by the community by computing which metabolic pathway
intermediates each species in the community could produce from
the nutrients provided in the environment; we determined this us-
ing a popular “scope expansion” algorithm [16, 41].

For each phylogenetic branch, we then asked: in what fraction of
environment-community combinations would the descendant evolve
a dependency that the ancestor did not have, and through which
mechanism — CGLs or pure gene loss? For every level of commu-
nity diversity, we plotted the fraction of examined cases where we
detected a possible dependency through CGLs (figure 4b; green);
concurrently we plotted the fraction of cases where the dependency
was through pure gene loss (figure 4b; red). In each environment-
community combination, we assumed we detected a CGL-mediated
dependency if the following conditions were satisfied between the
ancestor and descendant for any one biomass component: (1) the
ancestor had only one nutrient-driven route to produce it and zero
byproduct-driven routes, (2) the nutrient was available in that en-
vironment, (3) the ancestor gained at least one byproduct-driven
route to produce it, i.e., there was at least one such route in the de-
scendant, (4) the byproduct was available as a community byprod-
uct, and (5) the ancestor lost the coupled nutrient-driven route dur-
ing the transition to descendant. Similarly, in each environment-
community combination, we assumed we detected a pure gene-loss
mediated dependency if, for any biomass component: (1) the an-
cestor had only one nutrient-driven route to produce it and zero
byproduct-driven routes, (2) the biomass component was available
as a community byproduct, and (3) the ancestor lost the nutrient-
driven route during the transition to descendant.

Data and code availability. All computer code and extracted
data files are available at: https://github.com/eltanin4/black_

queen_critique.
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Supplementary Figures

Horizontal gene transfer drives the evolution of dependencies in bacteria

FIG. S1. More diverse communities have more community byproducts. Line plot showing the average number
of community byproducts in our ∼ 100, 000 environment-community metabolic simulations, as a function of the community
diversity. The community diversity is measured by the number of coexisting bacterial species. The community byproducts are
calculated using a metabolic network algorithm [41] (see Methods); the average shown is over all environments and communities
at a given level of diversity.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2019. ; https://doi.org/10.1101/836403doi: bioRxiv preprint 

https://doi.org/10.1101/836403
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

.

FIG. S2. Community byproducts are more likely to be pathway intermediates than end-products (biomass com-
ponents). Pie chart showing the fraction of all community byproducts in our ∼ 100, 000 environment-community metabolic
simulations that were pathway intermediates and pathway end-products (biomass components). Pathway intermediates are
more likely to lead to dependencies via coupled gains and losses, because they need to be further metabolized into biomass
components by a dependent bacterial species. In contrast, end-products are already biomass components, and do not need to
be further metabolized; this makes them more likely to lead to dependencies via pure gene loss.
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FIG. S3. Gained genes are still primarily catabolic, even when network positions are assigned differently to
metabolic genes. Bar chart showing the position of genes gained by horizontal gene transfer (HGT) in bacterial metabolic
networks, along all 1,669 phylogenetic branches; this chart is similar to figure 1c, except that instead of excluding those genes
that participate in multiple metabolic routes, we include them by considering their most frequent metabolic position (catabolic
and anabolic). We still exclude those genes that equally occupy catabolic and anabolic positions in this analysis. This alternate
assignment choice does not significantly impact our results in figure 1c.
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