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Summary: Accurate identification of brain function is necessary to understand neurocognitive 

ageing, and thereby promote health and well-being. Many studies of neurocognitive aging have 
investigated brain function with the blood-oxygen level-dependent (BOLD) signal measured by 
functional magnetic resonance imaging. However, the BOLD signal is a composite of neural and vascular 
signals, which are differentially affected by aging. It is therefore essential to distinguish the age effects 
on vascular versus neural function. The BOLD signal variability at rest (known as resting state fluctuation 
amplitude, RSFA), is a safe, scalable and robust means to calibrate vascular responsivity, as an 
alternative to breath-holding and hypercapnia. However, the use of RSFA for normalization of BOLD 
imaging assumes that age differences in RSFA reflecting only vascular factors, rather than age-related 
differences in neural function (activity) or neuronal loss (atrophy). Previous studies indicate that two 
vascular factors, cardiovascular health and cerebrovascular function, are insufficient when used alone 
to fully explain age-related differences in RSFA. It remains possible that their joint consideration is 
required to fully capture age differences in RSFA. We tested the hypothesis that RSFA no longer varies 
with age after adjusting for a combination of cardiovascular and cerebrovascular measures. We also 
tested the hypothesis that RSFA variation with age is not associated with atrophy. We used data from 
the population-based, lifespan Cam-CAN cohort. After controlling for cardiovascular and 
cerebrovascular estimates alone, the residual variance in RSFA across individuals was significantly 
associated with age. However, when controlling for both cardiovascular and cerebrovascular estimates, 
the variance in RSFA was no longer associated with age. Grey matter volumes did not explain age-
differences in RSFA, after controlling for cardiovascular health. The results were consistent between 
voxel-level analysis and independent component analysis. Our findings indicate that cardiovascular and 
cerebrovascular signals are together sufficient predictors of age differences in RSFA. We suggest that 
RSFA can be used to separate vascular from neuronal factors, to characterise neurocognitive aging. We 
discuss the implications and make recommendations for the use of RSFA in the research of aging. 
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1. Introduction 1 

The worldwide population is rapidly aging with an increasing number and proportion of older 2 

adults across the globe (Beard et al., 2016). Considering the cognitive decline and increasing burden of 3 

dementia in aging societies, there is a pressing need to understand the neurobiology of cognitive aging. 4 

This will inform efforts to maintain mental wellbeing into late life, allowing people to work and live 5 

independently for longer. Research in cognitive neuroscience of aging has used blood-oxygen level-6 

dependent (BOLD) signal measured by functional magnetic resonance imaging (fMRI) as one of the 7 

standard ways to examine the neural mechanisms of cognition. However, the BOLD signal measures 8 

the activity of neurons indirectly through changes in regional blood flow, volume and oxygenation. This 9 

makes BOLD a complex convolution of neural and vascular signals, which are differentially affected by 10 

aging (Logothetis, 2008). Without careful correction for age differences in vascular health, differences 11 

in fMRI signals can be erroneously attributed to neuronal differences (Liu et al., 2013; Tsvetanov et al., 12 

2015) and their behavioural relevance overstated (Geerligs et al., 2017; Geerligs and Tsvetanov, 2016; 13 

Tsvetanov et al., 2016). 14 

It is possible to control for vascular differences in fMRI signal using additional baseline 15 

measures of cerebrovascular reactivity, including CO2-inhalation-induced hypercapnia (Liu et al., 2019), 16 

breath-hold-induced hypercapnia (Handwerker et al., 2007; Mayhew et al., 2010; Riecker et al., 2003; 17 

Thomason et al., 2007, 2005), hyperventilation-induced hypocapnia (Bright et al., 2009; Krainik et al., 18 

2005), and cerebral blood flow (CBF) or venous oxygenation measures (Liau and Liu, 2009; Lu et al., 19 

2010; Restom et al., 2007). However, such methods have not been widely used, in part to 20 

impracticalities in large-scale studies, and poor tolerance by older adults (for a review see Tsvetanov et 21 

al., 2020). Additionally, a hypercapnic challenge may not be neuronally neutral, given participants’ 22 

awareness of the aversive challenge, which may differ with age (Hall et al., 2011). Breath-hold 23 

compliance may also decrease with age (Jahanian et al., 2017). Such biases affect data quality and 24 
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reliability measures (Magon et al., 2009), highlighting the advantage of non-invasive and “task-free” 25 

estimates of vascular components in the BOLD time series. 26 

The BOLD signal variability in a resting state (“task-free”) is one such estimate and is also known 27 

as resting state fluctuation amplitudes (RSFA) (for a review see Tsvetanov et al., 2020). It has been 28 

proposed as a safe, scalable and robust cerebrovascular reactivity mapping technique (Golestani et al., 29 

2016; Jahanian et al., 2014; Kannurpatti and Biswal, 2008; P. Liu et al., 2017). The use of RSFA as a 30 

normalization method for BOLD follows the assumption that age differences in RSFA reflect only 31 

vascular factors, rather than age-related differences in neural function or neuronal loss (atrophy). 32 

Fluctuations in the BOLD signal are associated with fluctuations in cardiac rhythm (Glover et al., 2007) 33 

that are independent of those associated with respiratory rate and depth (Chang et al., 2013, 2009), 34 

suggesting that RSFA may be susceptible to vascular signals of varying aetiologies, such as 35 

cardiovascular and cerebrovascular factors. Evidence in support of cardiovascular factors comes from 36 

Tsvetanov and colleagues (Tsvetanov et al., 2015, but also Makedonov et al., 2013; Viessmann et al., 37 

2017, 2019; Theyers et al., 2018), who demonstrated that age-related differences in RSFA are mediated 38 

by cardiovascular health (as measured by pulseoximetry and electrocardiography, ECG), but not by 39 

neural function in terms of neural variability (as measured by magnetoencephalography, MEG). 40 

Evidence in support of cerebrovascular factors comes from Garrett et al. (2017) who found that “gold-41 

standard” measures of cerebrovascular function (arterial spin labelling, ASL, and CO2 inhalation-induced 42 

hypercapnia) are associated with RSFA. Importantly, both studies reported age-related differences in 43 

RSFA that remain after adjusting for individual differences in either cardiovascular or cerebrovascular 44 

factors.  However, neither study considered jointly cardiovascular and cerebrovascular factors, and it 45 

remains unclear whether the unexplained age-related differences in RSFA reflect joint contributions 46 

from cardiovascular and cerebrovascular factors, as in the case of BOLD signal fluctuations (Chang et 47 

al., 2013, 2009). Alternatively, the unexplained age differences in RSFA may reflect neuronal factors, 48 

such as atrophy (Grady and Garrett, 2013), even though variation in neuronal activity does not explain 49 

the effect of age on RSFA (Tsvetanov et al., 2015). 50 
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Cardiovascular, cerebrovascular and other physiological signals, but not neuronal signals, 51 

contribute to the age-related differences in RSFA, yet none of these non-neuronal measures on their 52 

own could fully account for the effects of age on RSFA. It is possible that various vascular signals 53 

contribute to different components of the age effects on RSFA (Tsvetanov et al., 2020). However, no 54 

study to date has tested whether the cardiovascular and cerebrovascular signals together fully capture 55 

the effects of age on RSFA – an assumption underlying the use of RSFA as a scaling method. In this study 56 

we sought to investigate the effects of age on RSFA by the simultaneous assessment of the independent 57 

and shared effects of cardiovascular, cerebrovascular and neuronal effects on age-related differences 58 

in RSFA. To this end, we used a set of cardiovascular, cerebrovascular and volumetric measures in a 59 

population-based study of healthy ageing (age 18-88, N > 250, www.cam-can.org). We hypothesized 60 

that age-related variation in RSFA are predicted by cardiovascular and cerebrovascular factors, but not 61 

grey matter volume, and therefore that the residuals in RSFA – after adjusting for these vascular factors 62 

– are not associated with age.  63 

2. Methods 64 

2.1. Participants 65 

Figure 1 illustrates the study design and image processing, using the Cambridge Centre Aging 66 

and Neuroscience dataset (Cam-CAN). Ethical approval was granted by Cambridgeshire 2 Research 67 

Ethics Committee. Participants gave written informed consent. A detailed description of exclusion 68 

criteria can be found in Shafto et al. (Shafto et al., 2014), including poor vision (below 20/50 on Snellen 69 

test; Snellen, 1862) or hearing (threshold 35dB at 1000Hz in both ears), ongoing or serious past drug 70 

abuse as assessed by the Drug Abuse Screening Test (DAST-20; Skinner, 1982), significant psychiatric 71 

disorder (e.g. schizophrenia, bipolar disorder, personality disorder) or neurological disease (e.g. stroke, 72 

epilepsy, traumatic brain injury). At an initial home assessment (Phase I), completed the Mini-Mental 73 

State Examination (MMSE > 25; Folstein et al., 1975) and Edinburgh Handedness Inventory (Oldfield, 74 

1971). Participants attended MRI (T1-weighted, arterial spin labelling (ASL), FLAIR-based white matter 75 
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hyperintensities, resting state EPI-BOLD and field-map images) and MEG (including resting state ECG-76 

recording) on two occasions (Phase II and III) separated by approximately 1 year. We include here 226 77 

full datasets of good quality, required for all analysis (e.g. T1-weighted, FLAIR, ASL, resting fMRI and 78 

ECG recordings, see below). Demographic characteristics of the sample are described in Table 1. 79 

Imaging data were acquired using a 3T Siemens TIM Trio. 80 

2.2. T1w image acquisition and processing 81 

A 3D-structural MRI was acquired for each participant using T1-weighted Magnetization-82 

Prepared Rapid Gradient-Echo (MPRAGE) sequence with Generalized Autocalibrating Partially Parallel 83 

Acquisition (GRAPPA) acceleration factor 2; Repetition Time (TR) = 2250ms; Echo Time (TE) = 2.99ms; 84 

Inversion Time (TI) = 900ms; flip angle α = 9°; field of view (FOV) = 256mm x 240mm x 192mm; 85 

resolution = 1mm isotropic) with acquisition time of 4 minutes and 32 seconds. 86 

 All image processing was done using Automatic Analysis (AA 4.0; Cusack et al., 2014; 87 

https://github.com/automaticanalysis/automaticanalysis) implemented in Matlab (Mathworks, 88 

https://uk.mathworks.com/). The results here come from Release004 of the CamCAN pipelines. Each 89 

particpant’s T1 image was coregistered to the MNI template in SPM12 90 

(http://www.fil.ion.ucl.ac.uk/spm; Friston et al., 2007), and the T2 image was then coregistered to the 91 

T1 image using a rigid-body transformation. The coregistered T1 and T2 images underwent multi-92 

channel segmentation (SPM12 Segment; Ashburner and Friston, 2005) to extract probabilistic maps of 93 

6 tissue classes: GM, WM, cerebrospinal fluid (CSF), bone, soft tissue, and background. The native-space 94 

GM and WM segmentations were used for diffeomorphic registration (DARTEL; Ashburner, 2007) to 95 

create whole group template images (Taylor et al., 2015). The group template was normalised to the 96 

MNI space using 12-parameter affine transformation. 97 

2.3. fMRI image acquisition and processing 98 

RSFA was estimated from resting state Echo-Planar Imaging (EPI) of 261 volumes acquired with 99 

32 slices (sequential descending order), slice thickness of 3.7 mm with a slice gap of 20% for whole 100 
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brain coverage (TR = 1970ms;  TE = 30ms; flip angle α = 78°; FOV = 192mm x 192mm; resolution = 3mm 101 

x 3mm x 4.44mm) during 8 minutes and 40 seconds. Participants were instructed to lay still with their 102 

eyes closed. The initial six volumes were discarded to allow for T1 equilibration. We quantified 103 

participant motion using the root mean square volume-to-volume displacement as per Jenkinson et al 104 

(2002). The rs-fMRI data were further pre-processed by wavelet despiking (see below).  105 

The EPI data were unwarped (using field-map images) to compensate for magnetic field 106 

inhomogeneities, realigned to correct for motion, and slice-time corrected to the middle slice. The 107 

normalisation parameters from the T1 image processing were then applied to warp functional images 108 

into MNI space. We applied data-driven wavelet-despiking to minimise motion artefacts (Patel et al., 109 

2014).  We observed a high association between the amount of outlying wavelet coefficient and head 110 

motion across subjects (r = .739, p < .001), demonstrating that it captured a large amount of motion 111 

artefacts in the data. Spatially normalised images were smoothed with a 12 mm FWHM Gaussian kernel. 112 

A general linear model (GLM) of the time-course of each voxel was used to further reduce the effects 113 

of noise confounds (Geerligs et al., 2017), with linear trends and expansions of realignment parameters, 114 

plus average signal in WM and CSF, their derivative and quadratic regressors (Satterthwaite et al., 115 

2013). The WM and CSF signal was created by using the average across all voxels with corresponding 116 

tissue probability larger than 0.7 in associated tissue probability maps available in SPM12. A band-pass 117 

filter (0.0078-0.1 Hz) was implemented by including a discrete cosine transform set in the GLM, 118 

ensuring that nuisance regression and filtering were performed simultaneously (Hallquist et al., 2013; 119 

Lindquist et al., 2019). Finally, we calculated subject specific maps of RSFA based on the normalized 120 

standard deviation across time for processed resting state fMRI time series data.  121 

2.4. ASL image acquisition and processing 122 

To assess resting cerebral blood flow, we used pulsed arterial spin labelling (PASL, PICORE-Q2T-123 

PASL in axial direction, 2500ms repetition time, 13ms echo time, bandwidth 2232 Hz/Px, 256 x 256 mm2 124 

field of view, imaging matrix 64x64, ten slices, 8 mm slice thickness,  flip angle 90°, 700 ms inversion 125 
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time (TI) 1, TI2 = 1800 ms, 1600 ms saturation stop time). The imaging volume was positioned to 126 

maintain maximal brain coverage with a 20.9 mm gap between the imaging volume and a labelling slab 127 

with 100mm thickness. There were 90 repetitions giving 45 control-tag pairs (duration 3’52”). In 128 

addition, a single-shot EPI (M0) equilibrium magnetization scan was acquired. Pulsed arterial spin 129 

labelling time series were converted to cerebral blood flow (CBF) maps using ExploreASL toolbox 130 

(Mutsaerts et al., 2018). Following rigid-body alignment, the spatial normalised images were smoothed 131 

with a 12 mm FWHM Gaussian kernel.  132 

2.5. Cardiovascular measures 133 

2.5.1. Physiological recordings 134 

Cardiac activity data were acquired using bipolar ECG while acquiring the MEG data, and 135 

processed using PhysioNet Cardiovascular Signal Toolbox (Goldberger et al., 2000; Vest et al., 2018) in 136 

Matlab (MATLAB 2017b, The MathWorks Inc, Natick, MA). To address non-stationarity in ECG 137 

recordings, mean heart rate (HR) and hearth rate variability (HRV) summary measures were based on 138 

the median across multiple sliding 5-min windows in 30-second steps across the entire eyes-closed, 139 

resting-state acquisition, 8.5 minutes. Estimation of mean heart rate (HR) was based on the mean 140 

number of successive N-N (normal-to-normal) intervals within each 60-second interval during each 5-141 

minute period recording. To estimate the HRV, we used the frequency-domain information of normal-142 

to-normal (NN) intervals, which provides a measure of low- and high- frequency components of the 143 

HRV (unlike time-domain alternatives e.g. the root mean squared difference of successive intervals 144 

(RMSSD), which pertain mainly to high-frequency dynamics of HRV, (Malik et al., 1996). We calculated 145 

low-frequency (0.05 – 0.15 Hz; LF-HRV) and high-frequency (0.15-0.4 Hz; HF-HRV) power. Segments 146 

classified as atrial fibrillation were excluded from further analysis, and any participant with >50% atrial 147 

fibrillation was excluded. 148 
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2.5.2. White matter hyperintensities (WMH) 149 

Estimates of white matter lesion burden in our sample have been reported previously 150 

(Fuhrmann et al., 2017). In summary, white matter lesion was estimated using the lesion growth 151 

algorithm in the LST toolbox for SPM (Schmidt et al., 2012) with κ of 0.7.  152 

2.5.3. Other risk factors of cardiovascular health: blood pressure and body mass index 153 

Systolic and diastolic blood pressure were measured at rest, seated, using an automated 154 

sphygmomanometer (A&D Medical Digital Blood Pressure Monitor, UA-774). The average of three 155 

measurements was used. BMI was calculated as weight (kg) / height (m)2, using portable scales (Seca 156 

875). 157 

2.6. Data reduction 158 

Datasets of interest stemmed from a wide range of modalities (RSFA, ASL, T1-weghted, FLAIR 159 

and ECG measures). To make these datasets tractable, we analysed a set of summary measures for 160 

each of the modality (also known as features or components) as illustrated in Figure 1. This had two 161 

advantages. First, it reduced the number of statistical comparisons. Second, it separated spatially 162 

overlapping sources of signal with different aetiologies within a modality (Xu et al., 2013), e.g. 163 

cardiovascular versus cerebrovascular signals, which may vary across individuals and brain region in 164 

RSFA (Tsvetanov et al., 2015) and ASL data (Mutsaerts et al., 2017). We used independent component 165 

analysis (ICA) across participants to derive spatial patterns of each imaging modality across voxels. As a 166 

proxy of vascular health, we used exploratory factory analysis to derive a latent variables from a set of 167 

measures related to cardiac function derived from the resting heart rate signal and other risk factors 168 

(Varadhan et al., 2009; Wardlaw et al., 2014).  169 

2.6.1. Indices of RSFA, T1 and CBF maps using Independent Component Analysis 170 

Group ICA was implemented on RSFA, GMV and CBF maps separately. For each modality, data 171 

were decomposed to a set of spatially independent sources using the Source Based Morphometry 172 

toolbox (Xu et al., 2009) in the Group ICA for fMRI Toolbox (GIFT; http://mialab.mrn.org/software/gift). 173 
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In brief, the fastICA algorithm was applied after the optimal number of sources explaining the variance 174 

in the data was identified using PCA with Minimum Description Length (MDL) criterion (Hui et al., 2011; 175 

Li et al., 2007; Rissanen, 1978). By combining the PCA and ICA, one can decompose an n-by-m matrix 176 

of participants-by-voxels into a source matrix that maps independent components (ICs) to voxels (here 177 

referred to as “IC maps”), and a mixing matrix that maps ICs to participants. The mixing matrix indicates 178 

the degree to which a participant expresses a defined IC. The loading values in the mixing matrix were 179 

scaled to standardized values (Z-scores) and used for between-participant analysis of summary 180 

measures from other modalities. The maximum number of available datasets within each modality was 181 

used, recognising that ICA decomposition accurately represents individual variation despite different 182 

group sizes while maximizing statistical power (Calhoun et al., 2008; Erhardt et al., 2011). 183 

2.6.2. Indices of vascular health using Exploratory Factor Analysis  184 

As a vascular health index, we sought a summary measure that characterized the complexity 185 

of cardiovascular signal (Varadhan et al., 2009; Wardlaw et al., 2014). We used factor analysis on the 186 

mean HR, high-frequency and low-frequency HRV, systolic and diastolic blood pressure, white matter 187 

hyperintensities and body-mass index to extract a set of latent variables reflecting variability in 188 

cardiovascular health across all individuals. The analysis used matlab factoran.m with default settings. 189 

Input variable distributions which deviated from Gaussian normality (1-sample Kolmogorov-Smirnov 190 

Test, p-value<0.05) were log-transformed (1-sample Kolmogorov-Smirnov Test, p-value > 0.05) (Fink, 191 

2009). 192 

2.7. Analytical approach 193 

We performed both voxel-wise and component-based analyses using multiple linear regression 194 

(MLR) with robust fitting algorithm (matlab function fitlm.m). Voxel-level analysis was based on voxel-195 

wise estimates across all imaging maps (RSFA, GM and ASL), while component-based analysis was based 196 

on component-wise estimates across all imaging components. We adopted a two-stage procedure for 197 
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each RSFA voxel/component (Figure 1). In the first stage we used MLR with RSFA values for all 198 

individuals as dependent variable. The second stage correlated the residuals from each model with age. 199 

In the first level models, independent variables included either cardiovascular health, CBF or 200 

grey matter measures and RSFA values as dependent variable. Covariates of no interest included 201 

gender, head motion and handedness. In the model with grey matter (model V, see below), the signal 202 

defined in the CSF mask was considered as a covariate of no interest to minimize the influence of non-203 

morphological confounds in T1-weighted data (Bhogal et al., 2017; Ge et al., 2017; Tardif et al., 2017). 204 

Additional inclusion of total intracranial volume (TIV) did not change the principal results. Non-normally 205 

distributed variables were logarithmically or exponentially transformed to conform normality (Fink, 206 

2009).  207 

We constructed five models: 208 

- Model 1: Covariates [of no interest] 209 

𝑦 ~ 𝛽01 + 𝐶𝑜𝑣𝑠 + 𝜀 210 

- Model 2:  Covariates and cerebrovascular measures 211 

𝑦 ~ 𝛽01 + 𝛽1𝐶𝐵𝐹1 +  𝐶𝑜𝑣𝑠 + 𝜀𝐶𝐵𝐹  212 

- Model 3: Covariates and cardiovascular measures 213 

𝑦 ~ 𝛽01 + 𝛽1𝐶𝑉𝐻 + 𝐶𝑜𝑣𝑠 + 𝜀𝐶𝑉𝐻  214 

- Model 4: Covariates, cardiovascular and cerebrovascular measures 215 

𝑦 ~ 𝛽01 + 𝛽1𝐶𝐵𝐹 + 𝛽2𝐶𝑉𝐻 +  𝐶𝑜𝑣𝑠 + 𝜀𝐶𝐵𝐹,𝐶𝑉𝐻 216 

- Model 5: Covariates and grey matter volume measures 217 

𝑦 ~ 𝛽01 + 𝛽1𝐺𝑀𝑉 + 𝐶𝑜𝑣𝑠 + 𝜀𝐺𝑀𝑉  218 

Note that the independent variables in Models 2, 4 and 5 included measures with voxel-specific 219 

information, i.e. RSFA values across subjects in a given voxel were predicted by the CBF/GM values for 220 

the corresponding voxel. 221 
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The residuals, ɛ, from each model were then used in a second-stage linear regression (i.e. 222 

correlational analysis) to estimate their association with age. Voxels where the residuals correlate with 223 

age (p<.05, FDR-corrected) indicate that the independent variables in first-stage model could not 224 

explain sufficiently the age-dependent variability in RSFA. Conversely, residuals not associated with age 225 

would suggest that the independent variables considered in the model are sufficient to explain age-226 

dependent variability in RSFA.  227 

This two-stage procedure was performed for each voxel of RSFA maps resulting in a statistics 228 

map for each model indicating the association between residuals and age. Statistical maps were 229 

corrected for multiple comparisons at p <0.05 (FDR-corrected). To further address multiple 230 

comparisons and voxel-voxel mapping between modalities, we performed complementary analysis 231 

where voxel-wise estimates of brain measures were substituted with subject-wise IC loadings, see 232 

Section 2.6.  233 

We also tested whether the distribution of age-RSFA residuals correlations across all voxels 234 

formed differed from the predicted distribution under pure randomness. We constructed 5000 235 

distributions of age-RSFA residual correlations across all brain voxels (DVoxels), where RSFA residuals were 236 

based either on a model with obseved RSFA values (DVoxels1) or permuted RSFA values (DVoxels2-5000). 237 

Distribution medians and distribution shapes were compared using Wilcoxon rank sum test and 238 

Kolmogorov-Smirnov test respectively. We performed a pair-wise comparison across all 5000 239 

distribution shapes using Kolmogorov-Smirnov test, resulting in a distribution of 4999 similarity scores 240 

(DSimilarity) between each DVoxels with the remaining 4999 DVoxels. Next, we estimated the number of times 241 

(Np) the distribution of similarity for observed RSFA values (DSimilarity1) is statistically different than the 242 

permuted distributions of similarities (DSimilarity 2-5000) using Wilcoxon rank sum test. The ratio Np/5000 243 

provided a level of significance, e.g. a value < 0.05 suggested that the distribution of age-RSFA residual 244 

values is not as predicted by a model with pure randomness (at significance level p<0.05) and suggests 245 

an association between age and RSFA residuals. The procedure was applied separately for each of the 246 
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five models across all brain voxels, as well as for different tissue types (cerebrospinal fluid, grey matter 247 

and white matter voxels with values above 0.4 in SPM’s tissue probability maps). 248 

3. Results 249 

3.1. Main and age effects of RSFA, CBF and CVH 250 

3.1.1. Resting state fluctuation amplitudes (RSFA) 251 

Whole group voxel-wise analysis revealed relatively high RSFA values (relative to the average 252 

across the brain) across all individuals in the frontal orbital, inferior frontal gyrus (IFG), dorsolateral 253 

prefrontal cortex (dlPFC), superior frontal cortex, anterior and posterior cingulate, and lateral parietal 254 

cortex (Figure 2a).  With respect to aging, we observed age-related decreases in RSFA in the bilateral 255 

IFG, bilateral dlPFC, bilateral superior frontal gyrus, primary visual cortex, cuneus, precuneus, posterior 256 

and anterior cingulate, superior temporal gyrus, medial parietal cortex, and lateral parietal cortex 257 

(Figure 2b). Regions in the proximity of frontal white matter, cerebrospinal fluid and large vascular 258 

vessels showed a significant increase of RSFA values as a function of age. 259 

3.1.2. Cerebral blood flow (CBF) 260 

Whole group voxel-wise analysis revealed a pattern of relatively high cerebral blood flow across 261 

all individuals in cortical and subcortical brain areas with high perfusion and metabolism properties 262 

(Figure 2c) including caudal middle-frontal, posterior cingulate, pericalcarine, superior temporal and 263 

thalamic regions. Moderate to low CBF values in the superior-parietal and inferior-frontal areas of the 264 

cortex (Figure 2c, every 10 axial slices from -30 to 70) may reflect the axial positioning of the partial 265 

brain coverage sequence used in the study. With respect to aging, we observed age-related reductions 266 

in CBF in the bilateral dorsolateral prefrontal cortex, lateral parietal cortex, anterior and posterior 267 

cingulate, pericalcarine and cerebellum (Figure 2c). In addition, we observed age-related CBF increase 268 

in regions susceptible to individual and group differences in in arterial transit time biasing the accuracy 269 

of CBF estimation, including middle temporal gyrus (Mutsaerts et al., 2017).  270 
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3.1.3. Grey matter volume (GMV) 271 

We identified significant whole-group effects across all grey matter voxels (Figure 2e). In 272 

addition, there was a widespread age-related decrease in GMV, in bilateral temporal lobes, bilateral 273 

prefrontal, middle and superior frontal areas, bilateral medial occipital areas, cerebellum, and 274 

subcortical areas including thalamus, caudate and putamen (Figure 2f), consistent with previous reports 275 

(Mohajer et al., 2020; Peelle et al., 2012; Tsvetanov et al., 2019). 276 

3.1.4. Cardiovascular health (CVH) 277 

An exploratory factor analysis with principal component analysis indicated a three-factor 278 

structure of the cardiovascular health and risk measures. Factor 1 loadings indicated a factor expressing 279 

variability in blood pressure measures, where individuals with higher subject scores had larger systolic 280 

and diastolic pressure (Figure 3). Subjects scores did not correlate with age (r = +.061, p=.328), 281 

indicating that variability in blood pressure was not associated uniquely with aging over and above their 282 

contribution to other factors in the analysis. Factor 2 was mainly expressed by heart rate and HRV 283 

measures, where individuals with high subject scores had low resting pulse and high HRV metrics. 284 

Subject scores were correlated negatively with increasing age (r = -.417, p<.001), consistent with 285 

findings of age-related decrease in HRV (Figure 3). Finally, Factor 3 was expressed negatively by HRV 286 

and positively by WMH and systolic blood pressure, indicating that individuals with high subjects scores 287 

were more likely to have high burden of WMH, high systolic blood pressure and low HRV (Figure 3). 288 

Subject scores were associated positively with age (r = +.713, p<.001), suggesting that a portion of the 289 

age-related decrease in HRV is coupled with increase in WMH and systolic blood pressure. 290 

3.2. Correlations between Age and RSFA residuals 291 

3.2.1. Voxel-based analysis 292 

Covariates of no interest only (Model I) 293 

The whole-group voxel-wise analysis of RSFA maps revealed brain regions with high vascular 294 

reactivity including frontal orbital, inferior frontal gyrus, inferior frontal gyrus, dorsolateral prefrontal 295 
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cortex, superior frontal cortex, anterior and posterior cingulate, and lateral parietal cortex. We 296 

observed age-related decrease in RSFA in the bilateral inferior frontal gyrus, bilateral dorsolateral 297 

prefrontal cortex, bilateral superior frontal gyrus, primary visual cortex, cuneus, precuneus, posterior 298 

and anterior cingulate, superior temporal gyrus, medial parietal cortex, and lateral parietal cortex. In 299 

addition, we observed age-related decrease in RSFA in the proximity of ventricles and large vascular 300 

vessels. 301 

Controlling for Cerebrovascular Factors (Model II) 302 

We observed significant correlations between age and the RSFA residuals after controlling for 303 

subject variability in CBF and covariates of no interest at an FDR-adjusted p-value of 0.05 (Figure 4, 304 

model II). The spatial extent and the size of the statistical maps were similar to the analysis with RSFA 305 

residuals after controlling for covariates only (Figure 2d and Figure 4, model I), suggesting that CBF does 306 

not fully explain variability in RSFA.  307 

Controlling for Cardiovascular Factors (Model III) 308 

 We observed no significant correlations between age and the RSFA residuals after controlling 309 

for variability in CVH and covariates of no interest at an FDR-adjusted p-value of 0.05 (Figure 4, model 310 

III), suggesting that CVH can explain sufficiently age-dependent variability in RSFA, at least at the level 311 

of statistically-corrected voxels.  312 

Controlling for Cardiovascular and Cerebrovascular Factors (Model IV) 313 

We observed no significant correlations between age and the RSFA residuals after controlling 314 

for variability in CVH, CBF and covariates of no interest at an FDR-adjusted p-value of 0.05 (Figure 4, 315 

model IV), suggesting that CVH and CBF together explain sufficiently age-dependent variability in RSFA. 316 

Controlling for Grey Matter Volume (Model V) 317 

We observed significant correlations between age and the RSFA residuals after controlling for 318 

grey matter volume (GMV) and covariates of no interest at an FDR-adjusted p-value of 0.05 (Figure 4, 319 

model V), suggesting that GMV does not adequately explain variability in RSFA, at the voxel-wise level.  320 
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 321 

3.2.2. Distribution-based analysis 322 

The medians of observed and permuted data did not differ significantly (p>.1 for all five models). In 323 

terms of the distributions, the level of statistical significance decreased after controlling for 324 

cardiovascular, cerebrovascular and GMV signals (p <.001, p<.001, p=.015, and p<.001 for models 1, 2, 325 

3 and 5 respectively), see Table 2. The model considering jointly cardiovascular and cerebrovascular 326 

signals (model 4) indicated a difference in the distribution of observed and permuted data (p = 0.016), 327 

reflecting a small level of correlation between age and RSFA residuals in some voxels. It is unclear 328 

whether the signal originated in a particular tissue type, so we repeated the permutation approach for 329 

each tissue type separately (Table 2). For models 1, 2 and 5 the RSFA residuals were associated with 330 

age across all three tissue types, suggesting that variability in cerebrovascular and grey matter cannot 331 

account fully for the effects of age on RSFA in all tissue types. However, the models controlling for 332 

cardiovascular health (Models 3 and 4) were not significant for grey matter and white matter tissue. 333 

The analysis on CSF voxels was highly significant suggesting that any potential age-related effects on 334 

RSFA not captured by cardiovascular and cerebrovascular signals on voxel-level are focal to CSF areas, 335 

rather than grey matter or white matter.  336 

3.2.3. Component-based analysis 337 

CVH signals sufficiently explained variance in RSFA, in the voxel-based analysis (after FDR 338 

correction for multiple comparisons) and in grey-matter areas in distribution-based analysis. This was 339 

not the case for CBF or GMV in the voxel-based analysis, as well as for CVH in CSF regions in distribution-340 

based analysis. However, this might reflect limitations of these analyses to separate spatially 341 

overlapping sources of signal with different aetiology and the large number of comparisons (see 342 

Methods). Therefore, we used independent component analysis to decompose each imaging modality 343 

to a small number of spatially-independent components and test their ability to explain variance of 344 

RSFA. 345 
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Figure 5 shows the decomposition of the RSFA, CBF and GMV datasets with 18, 13 and 16 346 

number of components, respectively, according to the MDL criterion (Li et al., 2007). The spatial maps 347 

of the components and the between subject-correlations of loading values revealed patterns of signal 348 

from grey matter, white matter, cerebrospinal fluid and vascular aetiology (Figure 5), which were highly 349 

consistent with voxel-wise analysis (Figure 2), previous reports of RSFA (Tsvetanov et al., 2015) and 350 

structural data (Eckert et al., 2010; K. Liu et al., 2017).  351 

The effects of ageing on the independent components loadings was consistent with the voxel-352 

level analysis. Specifically, RSFA components with vascular ethology indicated an age-related increase 353 

in the loading values, while ICs confined within grey matter areas showed age-related decrease in the 354 

loading values (Figure 5a, left side of the panel). Several CBF components demonstrated age-related 355 

decrease in loading values, including inferior frontal gyrus, superior frontal gyrus, cuneus, precuneus, 356 

lateral occipital cortex and motor cortex (Figure 5b, left side of the panel). All but one GMV component 357 

in the cerebellum demonstrated age-related decrease in loading values consistent with brain-wide 358 

atrophy in ageing (Figure 5). 359 

Next, we turn to the correlations between age and residuals of the RSFA ICs. We focused on 360 

ICs that showed age-related differences in the subject loading values (10 out of 18), after controlling 361 

for CBF IC loading values, GMV IC loading values or CVH factor loadings (Figure 6). 362 

Controlling for Cerebrovascular Factors (Model II) 363 

The associations between age and RSFA residuals after controlling for CBF loading values were 364 

weaker in vascular ICs and abolished in GM ICs compared to the analysis with covariates only (Figure 6, 365 

Model I vs Model 2). Unlike in the voxel-based analysis, this ICA approach suggests that CBF does explain 366 

some age-related variability in RSFA across many networks, especially those in GM areas, which may be 367 

due to reduced number of comparisons and improved characterisation of sources of signals in RSFA 368 

and CBF data using ICA. 369 
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Controlling for Cardiovascular Factors (Model III) 370 

 After controlling for differences in CVH, RSFA residuals in two ICs (IC3 and IC7) were correlated 371 

with age (uncorrected p-value at 0.05 significance level), although to a lesser extent compared to the 372 

analysis with covariates only (Model III vs Model I), indicating that CVH can explain age-dependent 373 

variability in most, but not all, RSFA ICs.  374 

Controlling for Cerebrovascular and Cardiovascular Factors (Model IV) 375 

We observed no significant correlations between age and the RSFA residuals after controlling 376 

for variability in CVH and CBF (even at an uncorrected p-value of 0.05, see Figure 6), suggesting that 377 

together, CVH and CBF can explain age-dependent variability in RSFA. 378 

Controlling for Grey Matter Volume (Model V) 379 

RSFA ICs adjusted for GMV ICs demonstrated reduced correlations between RSFA and age 380 

(particularly RSFA ICs of grey matter territories), indicating that age-related differences in RSFA ICs can 381 

be partly explained by grey matter atrophy.  382 

Controlling for Grey Matter Volume independent of Cardiovascular Factors 383 

Some degree of association between age differences in RSFA and grey matter atrophy is 384 

expected given cardiovascular health has been linked to brain-wide atrophy (Gu et al., 2019; Srinivasa 385 

et al., 2016) and T1-weighted data is confounded by non-morphological signals (Bhogal et al., 2017; Ge 386 

et al., 2017; Tardif et al., 2017). Therefore, to test whether the effects of brain atrophy on RSFA were 387 

independent of the effects of CVH on brain atrophy, we controlled for the effects of CVH in GMV ICs. 388 

Then we used the GMV residuals after fitting CVH to GMV IC loadings (i.e. GMV orthogonalised with 389 

respect to CVH) to estimate RSFA residuals and subsequently their correlation with age (Figure 6, Model 390 

6). The effects between RSFA residuals and age in Model 6 were similar to Model 1, suggesting that 391 

GMV differences independent of CVH were not correlated to differences in RSFA.  392 

 393 
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 394 

4. Discussion 395 

The principle result of this study is to confirm the suitability of resting state fluctuation amplitude (RSFA) 396 

to quantify vascular influences in BOLD-based fMRI signals, and to demonstrate that the age effects on 397 

RSFA reflect variability in vascular factors rather than neuronal factors. We demonstrate that the effects 398 

of age on RSFA can be sufficiently captured by the joint consideration of cardiovascular (based on ECG, 399 

BP, WMH and BMI measures) and cerebrovascular factors (CBF from ASL). Variance in brain atrophy 400 

(GM volume Figure 6) and neuronal activity (Kumral et al., 2019; Tsvetanov et al., 2015) do not explain 401 

unique relationship between RSFA and age. This means that RSFA is a suitable measure for 402 

differentiating between vascular and neuronal influences on task-based BOLD signal. Without 403 

modelling the age-related differences in cardiovascular and cerebrovascular factors, changes in 404 

‘activity’ based on BOLD-fMRI could be misinterpreted, thereby undermining conceptual advances in 405 

cognitive ageing.     406 

Cardiovascular factors and age-differences in RSFA 407 

We used factor analysis to estimate cardiovascular health from a wide range of cardiovascular 408 

measures (Varadhan et al., 2009; Wardlaw et al., 2014). Our three factor solution resembled previous 409 

reports (Chen et al., 2000; Goodman et al., 2005; Khader et al., 2011; Mayer-Davis et al., 2009), with 410 

two factors associated with blood pressure and heart rate variability (factors 1 and 2, respectively). A 411 

third factor expressed white matter hyperintensities, blood pressure, heart rate variability and body-412 

mass index, suggesting a cerebrovascular origin.  413 

These three factor indices of cardiovascular health explained most of the age-related variability 414 

in RSFA, leaving little to no associations between age and RSFA residuals in grey matter regions (after 415 

controlling for these cardiovascular signals). This suggests that differences in cardiovascular health 416 

mediate most of the age effects on RSFA (Tsvetanov et al., 2015). Interestingly, each CVH factor was 417 
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associated with a distinct spatial RSFA pattern (Supplementary Figure 2) and collectively provided 418 

additional explanatory value for the overall age-differences in brain-wide RSFA. Next, we turn to neural 419 

and cerebrovascular contributions to BOLD. 420 

Cerebrovascular signals and age-differences in RSFA 421 

Our measure of cerebrovascular function was based on cerebral blood flow estimates from a 422 

common perfusion-based ASL sequence. Here, we refer to cerebrovascular function as an umbrella 423 

term of physiological alterations in the neurovascular unit including resting CBF, cerebrovascular 424 

reactivity, cerebral autoregulation and pulsatility. The observed average, gender and age effects were 425 

consistent with previous reports. The age effects on CBF values were in agreement with previous 426 

reports (Chen et al., 2011; Zhang et al., 2018), with decreases mainly found in regions that are 427 

associated with high perfusion and metabolic demand, including precuneus, cuneus, prefrontal cortices 428 

and cerebellum. The mechanisms underlying the observed CBF decrease across the adult lifespan is a 429 

subject of continuous debate between structural and physiological alterations of the neurovascular unit 430 

(Girouard and Iadecola, 2006; Tarumi and Zhang, 2018; Tsvetanov et al., 2020). We also observed age-431 

related increase in CBF in temporal regions, which may reflect macro-vascular artifacts that are 432 

common to arterial spin labelling findings (Detre et al., 2012; Mutsaerts et al., 2017) due to prolonged 433 

arterial transit time with ageing (Dai et al., 2017). This nonspecific nature of resting CBF signal changes 434 

during ageing is particularly problematic for fMRI BOLD studies, since differences in physiology on that 435 

level may confound the interpretation of the BOLD signal as a surrogate measure of evoked neural 436 

activity (Whittaker et al., 2016). 437 

Compared to voxel-wise estimates, our component-wise CBF values captured better the age-438 

related effects of RSFA, especially in grey matter areas (see below on differences between voxel-wise 439 

and component-wise analysis). Nevertheless, neither the voxel-wise nor component-based analysis of 440 

CBF values could explain sufficiently the effects of age on RSFA, suggesting that RSFA may not be 441 

attributed exclusively to sources of signal linked to cerebrovascular function (Garrett et al., 2017; Liu et 442 
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al., 2012). There was a positive correlation between resting CBF and RSFA in brain areas typically 443 

associated with high blood perfusion and metabolic demands, including cuneus, precuneus, 444 

intraparietal sulcus, inferior temporal cortices, dorsolateral prefrontal cortex and anterior cingulate 445 

(Supplementary Figure 3). But, we also observed negative associations between RSFA and CBF in 446 

inferior brain areas, mainly close to vascular territories i.e. the higher the RSFA the lower the CBF values 447 

were in these regions (Supplementary Figure 3). This may reflect the dominance of pulsatility influences 448 

in RSFA signals near vascular territories and the CSF (for more information see section: Spatial 449 

distribution and age effects on RSFA). This may have adverse effects on tissue perfusion in neighboring 450 

areas (Tarumi et al., 2014). The coexistence between positive and negative relationships between RSFA 451 

and CBF measures in our study explains previous observations of a varied direction in the relationship 452 

between these measures across regions for groups and individuals with differences in vascular health 453 

(Garrett et al., 2017).  454 

Joint effect of cardiovascular and cerebrovascular factors  455 

The joint consideration of cardiovascular and CBF measures fully explained the (significant) 456 

effects of age on RSFA in grey matter regions, despite their differential association with ageing (Zlokovic, 457 

2011). This suggests that RSFA can normalize BOLD fMRI for both cardiovascular and cerebrovascular 458 

factors as highly reliable and temporally stable measurement compared to current standard 459 

approaches to normalize BOLD fMRI (eg. hypercapnia) (Golestani et al., 2015; Lipp et al., 2015). Lower 460 

reproducibility in “gold standard” approaches could be due to susceptibility of cerebrovascular 461 

measures to short-term variable physiological modifiers (e.g. caffeine, nicotine, time of the day, 462 

drowsiness) (Clement et al., 2018).  The high reproducibility of RSFA in healthy adults could come from 463 

the additional contribution of short-term but stable cardiovascular health signals (e.g. heart condition 464 

or white matter hyperintensities), which are independent of cerebrovascular factors. RSFA reflects both 465 

cardiovascular and cerebrovascular signals, which are associated with distinct spatial patterns (see 466 

section Spatial distribution and age effects on RSFA). RSFA can help dissociate age-related differences 467 
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in cardiovascular, cerebrovascular and neural function in task-based BOLD signal, which is important 468 

for using fMRI to understand the mechanisms of cognitive aging. 469 

Grey matter volume and age-differences on RSFA 470 

Voxel-wise and component-based analyses indicated weak associations between age-471 

differences in RSFA and grey matter volume, which were abolished after adjusting for variability in 472 

cardiovascular health. Interestingly, the strongest effects were at the boundaries between grey matter 473 

and other tissue types (white matter and CSF), rather than deep cortical areas (Supplementary Figure 474 

3). The spatial pattern of the effects for cortical areas was similar to those observed between CBF and 475 

RSFA measures. There was a positive relationship between RSFA and grey matter volume in the 476 

precuneus, intraparietal sulcus, dorsolateral prefrontal cortex and dorsal anterior cingulate; which 477 

could reflect the cerebrovascular component of the RSFA signal (see above). In addition, the cerebellum 478 

and subcortical areas near vascular territories showed negative associations, i.e. individuals with less 479 

grey matter volume had larger RSFA values, likely reflecting the cardiovascular components of the RSFA 480 

signal (see below, Spatial distribution and age effects of RSFA). Importantly, there were no associations 481 

between RSFA and grey matter volume after adjusting for cardiovascular health. This is suggestive of 482 

an indirect association between RSFA and grey matter volume introduced by cardiovascular effects on 483 

brain-wide atrophy (Gu et al., 2019; Srinivasa et al., 2016) and other non-morphological confounds in 484 

T1-weighted data  (Bhogal et al., 2017; Ge et al., 2017; Tardif et al., 2017). The lack of evidence for an 485 

association between age-related effects on RSFA and brain atrophy after adjusting for cardiovascular 486 

health is consistent with previous reports using direct physiological measures of neural activity (MEG 487 

and EEG): no age-related associations between RSFA and neuronal indices were detected (Kumral et 488 

al., 2019; Tsvetanov et al., 2015). Furthermore, potential age-related associations between RSFA and 489 

cognitive function are fully explained by cerebrovascular risk factors, such as WMH burden (Millar et 490 

al., 2020). Taken together these findings suggest that the age-related differences in BOLD signal 491 

variability at resting state are unlikely to be of neuronal origin beyond the effects of age on various 492 

types of vascular signals. 493 
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 494 

Spatial distribution and age effects on RSFA 495 

The voxel-wise and component-based analysis of RSFA maps reveal brain regions with high vascular 496 

reactivity (Di et al., 2012; Kalcher et al., 2013; Kannurpatti et al., 2011; Liu et al., 2013; Mueller et al., 497 

2013; Yezhuvath et al., 2009), and accord with previous studies of average and age-effects on RSFA 498 

(Golestani et al., 2016; Lipp et al., 2015; P. Liu et al., 2017; Tsvetanov et al., 2015). These patterns of 499 

spatially distinct cortical areas might reflect segregation of cortical tissue composition, e.g. delineation 500 

on the basis of vascular density and metabolic demands in areas with cyto- or myeloarchitectonic 501 

differences (Annese et al., 2004; Fukunaga et al., 2010; Geyer et al., 2011; Glasser and Van Essen, 2011). 502 

The age-related increase in RSFA in areas with vascular, WM and CSF partitions may reflect the impact 503 

of vascular pulsatility downstream of cerebral arteries due to wall stiffening of blood vessels (Robertson 504 

et al., 2010; Webb et al., 2012), which may influence BOLD signal variability in neighboring brain tissue 505 

(Lee and Oh, 2010; O’Rourke and Hashimoto, 2007; Tarumi et al., 2014; Viessmann et al., 2017). The 506 

pulsatility can influence signal in white matter and cerebrospinal fluid areas (Makedonov et al., 2013; 507 

Tarumi et al., 2014; Theyers et al., 2018; Viessmann et al., 2019). In addition, it is also possible that the 508 

RSFA signal in one area of the brain captures the presence of multiple sources of signal with different 509 

aetiology. For example, the observed signal in one CSF voxel may be a mixture of signals coming from 510 

fluctuations in resting CBF in neighboring vascular territories and pulsatility influences in the 511 

perivascular space. Spatially overlapping sources of signal might be difficult to detect and dissociate 512 

using a univariate approach. This motivates the use of multivariate data-driven approaches, as 513 

highlighted by our findings. In sum, this suggests that RSFA reflects different types of vascular signals 514 

with distinct spatial patterns in terms of signals with cerebrovascular origin in grey matter regions, and 515 

those with cerebro- and cardio-vascular origin in other parts of the brain. 516 

 517 
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Limitations and future directions 518 

There are limitations to the current study. In terms of cardiovascular health, there may be more 519 

important measures that were not present in the CamCAN sample. Moreover, the analysis of heart rate 520 

variability estimates was based on normal-to-normal beats (Vest et al., 2018). The difference between 521 

NN- and RR-beat analysis is that the former considers the detection and exclusion of segments and 522 

participants with atrial fibrillation and other abnormal beats. While NN-beat analysis optimises the 523 

detection of unbiased estimates of cardiovascular health, it also precludes sensitivity to potential 524 

effects of arrhythmia and abnormal heart beats on RSFA in our analysis, which might be relevant to 525 

regions susceptible to pulsatility effects (Webb and Rothwell, 2014).  526 

In terms of cerebrovascular signals, the use of ASL-based CBF measurements could be complemented 527 

with individual-based arterial transit time measurement in order to improve the accuracy of ASL 528 

imaging in older populations (Dai et al., 2017). There are also other means to assess cerebrovascular 529 

function, including cerebrovascular reactivity, including CO2-inhalation-induced hypercapnia (Liu et al., 530 

2019), breath-hold-induced hypercapnia (Handwerker et al., 2007; Mayhew et al., 2010; Riecker et al., 531 

2003; Thomason et al., 2007, 2005), hyperventilation-induced hypocapnia (Bright et al., 2009; Krainik 532 

et al., 2005), and venous oxygenation (Liau and Liu, 2009; Lu et al., 2010; Restom et al., 2007) and it is 533 

possible that these might reveal effects in RSFA where ASL-based CBF does not. Future studies should 534 

explore the utility of additional estimates from resting ASL-based CBF data to complement CBF 535 

quantification. For instance, little is known about whether resting CBF variability, which is statistically 536 

similar to RSFA, is sensitive to cerebrovascular reactivity and other vascular origins (Robertson et al., 537 

2017). The ease, safety and tolerability of RSFA across the lifespan yields a considerable advantage for 538 

population and clinical studies.  539 

Similar to the CBF analyses, the GMV findings generalized across voxel-wise and component-based 540 

analysis, but the component-based analysis seemed to be more sensitive to the age effects on RSFA in 541 

both CBF and GMV datasets. The greater generalization across datasets with independent component 542 
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analysis than voxel-based analysis may reflect several factors (Calhoun and Adali, 2008; Passamonti et 543 

al., 2019; Sui et al., 2012), e.g. reducing the burden of multiple comparisons, pooling information across 544 

multiple voxels with similar profiles, separating sources of signal with different etiology but with 545 

overlapping topologies and possibly improving the spatial correspondence across imaging modalities 546 

with different spatial scales, sequence parameters and signal properties. Therefore, the use of 547 

component-based analysis in studies comparing approaches for normalization of physiological signals 548 

may improve understanding the nature of the signal and the extent to which these neuroimaging 549 

modalities are related to one another.  550 

In the current study, RSFA was estimated from resting state fMRI BOLD data prior to collection of other 551 

task-based fMRI scanning as in previous validation studies of RSFA (Kannurpatti and Biswal, 2008; 552 

Tsvetanov et al., 2015). Other means of RSFA-like estimates have been proposed for scaling BOLD 553 

activation data using fMRI BOLD data at different non-resting cognitive states, e.g. during task periods 554 

(Kazan et al., 2016) or fixation-/resting-periods succeeding task periods (Garrett et al., 2017). Given that 555 

short periods of cognitive engagement can modulate the BOLD signal in a subsequent resting state scan 556 

(Sami et al., 2014; Sami and Miall, 2013), future studies are required to generalise our findings to RSFA-557 

like estimates derived from other types of fMRI BOLD acquisition.  558 

Finally, this study has focussed on the effects of aging, but other studies aiming to understand individual 559 

differences or drug effects in fMRI BOLD might be affected in a similar manner. Therefore, future 560 

studies should consider the origins of the signal contributing to RSFA (cerebrovascular vs 561 

cerebrovascular) and more broadly their influence in fMRI BOLD imaging studies. In the light of 562 

increasing evidence of the role of cardiovascular and cerebrovascular factors in maintaining cognitive 563 

function, future studies might even consider RSFA as a predictor, rather than just as a covariate of no 564 

interest, when modelling the effects of interest (e.g. age or performance). Furthermore, while the 565 

proposed approach is based on plausible neurophysiology that can be used to evaluate its contribution 566 

to cognitive function, future studies could improve absolute quantification of neural function together 567 
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with its integration with deoxyhaemoglobin-dilution-based modelling (Davis et al., 1998; Hoge et al., 568 

1999a, 1999b), haemodynamic response function modelling (West et al., 2019),  generative modelling 569 

(Friston et al., 2003; Jafarian et al., 2020; Tsvetanov et al., 2016) and model-free decomposition 570 

(Bethlehem et al., 2020; Campbell et al., 2015; Samu et al., 2017; Tsvetanov et al., 2018) of fMRI BOLD 571 

data. 572 

Concluding remarks 573 

Cardiovascular and cerebrovascular signals together predict the age differences in RSFA, establishing 574 

RSFA as an important marker that can be used to accurately separate vascular signals from neuronal 575 

signals in the context of BOLD fMRI. We propose that RSFA is suitable to normalize BOLD, and control 576 

for differences in cardiovascular signals. This is particularly relevant to the research in neurocognitive 577 

aging, and may reduce selection bias, for example by permitting the inclusion of individuals with a wider 578 

range of hypertension, cardiovascular conditions or comorbidity. The use of RSFA as a mechanism to 579 

adjust for confounds in BOLD-fMRI, or as a predictor, will allow the development of better models of 580 

ageing and age-related disorders (Cabeza et al., 2018; Tsvetanov et al., 2018). 581 
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7. Tables 1017 

Table 1. Participants’ demographic information, grouped by decile in accordance with the original design of the Cam-1018 
CAN cohort (Green et al., 2018; Shafto et al., 2014) 1019 

 1020 

Table 2. Evaluation of the difference in distribution shape across voxels in the whole brain, as well as voxels within 1021 
grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) areas. Tests showing no difference in the distributions at 1022 
uncorrected p-value 0.05 are indicated by n.s. 1023 

 1024 

  1025 

Model Whole Brain GM WM CSF

1 <0.001 <0.001 0.009 <0.001

2 <0.001 <0.001 0.009 <0.001

3 0.015 n.s. 0.048 0.005

4 0.016 n.s. 0.039 0.007

5 <0.001 <0.001 0.004 <0.001
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 1026 

8. Figures 1027 

 1028 

Figure 1. Visual representation of the analysis strategy in terms of data inclusion (above top dotted line), processing 1029 
(below top dotted line) either at a within-subject level (white dotted-line rectangles) or between-subject level (peach-color 1030 
dotted-line rectangles) and analysis (below second dotted line).  Measures of cardiovascular health (CVH) included blood 1031 
pressure (BP), heart rate variability (HRV) from electrocardiogram (ECG) recordings, white matter-matter hyperintensities 1032 
(WMH) from fluid-attenuated inversion recovery (FLAIR) and BMI (not shown), all of which were submitted to factor analysis. 1033 
Neurovascular function (NVF) estimates were based on cerebral blood flow from arterial spin labelling (ASL) acquisition. Grey 1034 
matter volume (GMV) was estimated from a T1-weighted MRI acquisition. Resting state fluctuation amplitudes (RSFA) were 1035 
estimated from resting-state fMRI BOLD acquisition. Regionally specific measures (RSFA, CBF and GMV) were submitted to 1036 
multiple linear regression either on a voxel-level or on a component-level using outputs from group ICA.  ICA – independent 1037 
component analysis; LV – latent variable; LST – lesion-segmentation tool; PCA – principal component analysis; rsFMRI – resting 1038 
state fMRI; TLV – total lesion volume; WMLB – white-matter lesion burden;  1039 
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  1042 

Figure 2. Average RSFA, CBF and Grey Matter Volume and the effects of age on each modality (SPM{beta} and SPM{t} maps 1043 
respectively) 1044 
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 1046 

 1047 

Figure 3. Variable loadings (left column) and association between age and subjects scores for three factors 1048 
resulting from factor analysis on cardiovascular risk variables. Pulse – mean heart rate, HRV-HF – high-frequency heart rate 1049 
variability, HRV-LF – low-frequency high rate variability, BP-Dia – diastolic blood pressure, BP-Sys – systolic blood pressure, 1050 
WMH – white matter hyperintensities, BMI – body-mass index 1051 
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 1053 

 1054 

Figure 4. Voxel-wise associations between age and RSFA residuals after controlling for: covariates only (Cov, Model I); Cov and 1055 
cerebral blood flow (CBF, Model II); Cov and cardiovascular health (CVH, Model III); Cov, CBF and CVH (Model IV); and Cov and 1056 
grey matter volume (GMV). 1057 
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 1060 

Figure 5 Inependent component analysis spatial maps and correlation between subject loadings for RSFA (a), cerebral 1061 
blood flow (b) and grey matter volume (c) datasets. The relationships between age and IC loadings are shown circles on the left 1062 
hand-side of each correlation matrix, FDR-adjusted p-value of 0.05. 1063 
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 1066 

Figure 6. Component-based associations between age and RSFA residuals after controlling for: covariates only (Cov, 1067 
Model I); Cov and cerebral blood flow (CBF, Model II); Cov and cardiovascular health (CVH, Model III); Cov, CBF and CVH 1068 
(Model IV); Cov and grey matter volume (GMV); and Cov and grey matter volume residuals (GMVr) after controlling for the 1069 
effects of CVH (see text). Grey circles denote uncorrected p-value >0.05, circles without black outline denote uncorrected 1070 
p<0.05 and circles with black outline denote FDR-adjusted p-value at 0.05.  1071 
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9. Supplementary Figures 1074 

 1075 

 1076 

Supplementary Figure 1. Voxel-wise associations between RSFA and covariates of no interests (gender – left panel 1077 
and handedness – right panel), Model I. Maps are thresholded at uncorrected p-values of 0.05 for more complete description 1078 
of the spatial represnation. 1079 
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 1081 

Supplementary Figure 2. Voxel-wise associations between RSFA and three factors of cardiovascular health (Model 1082 
III). Maps are thresholded at uncorrected p-values of 0.05 for more complete description of the spatial represnation. 1083 
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  1085 

Supplementary Figure 3. Voxel-wise associations between RSFA and CBF (left panel, Model II) and GMV (right panel, 1086 
Model V). Maps are thresholded at uncorrected p-values of 0.05  for more complete description of the spatial represnation. 1087 
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