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Abstract

An important problem in computational neuroscience is to understand how networks of spiking neurons can carry
out various computations underlying behavior. Balanced spiking networks (BSNs) provide a powerful framework
for implementing arbitrary linear dynamical systems in networks of integrate-and-fire neurons (Boerlin et al.
[1]). However, the classic BSN model requires near-instantaneous transmission of spikes between neurons,
which is biologically implausible. Introducing realistic synaptic delays leads to an pathological regime known as
“ping-ponging”, in which different populations spike maximally in alternating time bins, causing network output to
overshoot the target solution. Here we document this phenomenon and provide a novel solution: we show that
a network can have realistic synaptic delays while maintaining accuracy and stability if neurons are endowed
with conditionally Poisson firing. Formally, we propose two alternate formulations of Poisson balanced spiking
networks: (1) a “local” framework, which replaces the hard integrate-and-fire spiking rule within each neuron
by a “soft” threshold function, such that firing probability grows as a smooth nonlinear function of membrane
potential; and (2) a “population” framework, which reformulates the BSN objective function in terms of expected
spike counts over the entire population. We show that both approaches offer improved robustness, allowing for
accurate implementation of network dynamics with realistic synaptic delays between neurons. Moreover, both
models produce positive correlations between similarly tuned neurons, a feature of real neural populations that
is not found in the original BSN. This work unifies balanced spiking networks with Poisson generalized linear
models and suggests several promising avenues for future research.

1 Introduction

The brain carries out a wide variety of computations that can be implemented by dynamical systems, from sen-
sory integration [2–5], to working memory [6–8], to movement planning and execution [9–11]. Although the
existence of such computations in the brain is well established, the mechanisms by which these computations
are implemented in networks of neurons remains poorly understood. One approach to this problem involves sta-
tistical modeling, which uses descriptive statistical methods to infer the dynamics of neural activity from recorded
spike trains [11–22]. A second approach involves theoretical modeling, which seeks to identify strategies for
implementing dynamical systems with networks of idealized model neurons [3, 23–31]. An important example of
this second approach is the balanced spiking network (BSN) framework introduced by Boerlin et al [1].

The BSN model consists of a network of coupled leaky integrate-and-fire (LIF) neurons that can emulate an
arbitrary linear dynamical system (LDS). The motivating idea is to design a network that approximates the output
of a target LDS with a weighted combination of filtered spike trains. The population is divided into “excitatory”
and “inhibitory” populations of neurons, based on whether they contribute positively or negatively to the output.
This leads to an intuitive spiking rule: a neuron should spike whenever doing so will reduce the error between the
output of the target LDS and the network output, i.e., the weighted combination of filtered spikes emitted so far.
To make this work, each neuron has to maintain an internal representation of the error between the desired LDS
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output and the current network output. Boerlin et al showed that, remarkably, this computation can be mapped
precisely onto the dynamics of an LIF neuron. A neuron’s membrane potential is a local representation of the
network-wide error between target output and current network output, and its spike threshold is proportional to
the amount by which adding a spike will reduce this error.

The BSN framework has many appealing characteristics. Spiking is efficient, in the sense that every spike
contributes meaningfully to reducing error between target and actual output. The computations performed by the
model are robust to perturbations and to the loss of neurons. The model also generates irregular spiking activity
with intervals that that resemble those observed in real neurons.

However, the original BSN model has an important shortcoming that limits its plausibility as a model for informa-
tion processing in real neural circuits. Namely, the model requires unrealistically fast propagation of information
between neurons. Because every neuron’s membrane potential is tracking the overall error between target and
actual output, the membrane potential of all neurons has to reset whenever any neuron emits a spike. Failure to
impose this reset leads to increased activity as multiple neurons attempt to correct same error. In fact, implemen-
tations of the BSN model typically impose a rule enforcing that only one neuron is allowed to spike in a single time
bin, effectively allowing spikes to propagate faster than the temporal resolution of the simulation (e.g., 0.1ms).
Without this rule, the network can easily enter unstable modes in which excitatory and inhibitory populations emit
massive spike bursts in alternating time bins, overshooting the target in an attempt to correct the error from the
previous time bin.

Here we show that a probabilistic spiking rule can overcome the need for unrealistically fast propagation of spikes
in the BSN framework. The basic intuition for our solution is that instead of making neurons spike deterministically
whenever doing so will reduce error, we can allow multiple neurons to spike probabilistically such that error will
be reduced on average.

We propose two alternate formulations of BSN with Poisson spiking, distinguished from each other by the level
at which the network is attempting to minimize the decoding error. First, we describe a ‘local’ framework, which
preserves the original BSN model dynamics but replaces the hard integrate-and-fire spiking rule with the soft
firing threshold of the Poisson generalized linear model (GLM) [32–35]. This spiking rule generates stochastic
spiking conditioned only on each neuron’s local copy of the error which, on average, leads to a reduction in the
population-level read-out error.

Second, we propose a ‘population’ framework that replaces the greedy, single-neuron perspective of the local and
BSN models with a rule based on minimizing the expected error at the population level. A vector of spike rates is
generated by calculating the expected spike counts that minimizes the total decoding error. The probability of a
single neuron spiking depends on its own weight, as with the local rule, but also takes into account the activity of
the entire population of neurons and their weights. This coordination leads to spiking activity that is efficient and
invariant to network size. Finally, we show that both the local- and population-level Poisson frameworks make the
BSN robust to synaptic delays.

This paper is organized as follows. We begin with a pedagogical review to the BSN model (Sec. 2). We then
examine the model’s dependence on instantaneous spike propagation, and document the unstable behavior that
arises if multiple spikes are allowed in a single time bin (Sec. 3). To address this shortcoming, we introduce local
and population BSN models with conditionally Poisson spiking (Sec. 4). Finally, we illustrate the accuracy and
robustness of these models to synaptic transmission delays (Sec. 5).

2 Background: balanced spiking network model

Here we provide a brief introduction to the original balanced spiking network (BSN) framework introduced by
Boerlin, Machens, & Denève [1]. The goal is to design a spiking network that can accurately implement an
arbitrary linear dynamical system. Consider a linear dynamical system defined by:

ẋ(t) = Ax(t) + c(t), (target dynamics) (1)
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Figure 1: A simple diagram illustrating the BSN. Neurons receive stimulus input projected onto the transpose of a set of linear weights,
W>, and the output is reconstructed by filtering spikes through the same weights, W . Neurons are connected via two coupling weights:
fast synapses, W>W , which instantaneously propagate individual spikes through the network, and slow synapses, W>(A + 1

τ
)W , which

implement network dynamics by feeding the filtered spike trains back into all neurons in the network. The network is divided into two equal
populations of positive (red) and negative (blue) output weights, whose spikes have opposite effects on network output.

where x(t) = (x1(t)...xJ(t))> is a vector of J dynamic variables that we will refer to as the target, A is the J × J
linear dynamics matrix, and ct = (ci(t), ...cJ(t))> is a J -dimensional vector of inputs. The BSN model consists
of a spiking network of N neurons that attempts to approximate the target output x(t) via a weighted combination
of filtered spike trains:

x̂(t) = Wr(t) (network readout) (2)

where r(t) is the set of spike trains convolved with an exponential decay function, and W are J × N readout
weights. (See Fig. 1 for a schematic.) In general, for a 1-D dynamical system, the population is divided into equal
pools of ‘positive’ and ‘negative’ neurons (depending on the signs of their individual weight components) although
this is not a strict requirement. For J > 1, the ‘positive’ vs ‘negative’ distinction does not necessarily apply as the
signs of the weights need not be consistent across dimensions.

The i’th component of the vector r(t) is given by

ri(t) = si(t) ∗ h(t) =

∫ t

0

e−t
′/τ si(t

′)dt′, (filtered spike trains) (3)

where si(t) =
∑
tisp
δ(t− tisp) denotes the i’th neuron’s spike train, defined by a series of delta functions at spike

times {tisp}, and τ is the time constant of the exponential filter h(t).

From this starting assumption, Boerlin et al introduce a greedy update rule that causes a neuron to spike when-
ever doing so will reduce the squared error between target x(t) and network output x̂(t),

E(t) = ||x(t)− x̂(t)||22, (error function) (4)

which is mathematically equivalent to the threshold-crossing spiking rule in a leaky integrate-and-fire (LIF) neuron.

Here we recapitulate the derivation of this spiking rule in discrete time, for clarity and ease of implementation.
Let x̂t = Wrt denote the network output at time bin t. The effect of adding a spike from neuron i in this time
bin would be to augment the output vector by that neuron’s decoding weight vector wi, which is given by i’th row
of the decoding weight matrix W . Thus, network output is x̂t if neuron i is silent and x̂t + wi if it spikes. This
suggests that the neuron should spike if doing so will result in smaller error, or

||xt − (x̂t + wi)||22 < ||xt − x̂t||22. (5)

Simplifying this expression yields the condition that the neuron should spike if projection of the error vector onto
wi is greater than half the squared L2 norm of wi:

wi
>(xt − x̂t) >

1
2 ||wi||22. (spike condition for neuron i) (6)

Boerlin et al therefore suggest regarding the time-dependent left hand side of (eq. 6) as the membrane potential
for neuron i, and the right hand side as its spike threshold Ti:

v[i]t = wi
>(xt − x̂t) (membrane potential) (7)

3

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 1, 2019. ; https://doi.org/10.1101/836601doi: bioRxiv preprint 

https://doi.org/10.1101/836601


Ti = 1
2 ||wi||22 (threshold). (8)

Under this view, each neuron is computing a local approximation to the difference between the true target xt and
the network’s current output x̂t = Wrt, projected onto that neuron’s weight vector wi.

The only missing piece from this expression is that the neurons do not of course have access to the true value
of xt. But they do have implicit access to A, and thus to the dynamics governing xt. Boerlin et al therefore
propose that the the network output x̂t is sufficiently close to the target output xt that it can be used to accurately
approximate the desired dynamics: Axt ≈ Ax̂t. To make this explicit, we introduce a proxy variable zt, which
denotes the network’s own (internal) approximation to the true target xt. This proxy variable evolves according to

zt = zt−1 + ∆(Ax̂t−1 + ct)

= zt−1 + ∆(AWrt−1 + ct), (proxy variable) (9)

where for simplicity we use a forward Euler method for integrating the dynamics equation (eq. 1) with time bin
size ∆. Higher accuracy can be achieved using exponential Euler integration (see Methods). Of course zt is
never represented explicitly; the network tracks zt via its projection onto the decoding weights W , as we will see
shortly.

2.1 Simulating the BSN model

Simulating the BSN model for a single time bin can be described by a sequence of three steps:

1. Calculate the “pre-spike” membrane potential for each neuron by combining inputs from the previous time
step and external input.

2. Apply the threshold to determine which neurons (if any) emit spikes.

3. Reset to obtain “post-spike” membrane potentials vt and update filtered spike trains rt.

We will describe each of these steps in turn. First, the update rule for the pre-spike membrane potential (consis-
tent with eq. 7) is:

v
(pre)
[i]t = wi

>(zt − x̂
(pre)
t )

= wi
>
(
zt−1 + ∆(AWrt−1 + ct)− (1−∆ 1

τ )Wrt−1

)
= v[i]t−1 + ∆wi

>
(

(A+ 1
τ I)Wrt−1 + ct

)
(pre-spike membrane potential) (10)

where v
(pre)
[i]t denotes the pre-spike membrane potential for neuron i at time bin t, x̂(pre)

t = (1 − ∆ 1
τ )Wrt−1

denotes the network output for the current time bin before spiking, and v[i]t−1 = wi
>(zt−1 −Wrt−1) denotes

the (post-spike) membrane potential from the previous time step.

Second, spikes for the current time bin are computed by determining whether pre-spike membrane potential
exceeds threshold (v(pre)[i]t > Ti). When this occurs, the neuron records a spike: s[i]t = 1.

Lastly, the filtered spike trains r[i]t are augmented and membrane potential is reset:

r[i]t = (1−∆ 1
τ )r[i]t−1 + s[i]t (filtered spike train update) (11)

v[i]t = wi
>(zt − x̂t) = v

(pre)
[i]t −wi

>W st, (post-spike membrane potential) (12)

which ensures that post-spike membrane potential equals the difference between the projected proxy variable
and network output.
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2.2 Vector update rules

For convenience, we can rewrite the BSN update equations in vector form. The pre-spike membrane potential is
given by:

v
(pre)
t = W>(zt − x̂

(pre)
t )

= vt−1 + ∆W>(A+ 1
τ I)Wrt−1 + ∆W>ct

= vt−1 + ∆
(

Ωrt−1 +W>ct

)
(vector pre-spike membrane potential) (13)

where Ω = W>(A + 1
τ )W are the coupling weights from rt−1 to the pre-spike membrane potential, which

implement computation of the divergence between the target zt and passive decay of rt in the absence of
spiking.

Once the spike vector st has been computed, the filtered spike trains and network output for the current time bin
are given by:

rt = (1−∆ 1
τ )rt−1 + st (vector of filtered spike trains) (14)

x̂t = Wrt, (vector network output) (15)

and the vector of post-spike membrane potentials is given by

vt = W>(zt − x̂t)

= v
(pre)
t −W>W st

= vt−1 + ∆
(

Ωrt−1 +W>ct

)
−W>W st, (vector post-spike membrane potential) (16)

which reflects reset of the pre-spike membrane potential after spiking, but can equivalently be seen to be the
projected difference between the proxy variable zt and the current network output x̂t in the current time bin.

It is worth noting that this model requires the instantaneous propagation of spikes between neurons. After a
spike, the membrane potential reset (eq. 16) updates vt for all neurons based on the spikes in the current time
bin via the fast weights, −W>W . Although Boerlin et al refer to the weights −W>W as “fast synapses” and
the Ω as “slow synapses”, note that the Ωrt−1 term also involves near-instantaneous propagation of information,
since the exponentially-filtered spike trains r jump by 1 after every spike.

The full BSN model first described in [1] contained additional penalties on rt in the objective function, which had
the effect of reducing spiking by trading off minimization of error (eq. 4) against a cost of inserting spikes. Although
we have left these terms out our derivation here for simplicity, including them has the limited effect of changing
the spike threshold and post-spike reset and does not change the nature of our findings. The simulations shown
in the following sections use the full version as described in the Methods section (8). Simulation parameters for
each figure are also included in section (8).

3 Limitations of the BSN model

A key limitation of the BSN model is that it requires unrealistically fast communication between neurons. In the
standard integrate-and-fire model, a spike resets only the membrane potential of the neuron that emitted it. In the
BSN model, by contrast, the membrane potentials of all neurons reset following a spike from any neuron via the
−W>W st term in (eq. 16). The instantaneous reset of all membrane potentials following a spike is necessary to
ensure that each neuron’s membrane potential maintains an accurate representation of the read-out after each
spike. From a normative standpoint, the hard LIF threshold entails that maintaining an accurate local copy of the
error is critical for the network to encode the target.
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Figure 2: Balanced spiking network implementing a perfect integrator. The network consists of 400 neurons, divided into two populations with
output weights of +0.1 (red) and −0.1 (blue). (A) Simulation results under the condition that only one neuron is allowed to fire per discrete
time bin. (B) Simulation results when all neurons whose membrane potential is above threshold in a single time bin are allowed to fire, leading
to “ping-pong” behavior. Insets show that read-out (yellow) is alternating between large over- and under-estimates of the target (in black).
Inset shows the voltage traces of neurons in both positively and negatively weighted populations. Since the weights and inputs are identical
across populations, so are the voltage traces. As a consequence, during ping-ponging, all neurons within a population cross the threshold in
the same time bin.

In fact, the problem is slightly more complicated: standard implementations of the BSN model include a constraint
that only one neuron is allowed to spike in a single time bin. Without this constraint, neurons with similar output
weights tend to spike in the same time bin, when a spike from any one of them would have sufficed to compensate
for error in network output. This causes the network output to dramatically overshoot the target. In the subsequent
time bin, neurons with opposite-sign readout weights fire to compensate for this error, and overshoot the target
by a large amount in the opposite direction. This sets up a pathological pattern of oscillatory firing known as
“ping-ponging”, in which two populations spike maximally in alternating time bins of the discrete simulation [1].

Fig 2 illustrates how ping-pong behavior can arise if multiple spikes are allowed in a single time bin. We set
the BSN model to implement a 1-dimensional perfect integrator, ẋ(t) = c(t), using the same parameters as
the example from figure 1C of Boerlin et al. [1]. In brief, the network contained 400 neurons, divided into two
equal sized populations with output weights of +0.1 and -0.1, respectively, which we refer to as positive-output
and negative-output neurons (see Methods for complete details). When the rule forbidding multiple spikes per
time bin is imposed, the network accurately tracks the target output variable (Fig. 2A). However, removing this
constraint — allowing all neurons with membrane potential above threshold to fire — results in ping-pong behavior
and large errors in tracking the target (Fig. 2B).

Ping-ponging can in principle be eliminated by adding noise to the membrane potential and using extremely
small time bins, which increases the probability that at most one neuron will cross threshold in a single time bin.
However, we found that this required a reduction in time bin size by several orders of magnitude. Moreover, this
solution relies even more heavily on instantaneous synaptic communication, since it allows neurons to reset even
more rapidly after a spike from any single neuron.
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Figure 3: Schematic of BSN with conditionally Poisson neurons. The stimulus influences each neuron’s membrane potential vi via a set of
input weights W

>
. The neurons reset themselves via instantaneous, fast synapses. Fast connections to other neurons propagate the effects

of spikes with a synaptic time delay d. The desired linear dynamics are implemented via slow weights (filtered through an exponential) also
with a time delay d. Within each neuron, spiking is probabilistic with an instantaneous probability of firing λi(t) = f(vi(t)), where f(·) is a
nonlinear function of voltage.

4 BSN with conditionally Poisson neurons

To overcome the problems of instantaneous transmission and network instability, we propose two novel formula-
tions of balanced spiking networks with conditionally Poisson neurons: (1) a local framework, where each neuron
spikes independently based on its local estimate of network error; and (2) a population-level framework, which
sets firing rates to reduce expected error for the entire population.

The key idea in both frameworks is to replace the deterministic integrate-and-fire spiking rule with probabilistic
spiking. Under this modified spiking rule, spiking is governed by an instantaneous probability of spiking λt, also
known as the conditional intensity, such that spiking is independent with probability ∆λt in any small time window
of width ∆. This results in an auto-regressive Poisson generalized linear model (GLM), also known as a Cox
process [33–35]. This model has a quasi-realistic biophysical interpretation [32, 36, 37], and recent work has
shown that it can capture a wide range of dynamical behaviors found in real neurons [35].

4.1 Local framework

A simple way to introduce probabilistic spiking to the BSN framework is to replace the hard spike threshold of the
integrate-and-fire model with a soft threshold, so that spike probability grows as a nonlinear function of membrane
potential, an approach also known as the “escape-rate approximation” [32]. Specifically, we define each neuron’s
conditional intensity function to be a sigmoidal function of membrane potential:

λt = f(vt) =
Fmax

1 + Fmaxe−α(vt−T )
+ Fmin, (nonlinearity) (17)

where vt is the membrane potential at time t, T is the spike threshold, Fmax is the maximal firing rate, Fmin
is a baseline firing rate, and α is a slope parameter governing the sharpness of the threshold. The probability
of spiking in a small time interval is proportional to λt, which models the spike response as an inhomogenous
Poisson process. We refer to this as the local Poisson framework because, like the BSN, spikes are generated
by internal dynamics that evolve according to local copies of the representation error.

Although it is common to use exponential nonlinearities for Poisson GLMs, here we have used a scaled sigmoid
function to control both the suddenness of firing onset and the maximum achievable firing rate. The parameter
α controls the precision of firing onset, while Fmax and Fmin control the range of firing rates within a small time
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Figure 4: (A) The conditional intensity for the exponential non-linearity (dashed lines) and the sigmoid non-linearity (solid lines). The con-
ditional intensity of the sigmoidal non-linearity closely follows that of the exponential non-linearity for sub-threshold voltages, but levels off
after threshold, keeping firing rates stable. (B) Family of nonlinearities with varying Fmax. Increasing Fmax raises the firing rate at which
the nonlinearity saturates. (C) Family of nonlinearities with varying α. Increasing α increases the steepness of the nonlinearity, which ap-
proaches a hard-threshold function as α→∞ (like the BSN). (D) Simulation of the original BSN implementing a perfect integrator, showing
membrane potential and spikes of a single example neuron. (E) Spikes and membrane potential of the same neuron in a local Poisson BSN
implementation of the same system. High α simulations (yellow) replicate the behavior of the BSN integrator. Lowering α to 50 (blue) or 10
(red) results in a spread of spikes centered around the deterministic BSN spikes.

window. The resulting function (eq. 17) resembles an exponential function at low firing rates but saturates at a
maximum of Fmax (see Fig. 4). If we let both α, Fmax → ∞, we recover the original (hard-threshold) integrate-
and-fire rule, in which a spike occurs probability 1 when vt > T . However, for finite α and F , the onset of spiking
is more gradual.

As a practical matter, we do not wish to allow a single neuron to fire multiple spikes in a single time bin, because
the first spike would preclude additional spikes in the same time bin due to “reset” of the membrane potential. We
therefore simulate the model with the spiking rule:

P (st = 1|λt) = 1− exp(−∆λt), (local Poisson framework firing rule) (18)

where exp(−∆λt) is the probability of observing no spikes in a time bin of size ∆ under the Poisson model. For
each time-step, we update v as in the original BSN model, pass it through the nonlinear function f(·) to obtain
the vector of Poisson firing rates, λt, and draw spikes as independent Bernoulli random variables with probability
as given above. See Fig. 3 for a schematic.

Fig. 4D shows an illustration of how α affects spiking precision and Fig. 4E shows a comparison between spike
trains generated by a single-neuron integrating a noisy stimulus for different values of α and those of the deter-
ministic LIF model (in black). As we expect, for high values of α we recover the precise spiking behavior of the
BSN model. As α decreases, spike times spread around the ideal BSN spikes. The sub-threshold voltage traces
also change with respect to α, indicating that the spiking behavior is a reflection of an underlying error-driven
probabilistic process.
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Figure 5: (A) Simulations of local Poisson model showing the effects of varying the parameters of the soft-threshold nonlinearity on perfor-
mance. Relevant parameters are the slope α, maximal firing rate Fmax, and baseline firing rate Fmin. Network dynamics implemented
a perfect 1D integrator and the stimulus was the same as Fig. 2. Red and blue dots indicate spikes from neurons with positive and nega-
tive output weights, respectively. (B) Network performance as quantified by R2 across a range of parameter settings with baseline fixed at
Fmin = 1. Black asterisk indicates the values for the rightmost column of A (α = 1000, Fmax = 100). Accuracy remains high across a broad
range of parameter values, falling substantially below 1 when slope and maximum firing rate are both large, which gives rise to ping-ponging.
(C) Percent of the neural population active as a function of α and Fmax, showing ping-ponging behavior in upper right corner, where the
model approaches a deterministic, hard-threshold firing rule.

Robustness to parameters of the nonlinearity

We studied the effects of varying α, Fmax, and Fmin on the performance of the homogeneous integrator net-
work (5) and found that there exists a wide range of values for which the network error is low and the spiking
activity is efficient (5E-F). Figures 5A shows raster plots and corresponding read-outs for ‘optimal’ parameter
settings (defined as being in the low error and activity range, denoted by the * in 5E-F), and in 5B-D we modify
these parameters to show qualitative changes in spiking activity and read-out accuracy. Decreasing α and Fmax
negatively impacts read-out quality, while removing background spiking returns the network to a high-precision,
synchronized regime.

Network performance noticeably deteriorates for very large values of α and Fmax because we are forcing the
precision to be too high while allowing neurons to spike too frequently. Since the spiking rule is localized, large
proportions of the population are active at the same time (5F), much like the ping-ponging seen in the BSN
model. However, the values at which this happens (e.g., Fmax > 103 spikes/second) are well above what we
would expect to see in a biological system. Although for the sake of clarity we present the simulation for a
relatively simple target function, we still observe a wide ranges of stable Fmax and α settings for more complex
or multi-dimensional simulations.

The computational advantage of our probabilistic spiking rule is that it introduces uncertainty into spike timing,
therefore preventing all neurons from firing at once. The parameters controlling this asynchrony, Fmax, Fmin
and α, have direct physical interpretations (maximal and minimal/background firing rate and error tolerance,
respectively) which can be mapped on to characteristics of real neural circuits. By introducing extra degrees
of freedom, we are losing the strict normative angle of the original BSN framework. However, what we gain in
the process - a considerably expanded space of stable network configurations - makes it possible to introduce
realistic communication delays between neurons (see section 5).
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4.2 Population framework

We now describe a second framework for implementing BSNs with conditionally Poisson neurons. In this ap-
proach, we take a population-level instead of a neuron-level view of the optimization problem to be solved.
Instead of assigning each neuron to carry an independent representation of the error between the target and
actual network output, we assign each neuron an analog probability of firing such that expected number of spikes
across the network compensates appropriately for the total error. We refer to this as the population framework.

The derivation of this framework starts from an error function describing the discrepancy between target and
actual network output. However, instead of specifying that each neuron should spike whenever doing so will
reduce error (eq. 5), we compute a vector of spike rates λ, such that the expected spike response across the
population over some time window of length κ will minimize error. This leads to the following network objective
function:

Et = ||xt − (x̂t + κWλ)||22, (‘population’ error function) (19)

where xt is the target output at time t, x̂t is the actual network output at time t, W are the decoding weights, and
λ is the vector of firing rates (conditional intensities) of a network of Poisson spiking neurons. In this expression,
κWλ is expected contribution to network output over a time window of size κ. For implementation in discrete
time, κ should be an integer multiple of the bin size ∆.

To minimize the above error, we set the instantaneous spike rate vector equal to the least-squares solution:

λt =
1

κ
W̃ (xt − x̂t) (20)

where W̃ = W>(WW>)−1 is the Moore-Penrose pseudo-inverse of the decoding weight matrix W . Poisson
neurons firing independently with conditional intensity λt will therefore minimize the expected error between
target and actual network output. Note that if W has orthogonal unit-vector rows, such that WW> = I, then
W̃ = W> and we obtain the same encoding weights as the original BSN framework.

In the local framework, increasing the population size means more neurons are competing to reduce the read-out
error in a single time window. This increased activity can lead to ping-ponging. The population level view of the
problem scales the probability of spiking, λ[i], by WW>, which increases with population size. The responsibility
of correcting an error is thus spread across the entire population and activity is stable with respect to network
size.

However, the solution in (eq. 19) is not valid generally because the right-hand-side can take on negative values,
whereas the conditional intensity for a Poisson process must be positive. To overcome this, we create two
mirrored copies of the population. Positive firing rates are assigned to one copy with weight vector W , and
negative firing rates are assigned to the other copy with weight vector −W . We distinguish between these
neurons and ‘anti-neurons’ by the sign of their membrane potential as determined by the least squared solution.
Similarly to the local and BSN models, spikes from either population will have opposite effects on the output
variable. However, in this case these designations are not fixed labels and do not apply to the actual sign of wi.
For example, spikes from the i’th neuron will contribute wi to the network output, while a spike from its ‘anti-
neuron’ counterpart will have a contribution of −wi to network output, but wi itself may be positive or negative.

Formally, we define the population framework in terms of the update equations:

vt = W̃ (zt − x̂t) (21)

= vt−1 + ∆
(

Ω̃rt−1 + W̃ct

)
(pre-spike membrane potential) (22)

λ
(+)
t =

1

κ
max(vt, 0) (neuron spike rate) (23)

λ
(−)
t =

1

κ
max(−vt, 0) (anti-neuron spike rate) (24)

s
(+)
t ∼ Poiss(∆λ

(+)
t ) (neuron spikes) (25)
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Figure 6: Simulations of the local and population frameworks implementing a 1D and 2D dynamical system. (A) The target was a 1-
dimensional integrator: ẋ(t) = c(t). Left side shows spikes and outputs from local Poisson model, while right side shows spikes and outputs
for population Poisson model. As in previous figures, red dots indicate spikes from neurons with positive output weights, blue dots indicate
spikes from neurons with negative weights. (B) The target was a 2-dimensional oscillator ẋ1(t) = −x1(t) − 10x2(t) + c(t);x2(t) =
10x1(t) − x2(t) + c(t). For the population model, the time window for computing expected spike count was κ = 5ms (50 time bins).
Weights were randomized to be positive or negative in either dimension, such that neurons are no longer divided into strictly positive- or
negative-weight groups. (C) Accuracy (R2) of the two models for 1D and 2D systems. (D) Number of spikes emitted by each model during
simulations.

s
(−)
t ∼ Poiss(∆λ

(−)
t ) (anti-neuron spikes) (26)

rt = (1−∆ 1
τ )rt−1 + s

(+)
t − s

(−)
t (population filtered spike rates) (27)

where Ω̃ = W̃ (A + 1
τ )W are the coupling weights from rt−1 to the pre-spike membrane potentials. This differs

from the standard BSN framework in that spikes, rather than being driven by deterministic threshold crossing,
arise from a Poisson process with conditional intensity λ

(+)
t or λ(−)

t . If v[i]t is negative, then λ
(+)
[i]t is set to zero,

and the corresponding anti-neuron’s firing rate is positive. The voltage updates and spiking resets are identical
to the local and BSN models.

Figure 6 shows a comparison of local and population-level frameworks. The population model achieved higher
accuracy than the local model for both the one-dimensional and two-dimensional dynamical systems, although
at the expense of an increased number of spikes. However, the performance of the local model depends on the
parameters of the firing rate nonlinearity, and we could have increased accuracy by increasing steepness α and
maximal firing rate Fmax.

5 Incorporating synaptic time delays

The original BSN model relies on near-instantaneous synaptic communication between neurons due to the fact
that all neurons in the population reset immediately after a spike in any neuron. A more realistic model would
require that synaptic inputs arrive only after a brief synaptic delay; only the reset of a neuron’s own membrane
potential following a spike could be considered instantaneous.

To test the robustness of the two Poisson BSN frameworks introduced above, we altered synaptic currents to
incorporate a synaptic delays between neurons. In the revised model, spike trains and filtered spike trains re-
ceived by other neurons are updated only after a synaptic delay d. Thus, if neuron fires at time t, it resets its own
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Figure 7: Illustration of local and population conditionally Poisson BSN frameworks with synaptic delays. (A) Spike trains simulated from the
local Poisson framework implementing a 1D perfect integrator, both without (top) and with a 1-ms synaptic delay (middle). The network output
accurately tracked the target variable for both models (bottom). As before, red/blue spike trains indicate neurons with positive/output weights.
(B) Analogous plots for population Poisson framework. (C) Stimulus used for simulations shown in A and B. (D) Coefficient of determination
(R2) computed using 50 simulations of each framework. Black trace indicates the maximum possible R2 value that could be obtained given
the exponential Euler integration rule for computing the future target at time t+ d.

membrane potential in the next time bin, but we will update spike trains and filtered spike trains received by other
neurons only at time t+ d.

To compensate for synaptic delays, we altered the network dynamics so that membrane potential reflects the
network error extrapolated d time steps into the future:

vt = W>(zt+d + x̂t+d), (membrane potential with synaptic delay) (28)

where zt+d = exp(−Ad)zt represents the network target at time t + d, computed by solving the homogeneous
differential equation for zt+d given an initial condition of zt and linear dynamics matrix A, and x̂t+d = exp(d/τ)x̂t
represents the network output at time t + d given by assuming passive decay of the membrane potential. Note
here that exp(−Ad) denotes matrix exponential, and that this is equivalent to using exponential Euler integration
to compute future values of z and x̂ (see Methods for details).

Under these revised dynamics, a membrane potential at time t represents the extrapolated error between true
and desired network output at time t + d instead of the instantaneous error at time t. This is equivalent to
minimizing an objective function (eqs. 4 or 19) defined in terms of xt+d and x̂t+d instead of xt and x̂t. For the
population-level Poisson framework, the encoding weights W̃ replace W> in (eq. 28).

Figure 7 shows an analysis of the accuracy of the local and population-level Poisson frameworks with synaptic
delays. For both models, a 1ms synaptic delay does not have pronounced effects on the spiking activity or the
quality of the read-out (Fig. 7A-B). Fig. 7D shows the R2 values as a function of time delay for both frameworks.
We compare it against a theoretical upper bound on the coding accuracy (in black), which is a consequence
of the exponential Euler approximation. To determine this bound, we integrated the target dynamics with and
without exponential Euler integration and calculated R2 for all values of d.

For the local framework, the R2 value is lower than in figure 6 because the parameters were chosen to make
the network more robust to synaptic delays. Otherwise, requiring high precision with synaptic delays results in
ping-ponging, similar to the higher error regime shown in figure 5E. By contrast, the population framework can
maintain high levels of accuracy for a large range of synaptic delays.
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Figure 8: Cross-correlations for the original BSN, local Poisson and population Poisson BSN models with synaptic delay. Top row shows
average correlations across pairs of neurons with the same sign output weight (i.e., both positive or both negative). Bottom row shows
average correlations across pairs of neurons with opposite-sign output weights (i.e., one positive and one negative neuron). The original BSN
network exhibits negative correlations between neurons with the same sign, and positive correlations between neurons with opposite sign.
The local and Population Poisson models show the opposite pattern, which more closely resembles correlations found in neural populations
in (e.g.) visual cortex.

6 Cross-correlations

Lastly, we compared the statistics of spike trains generated by the original BSN with those of the local and
population Poisson BSN models. Figure 8 shows the cross-correlations of spike trains generated by a network of
forty neurons implementing a one-dimensional integrator, ẋ(t) = c(t), with a white-noise stimulus c(t). Local and
population Poisson BSN models both enforced a synaptic delay of 1 ms.

To compute cross-correlations, we divided the neurons into positive-output and negative-output groups. We then
computed average within-group (positive-positive and negative-negative) and across-group (positive-negative)
cross-correlations. These curves show substantial differences between the original BSN model and the two
Poisson models. First, cross-correlations of the original BSN model are 0 at lag zero, due to the rule that only one
neuron can spike in a single time bin. More importantly, the within-group correlations for the BSN model exhibit a
trough at time zero, meaning that neurons with the same output weight are anti-correlated. Conversely, across-
group correlations exhibit an increase at small lags, meaning that neurons with opposite sign output weights are
more likely to fire together in a small time window.

This relationship is at odds with correlations in both retina and visual cortex, where studies have reported that
correlations are highest for neurons with similar tuning, and lowest for neurons with dissimilar tuning [34, 38–40].
By contrast, the local and population Poisson models successfully recapitulate this pattern of correlations, with
a peak in the cross-correlations between pairs of neurons with the same sign weights, and a trough for pairs of
opposite-sign neurons. Cross-correlations from these models also exhibit no trough at zero due to the lack of
a rule prohibiting simultaneous spiking. Thus, cross-correlations represent an additional dimension of biological
plausibility of the proposed Poisson frameworks.

7 Discussion

In this paper, we have highlighted a shortcoming of the balanced spiking network (BSN) paradigm, namely the
requirement of near-instantaneous communication between neurons, which arises from the fact that a spike in
any neuron causes an instantaneous reset of membrane potential in all other neurons. In practice, the BSN
model is often implemented with the additional rule that only one neuron can spike in a single time bin. When
synaptic delays are introduced, or multiple spikes are allowed per bin, the model easily enters a ping-ponging
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regime in which the network output overshoots and undershoots the target output on alternating time bins.

To address this problem, we proposed two extensions to the BSN model that incorporate conditionally Poisson
spiking. Our proposed models both preserve the readout structure of the original BSN, in which a linear combi-
nation of exponentially filtered spike trains approximates a linear dynamical system of interest, and the desirable
coding characteristics, such as E/I balance. However, they both replace of “hard threshold” integrate-and-fire
spiking of the original BSN with a spiking process governed by an instantaneous spike rate or conditional inten-
sity.

In the “local” Poisson BSN framework, the conditional intensity arises from passing the membrane potential
through a sigmoidal nonlinearity. The accelerating phase of this nonlinearity is consistent with nonlinearities ob-
served in neural data [41–44] and closely resembles the exponential nonlinearity commonly used in generalized
linear modeling analyses [33, 34], while the saturating phase is consistent with saturation in real neural firing
rates.

In the “population” Poisson BSN framework, the conditional intensity is obtained by setting the vector of expected
spike counts to the least-squares solution for the total output error. This model differs from the original BSN in
that the encoding weights, the linear mapping from output error to membrane potential, uses the pseudo-inverse
of the decoding weights, W̃ , whereas the original BSN used the transpose W>. This change ensures that the
spike rate of each neuron takes account of how many other neurons in the population have similar decoding
weights, so that the expected spike count across the entire population in some finite time window compensates
optimally for the output error. These modifications make both frameworks robust to both parameter settings and
synaptic delays on realistic time scales (1-3ms).

7.1 Related work

Our paper is not the first to address the issue of instability in the BSN. Recent work from Koren and Denève [45]
examined the use of penalties on spiking to reduce ping-ponging (referred to in that paper as “up states”). We
found that this strategy required fine-tuning and succeeded in a relatively narrow parameter regime compared
to the solutions we proposed here. Other work has argued that oscillations in the brain activity may arise from
BSNs with synaptic delays, suggesting that a substantially damped form of ping-ponging may be a signature of
efficient computation in neural circuits [46].

Recent literature has explored a variety of other extensions and applications of the BSN framework, including
nonlinear dynamical systems and the learning of synaptic weights [47, 48], synaptic plasticity rules [49], and
biological extensions like finite timescale synapses [50] and synaptic delays [45]. The BSN framework has also
been adapted to other computational problems such as probabilistic computation [51] and sensory adaptation
[52].

The topic of balanced networks has also received considerable attention outside the specific BSN framework
introduced by Boerlin et al. [1]. Balanced networks have been proposed as a substrate for working memory
[53, 54], probabilistic inference [55, 56], and the control of complex movements [57]. Excitatory-inhibitory balance
is also a key topic in the mathematical theory of neural circuit dynamics, where it has been proposed as an
explanation for the correlations found in large-scale population activity [58–60]. Finally, a rich literature has
focused on the training of spiking neural networks in more general supervised and reinforcement learning settings,
where the objective involves task performance or can only be evaluated at the end of a trial [61–65].

Our work also connects to a rich literature on point process models of neural spike trains. The local Poisson
framework draws direct inspiration from the work of Plesser and Gerstner [32], which sought to approximate a
noisy integrate-and-fire model with an inhomogeneous Poisson process via the so-called “escape-rate approxi-
mation”, which refers to the instantaneous probability of noisy membrane potential crossing threshold in a small
time window. Subsequent work on the spike response model [36, 66–69] and Poisson generalized linear model
[33–35, 70–72] further explored the connection between integrate-and-fire and conditionally Poisson spike train
models. The latter are sometimes referred to as “soft-threshold” integrate-and-fire model [73], making the local
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Poisson model a natural extension of the original BSN model.

7.2 Future challenges

Although our proposed frameworks are a step in the direction of biological plausibility, there remain a variety
of open challenges. One such challenge is the development of neurally plausible learning rules and weight
patterns. The network we proposed has a static weight matrix with all-to-all connectivity. A more realistic model
would allow for sparse connectivity, sign constraints forcing neurons to be purely excitatory or inhibitory, and
plausible learning rules that allow weights to change over time as a function of reward signals. The mathematical
treatment of learning in the context of the BSN has proven difficult, although there have been successes learning
the fast, slow and feed-forward weights through non-local, supervised, control theoretic approaches [47, 48]. The
probabilistic formulation of the Poisson BSN frameworks makes implementing local, Hebbian plasticity rules more
tractable, as it opens up the possibility of applying unsupervised learning techniques from traditional machine
learning methodology. Finally, we hope to implement time delays in a more principled way, as in [50], and to
address the biological plausibility of ‘anti-neurons’ in the population framework.

A second challenge is the incorporation of nonlinear dynamics. Although the original BSN model was designed
to implement linear dynamical systems, it is well known that a wide variety of neural computations are nonlinear.
Recent work has proposed an extension of the BSN framework to nonlinear dynamics [31, 47]; combining this
approach with conditionally Poisson spiking therefore represents a promising avenue for future work.

Finally, the conditionally Poisson extensions we have proposed provide new opportunities for applying the BSN
framework to the interpretation and analysis of real neural data sets. Both the original BSN model and ours
assume access to the precise spiking patterns of all the neurons in a population, but real neural recordings
typically record only a small fraction of the neurons in a population. Previous work has shown that latent BSN
dynamics can be recovered from spike trains in the fully observed case [51]. Other work has discussed the
recovery of Poisson generalized linear models from partial recordings [74, 75]. This motivates the development
of new methods for identifying balanced network dynamics and computations from partially observed data sets,
which may offer fundamental insights into spike-based computation in the brain.

8 Methods

Exponential Euler integration

Exponential Euler integration is a method for solving first-order differential equations of the form

ẏt = −Ay + g(y) (29)

where −Ay is a linear term and the nonlinear terms are grouped in g(y). For equations without nonlinear terms,
it above can be solved exactly from time 0 to a later time t as

yt = eAty0 (30)

We use this method to approximate the value of a differential equation at a later time, t′, by approximating the
value of a function yt at time t+ t′ as

yt+t′ = eAt
′
yt (31)

where the accuracy of the approximation decreases as t′ increases.

15

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 1, 2019. ; https://doi.org/10.1101/836601doi: bioRxiv preprint 

https://doi.org/10.1101/836601


Simulation parameters

For all simulations, time is measured in seconds and dt = 0.1ms. All other simulation parameters are shown in
the table below.

Figure 2 was generated using the parameter settings described in Boerlin et al, fig. 1C (included below for
comparison). The cost terms are µ = 10−6 and ν = 10−5 and the voltage decay constant is τv = 20. The noise
added to the voltage dynamics and the stimulus was Gaussian with σv = 10−3 and σc = 0.01, respectively.When
enforcing the constraint that one neuron should spike per time bin, we selected the neuron with the highest
voltage above threshold. Another option with similar results would be to select randomly between the ones above
threshold.

Figure N W α Fmax Fmin κ A τ d
2 400 ± 0.1 N/A N/Ax N/A N/A 0 10 0

4D, BSN 1 1 N/A N/A N/A N/A 0 20 0
4D, GLM 1 1 Varies 50 0 N/A 0 20 0

5 400 ±.1 1000 (ACD) 100 (B) 100 (ABD) 10 (C) 1 (A-C) 0 (D) N/A 0 10 0
6A-B 400 ±.2 + noise (µ = .4) 80 1 0 50 0 10 0 (A) 1ms (B)

6C-D 400 ±.2 + noise (µ = .4) 80 1 0 50
(
−1 −10
10 −1

)
10 0 (C) 1ms (D)

7 200 ± 0.02 + noise (µ = .01) 500 100 0 25 -50 5 0 and 1ms
8 40 ± 0.0025 + noise (µ = .01) 500 10 0 20 0 2 .1ms

Table 1: Simulation parameters

As a reminder, N is the number of neurons in the network and W is the vector of read-out weights. For the local
framework, α is the slope of the exponential nonlinearity, Fmax is the saturation, and Fmin is the minimum firing
rate. For the population framework, κ is the time window over which the network minimizes the error. Finally, A
is the dynamics matrix of the linear dynamical system, τ is the decay time constant of the filtered spike trains r,
and d is the time delay.

A software implementation of Poisson BSNs, along with code to re-generate all simulation figures shown in the
manuscript, is available at https://github.com/pillowlab/PoissonBalancedNets.

Cost Terms

The original BSN model objective function incorporated two additional cost terms to penalize spiking: a quadratic
cost term µ and the linear cost term ν. These terms encouraged the network to use fewer spikes and to distribute
spiking more evenly across neurons with large and small output weights. We did not incorporate these in our
derivation for clarity, but they are included in our simulations of the BSN.

Including both cost terms into the derivation in Section 2, equation (4) becomes

Et = ||xt − x̂t||22 + ν||rt||1 + µ||rt||22 (32)

and the voltage and threshold equations become

vt = W>(xt − x̂t)−
µ

τ
rt (33)

v̇t = − 1

τv
vt−1 + Ωrt − (W>W +

µ

τ2
)st +W>ct (34)

Ti =
ν
τ + µ

τ2 + ||Wi||2

2
(35)

The linear cost term (ν) is proportional to the L1 norm of r(t), or ||r||1 =
∑N
i=1 r[i]t. This cost term penalizes the

network’s total activity. The quadratic cost term (µ) limits individual neuron firing rates, forcing a spread of activity

16

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 1, 2019. ; https://doi.org/10.1101/836601doi: bioRxiv preprint 

https://github.com/pillowlab/PoissonBalancedNets
https://doi.org/10.1101/836601


across all neurons in a population. Over time, the network transfers activity from precise, costly neurons with high
firing rates to imprecise, larger weighted neurons to maintain a compromise between efficiency and accuracy of
the read-out. Boerlin et al also include a voltage leak term for biological realism.

In our Poisson models, we did not observe the ping-pong effects described in Boerlin et al for the range of
parameters we considered, so we don’t need cost terms for network stability. For the local Poisson framework,
the cost terms can be included when α and Fmax are high enough to cause ping-ponging.
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