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Abstract
Motivation: Statistical analyses of high-throughput sequencing data have re-shaped the
biological sciences. In spite of myriad advances, recovering interpretable biological signal from
data corrupted by technical noise remains a prevalent open problem. Several classes of pro-
cedures, among them classical dimensionality reduction techniques, and others incorporating
subject-matter knowledge, have provided e�ective advances; however, no procedure currently
satisfies the dual objectives of recovering stable and relevant features simultaneously.
Results: Inspired by recent proposals for making use of control data in the removal of
unwanted variation, we propose a variant of principal component analysis that extracts sparse,
stable, interpretable, and relevant biological signal. The new methodology is compared to
competing dimensionality reduction approaches through a simulation study as well as via
analyses of several publicly available protein expression, microarray gene expression, and
single-cell transcriptome sequencing datasets.
Availability: A free and open-source software implementation of the methodology, the
scPCA R package, is made available via the Bioconductor Project. Code for all analyses
presented in the paper are also made available via GitHub.

Keywords dimensionality reduction, principal component analysis, high-dimensional inference, sparsity,
stability, unwanted variation, single-cell, genomics, computational biology

1 Introduction

Principal component analysis (PCA) is a well-known dimensionality reduction technique, widely used for data
pre-processing and exploratory data analysis (EDA). Although popular for the interpretability of its results
and ease of implementation, PCA’s ability to extract signal from high-dimensional data is demonstrably
unstable [28, 14], in that its recovered results can vary widely with perturbations of the data [30]. What is
more, PCA is often unable to reduce the dimensionality of the data in a contextually meaningful manner
[25, 1]. Consequently, variants of PCA have been developed in attempts to remedy these severe issues,
including, among many others, sparse PCA (SPCA) [37], which increases the interpretability and stability
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of the principal components in high dimensions by sparsifying the loadings, and contrastive PCA (cPCA)
[1], which captures relevant information in the data by eliminating technical e�ects through comparison to
a so-called background dataset. While SPCA and cPCA have both individually proven useful in resolving
distinct shortcomings of PCA, neither is capable of simultaneously tackling the issues of interpretability,
stability, and relevance. We propose a combination of these techniques, sparse constrastive PCA (scPCA),
which draws on cPCA to remove technical e�ects and on SPCA for sparsification of the loadings, thereby
extracting interpretable, stable, and uncontaminated signal from high-dimensional biological data.

1.1 Motivation

A longstanding problem in genomics and related disciplines centers on teasing out important biological signal
from technical noise, i.e., removing unwanted variation corresponding to experimental artifacts (e.g., batch
e�ects). A common preliminary approach for accomplishing such a task involves the application of classical
PCA to capture and deflate technical noise, followed by traditional statistical inference techniques (e.g.,
clustering cells, testing for di�erences in mean gene expression levels between populations of cells) [23]. Such
an approach operates under the assumption that meaningful biological signal is not present in the leading
principal components (PCs), and that the removal of the variance contained therein allows recovery of the
signal previously masked by technical noise. Should these assumptions prove unmet, relevant biological signal
may be unintentionally discarded, or worse, technical noise may be significantly amplified.
Several more sophisticated approaches have been proposed, including the use of control genes [7, 26] and
control samples [8] whose behavior is known a priori. Unfortunately, access to such controls may be severely
limited in many settings (e.g., as with prohibitively expensive assays). Alternative approaches, for use in
settings where control genes or control samples are unavailable, such as surrogate variable analysis [18],
reconstruct sources of unwanted variation that may subsequently be controlled for via covariate adjustment
in a typical regression modeling framework. In the context of single-cell RNA-seq data, a class of data that
has garnered much interest due to the granularity of biological information it encodes, related approaches
have been combined as part of the ZINB-WaVE methodology [27], which uses a strategy based on factor
analysis to remove unwanted variation.
Although such approaches have proven useful, model-based techniques rely on assumptions about the data-
generating process to target biological signal, warranting that much caution be taken in their use. Additionally,
owing to the diversity of experimental settings in high-dimensional biology, such techniques are often targeted
to specific experimental paradigms (e.g., bulk RNA-seq but not single-cell RNA-seq). Violations of the
assumptions embedded in these techniques may often be di�cult — impossible, even — to diagnose, leading
to a lack of overlap in findings between such model-based approaches when applied to the same datasets.
Accordingly, Zhang et al. [33] have shown the lack of consensus among model-based di�erential expression
techniques on RNA-seq datasets, demonstrating that their use gives rise to subjective analyses. By contrast,
we propose a wholly data-driven approach to removing unwanted variation, harnessing the information
contained in control samples, pre-treatment groups, or other signal-free observations, all while enhancing the
interpretability and stability of findings by inducing sparsity.
The remainder of the present manuscript is organized as follows. In Section 1.2, contrastive PCA, sparse
PCA, and other popular dimensionality reduction techniques are briefly surveyed. Next, in Section 2, scPCA
is formally defined and its desirable properties are detailed. A simulation study and several analyses of
publicly available microarray gene expression, and single-cell transcriptome sequencing (scRNA-seq) data are
presented in Section 3, and the analysis of a protein expression dataset is detailed in Section S6, providing
a rich comparison of the proposed methodology to other popular techniques currently relied upon for the
exploration of high-dimensional biological data. Finally, we conclude by reviewing the e�ectiveness of scPCA
based on the results of these experiments and discussing paths for further investigation.

1.2 Background

1.2.1 Contrastive PCA

The development of contrastive PCA was motivated by the need to detect and visualize variation in the
data deemed most relevant to the scientific question of interest. Given a target dataset believed to contain
biological signal(s) of interest and a similar background dataset believed to comprise only noise (i.e., unwanted
variation), the cPCA algorithm returns a subspace of the target data that contains (a portion of) the variation
absent from the background data [1]. cPCA aims to identify the pertinent variation in the target data by
contrasting the covariance matrix of its features with that of the background data. For example, consider
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a scRNA-seq dataset whose samples are contaminated by a batch e�ect. Provided a collection of control
samples subjected to the same batch e�ect, cPCA may be used to remove this unwanted technical noise (see
Section 3.1).
Algorithmically, cPCA is very similar to PCA. Consider a column-centered target dataset Xn◊p and a
column-centered background dataset Ym◊p, where n and m denote, respectively, the number of target and
background observations (e.g., cells) and p denotes the number of features (e.g., genes). Define their empirical
covariance matrices as CX and CY, and let Rp

unit = {v œ Rp : ÎvÎ2 = 1} be the set of unit vectors of
length p. The variances along direction v œ Rp

unit in the target and background datasets are represented
by ⁄X(v) = v€CXv and ⁄Y(v) = v€CYv, respectively. The most contrastive direction vı

“ for some fixed
contrastive parameter “ œ R+ is found by solving

vı
“ = argmax

vœRp
unit

⁄X(v) ≠ “⁄Y(v)

= argmax
vœRp

unit

v€(CX ≠ “CY)v

= argmax
vœRp

unit

v€C“v,

(1)

where C“ = CX ≠ “CY is the contrastive covariance matrix [1]. cPCA can therefore be performed by
computing the eigenvalue decomposition of C“ . The eigenvectors of C“ are then used to map the target data
to the contrastive principal components (cPCs).
The contrastive parameter “ quantifies the trade-o� between each feature’s variances in the target and
background datasets. When “ = 0, cPCA reduces to PCA — hence, the variance along ⁄X(v) is maximized.
On the other hand, as “ æ Œ, the variance in the background data dominates the variance in the target
data such that only directions spanned by the background dataset are captured. This is akin to projecting
the target dataset into the space spanned by directions in the background data and then performing PCA on
this projection [1]. The e�ect of the contrastive parameter is illustrated in fig. S1 for simulated data similar
to those used by Abid et al. [1].
Although cPCA o�ers a novel approach for the removal of unwanted variation, it possesses some drawbacks.
In particular, no rigorous framework exists for selecting the contrastive parameter “ in order to achieve the
optimal amount of contrast between the target and background data. Indeed, Abid et al. [1]’s approach
to selecting an appropriate “ relies on visual inspection. Additionally, as with PCA, loading vectors may
be highly variable and di�cult to interpret in high dimensions since they represent linear combinations of
all variables in the dataset. Relatedly, cPCs are not certifiably free of unwanted technical and biological
e�ects, potentially obscuring relevant biological signal. This issue is only exacerbated as the dimension of the
subspace orthogonal to the background data increases, jeopardizing the stability of the cPCs and enfeebling
conclusions drawn from them.

1.2.2 Sparse PCA

In addition to being di�cult to interpret, the PCs generated by applying PCA to high-dimensional data are
generally unstable; that is they are subject to major changes under minor perturbations of the data (we refer
to Johnstone and Paul [15] for a recent review). Luckily, an abundance of techniques for sparsifying PCA
loadings have been developed to mitigate these issues; we direct the interested reader to Zou and Xue [36] for
a recent review. Here, we consider the SPCA technique developed by Zou et al. [37]. In contrast to standard
PCA, SPCA generates interpretable and stable loadings in high dimensions, with most entries of the matrix
being zero.
SPCA was born from the geometric interpretation of PCA, which reframes PCA as a regression problem.
Given a matrix whose columns form an orthonormal basis Vp◊k, the objective is to find the projection
Pk = Vp◊kV€

p◊k producing the best linear manifold approximation of the data Xn◊p. This is accomplished
by minimizing the mean squared error:

Vı
p◊k = argmin

Vp◊k

nÿ

i=1
Îxi ≠ Vp◊kV€

p◊kxiÎ2
2, (2)

where xi is the ith row of X and Vı
p◊k is exactly the loadings matrix of the first k PCs [36]. A sparse loadings

matrix can be obtained by imposing an elastic net constraint on a modification of this objective function.
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Zou et al. [37] show that optimizing the following criterion provides loadings of the first k sparse PCs of X:

(Aı
p◊k, Bı

p◊k) = argmin
Ap◊k,Bp◊k

nÿ

i=1
Îxi ≠ Ap◊kB€

p◊kxiÎ2
2 + ⁄0

kÿ

j=1
—2

j +
kÿ

j=1
⁄1,j |—j |

subject to A€
p◊kAp◊k = Ik◊k,

(3)

where —j is the jth column of Bp◊k and where⁄0 and ⁄1,j are, respectively, the ¸2 and ¸1 penalty parameters
for the non-normalized jth loading —j ; as in the original SPCA manuscript the ¸1 penalty is allowed to be
loading-specific [37]. Then, the sparse loadings are the normalized versions of —ı

j , i.e., the vectors —ı
j /Î—ı

j Î2.
Zou et al. [37] also show that the full dataset need not be used to optimize the criterion; indeed, only the
Gram matrix X€

n◊pXn◊p is required [37].
Although SPCA provides a transparent and e�cient method for the sparsification of PCA’s loading matrices,
and hence the generation of stable principal components in high dimensions, its development stopped short
of providing means by which to identify the most relevant directions of variation in the data, presenting an
obstacle to its e�cacious use in biological data exploration and analysis. This motivates the development of
exploratory methods that build upon the strengths of both SPCA and cPCA.

1.2.3 Other Competing Methods

Other general methods frequently employed to reduce the dimensionality of high-dimensional biological data
include t-distributed stochastic neighbor embedding (t-SNE) [29] and uniform manifold approximation and
projection (UMAP) [22] (e.g., [2, 3]). Unlike PCA, SPCA, and cPCA, both are nonlinear dimensionality
reduction techniques — that is, they do not enforce linear relationships between features. Such a relaxation
permits the capturing of local nonlinear structures in the data that would otherwise go unnoticed, though
neither approach guarantees that their low-dimensional embeddings reflect the global structure of the data.
Becht et al. [3] demonstrated the extreme computational e�ciency exhibited by these techniques in their
application to large datasets while Amir et al. [2] and Becht et al. [3] illustrated the stability of their
findings, further increasing their popularity as methods of choice for EDA in computational biology. Yet, the
flexibility and speed of t-SNE and UMAP come at a cost: these techniques are not endowed with the ease of
interpretability of factor analysis methods. In lacking an interpretable link between the data’s features and
low-dimensional representation, their use as hypothesis-generating tools is restricted. Furthermore, like PCA,
neither t-SNE nor UMAP have the ability to explicitly remove unwanted technical e�ects.
Though the dimensionality reduction methods discussed thus far can be applied to various kinds of high-
dimensional biological data, still many others have been developed expressly for use with specific high-
throughput assay biotechnologies. One such method, ZINB-WaVE, relies on a zero-inflated negative binomial
model to better account for the count nature, zero inflation, and over-dispersion of scRNA-seq data, and
has been shown to outperform less tailored techniques such as t-SNE [27]. Unlike more general factor
analysis methods (e.g., PCA), ZINB-WaVE takes advantage of the rich annotation metadata that are often
available with scRNA-seq datasets to remove sources of unwanted variation, while preserving global biological
signal [27]. Analogous to PCA, the latent factors produced by ZINB-WaVE are not sparse. Technical and
biological noise may remain after taking into account known and unknown sources of unwanted variation [27],
potentially blurring any meaningful interpretation of latent factors. Other successful methods for reducing the
dimensionality of scRNA-seq data, such as scVI [20], have relied on the variational autoencoder framework to
learn nonlinear structures in the data at hand and thereby infer values of latent variables. Further discussion
of such techniques lies outside the scope of the present work on account of the dissimilarity to methods
inspired by factor analysis, like SPCA, cPCA, and ZINB-WaVE, which are our focus.

2 Methodology

2.1 Sparse Contrastive PCA

Given a pair of target and background datasets as defined in Section 1.2.1, the scPCA procedure applies
SPCA with minimal modifications to their contrastive covariance matrix C“ . The numerical solution to the
SPCA criterion of Equation (3) is obtained by the following alternating algorithm until convergence of the
sparse loadings [37]:
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For fixed A: For each j, let Yj := C
1
2
“ –j , where –j is the jth column of A. Then, the elastic net solution for

the jth loading vector is
—ı

j = argmin
—j

ÎYj ≠ C
1
2
“ —jÎ2

2 + ⁄0Î—jÎ2
2 + ⁄1,jÎ—jÎ1.

Generally, for ease of computation, ⁄1,j = ⁄1, for j = 1, . . . , k. The entries of the loadings matrix B
are independent of the choice for the ¸2 penalty (ridge) parameter ⁄0 [37], existing only to ensure the
reconstruction of the sparse principal components. The ridge penalty is set to zero when C

1
2
“ is full rank;

otherwise, a small constant value is used to remedy issues of indeterminacy that arise when fitting the elastic
net. In fact, this was the original motivation behind the development of ridge regression [11].
For fixed B: Only the first term of the SPCA criterion of Equation (3) must be minimized with respect to
A. The solution is given by the reduced rank form of the Procrustes rotation, computed as Aı = UV€ [37].
The matrices of left and right singular vectors are obtained from the following singular value decomposition:

C“B = UDV€.

Generally, C“ is not positive-semidefinite and its square root is undefined. Instead, a positive-semidefinite ma-
trix ÂC“ , approximating C“ , is used. ÂC“ is obtained by replacing the diagonal matrix in the eigendecomposition
of C“ by a diagonal matrix in which negative eigenvalues are replaced by zeros [35]:

C“ = V�V€

ÂC“ = VDV€

where Dii =
;

�ii, if �ii > 0
0, otherwise , for i = 1, . . . , p.

Thus, the directions of variation given by the negative eigenvalues of C“ are discarded, as they correspond
to those which are dominated by the variance in the background dataset. This procedure can be viewed
as a preliminary thresholding of the eigenvectors of C“ , where the cuto� is an additional hyperparameter
corresponding to a non-negative real number. Explicitly defining a small positive threshold may prove useful
for datasets that possess many eigenvalues near zero, which correspond to sources of technical and biological
noise remaining after the contrastive step. Empirically, however, providing a wide range of contrastive
parameters “ in the hyperparameter space has been found to have a similar e�ect as using multiple cuto�
values — that is, larger values of “ naturally produce sparser matrices ÂC“ .
For the purpose of contrastive analysis, a direction’s importance is characterized by its target-background
variance coupling; higher target variance and lower background variance pairs produce the best directions [1]
and correspond to the largest positive eigenvalues. The elimination of directions with negative eigenvalues
therefore guarantees that the sparse contrastive PCs (scPCs) are rotations of the target data relying on the
sparse directions most variable in the target data but least variable in the background data, making a cuto�
of zero a natural choice for the thresholding operation.

2.2 Framework for Hyperparameter Tuning

The scPCA algorithm relies on two hyperparameters: the contrastive parameter “ and the ¸1 penalty
parameter ⁄1. To select the optimal combination of “ and ⁄1 from a grid of a priori specified values, we
propose to cluster the n observations of the target dataset based on their first k scPCs, selecting as optimal
the combination {“, ⁄1} producing the “strongest” cluster assignments. This framework casts the selection of
{“, ⁄1} in terms of a choice of clustering algorithm, distance metric (based on ÂC“), and clustering strength
criterion. For ease of application, we propose to select {“, ⁄1} by maximization of the average silhouette
width over clusterings of the reduced-dimension representation of the target data. This procedure implicitly
requires the choice of a clustering algorithm, such as k-means [19] or partitioning around medoids [16], to
be applied to the representation of the data in the first k scPCs. Such methods require an appropriate
choice for the number of clusters, which we contend will generally not be a limiting factor in the use of
scPCA. Indeed, reasonable choices for the number of clusters can often be inferred in omics settings from
sample annotation variables accompanying the data or from previously available biological knowledge. In
Section 3, we empirically demonstrate that the results of the algorithm are robust to the choice of the number
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of clusters. Additionally, scPCA has no particular dependence on average silhouette width as a criterion —
that is, alternative criteria for assessing clustering strength could be used when appropriate. Naturally, this
proposed hyperparameter tuning approach can be applied to cPCA by setting ⁄1 to 0.
To address concerns of overfitting and to avoid discovering non-generalizable patterns from the data, we
propose the use of cross-validation. For a grid of a priori specified contrastive parameters “ and ¸1 penalty
parameters ⁄1, V -fold cross-validation may be performed as follows:

1. Partition each of the target and background datasets into V roughly equally-sized subsets.
2. Randomly pair each of the target dataset’s V subsets with one of the background’s; these pairs form

the fold-specific data for cross-validation.
3. Iteratively perform scPCA over the observations of the target and background data not contained

in the holdout set (i.e., the training set) for each pair of contrastive parameters and ¸1 penalty
parameters in the hyperparameter grid.

4. Project the holdout target data onto the low-dimensional space using the loadings matrices obtained
from the previous step.

5. Compute a clustering strength criterion (e.g., average silhouette width) for a clustering of the target
holdout data with the a priori specified number of clusters.

6. Finally, compute the cross-validated average of the clustering strength criteria (e.g., cross-validated
average of average silhouette width) across the holdout sets for each pair of hyperparameters, selecting
the pairing that maximizes the value of the criterion.

2.3 Algorithm and Software Implementation

The implementation of the scPCA algorithm is summarized in Algorithm 1. A free and open-source software
implementation of scPCA is available in the scPCA package for the R language and environment for statistical
computing [24]. The scPCA package is available as of a recent release of the Bioconductor Project [10, 9, 13]
(https://bioconductor.org/packages/scPCA).
For ease of notation, Algorithm 1 introduces scPCA without the application of cross-validation to the target
and background datasets. Algorithm 2, in the supplementary materials, details the cross-validated variant.
The code and data used to generate this manuscript are publicly available on GitHub (https://github.

com/PhilBoileau/EHDBDscPCA).
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Algorithm 1: scPCA
Result: Produces a sparse low-dimensional representation of the target data, Xn◊p, by contrasting the

variation of Xn◊p and some background data, Ym◊p, while applying an ¸1 penalty to the loadings
generated by cPCA.

Input :
target dataset: X
background dataset: Y
binary variable indicating whether to column-scale the data: scale

vector of possible contrastive parameters: “ = (“1, . . . , “s)
vector of possible ¸1 penalty parameters: ⁄1 = (⁄1,1, . . . , ⁄1,d)
number of sparse contrastive principal components to compute: k

clustering method: cluster_meth

number of clusters: ncluster

Center (and scale if so desired) the columns of X, Y
Calculate the empirical covariance matrices: CXp◊p := 1

n X€X, CYp◊p := 1
m Y€Y

for each “i œ “ do
for each ⁄1,j œ ⁄1 do

Compute the contrastive covariance matrix C“i = CX ≠ “iCY
Compute the positive-semidefinite approximation of C“i , ÂC“i

Apply SPCA to ÂC“i for k components with ¸1 penalty ⁄1,j

Generate a low-dimensional representation by projecting Xn◊p on the sparse loadings of SPCA
Normalize the low-dimensional representation produced to be on the unit hypercube
Cluster the normalized low-dimensional representation using cluster_meth with ncluster

Compute and record the clustering strength criterion associated with (“i, ⁄1,j)

Identify the combination of hyperparameters maximizing the clustering strength criterion: “ı, ⁄ı
1

Output: The low-dimensional representation of the target data given by (“ı, ⁄ı
1), an n ◊ k matrix; the p ◊ k

matrix of loadings given by (“ı, ⁄ı
1); contrastive parameter “ı; ¸1 penalty parameter ⁄ı

1

3 Results

In the sequel, we detail the application of scPCA to a number of simulated and publicly available datasets,
comparing our proposal to several competing techniques. An additional analysis of protein expression data is
presented in Section S6.

3.1 Simulated scRNA-seq Data

The scPCA technique was tested on a simulated scRNA-seq dataset generated with the Splat framework
from the Splatter R package [31]. Splat simulates a scRNA-seq count matrix by way of a gamma-Poisson
hierarchical model. This simulation framework mimics real scRNA-seq data by including hyperparameters
to control the number of over- and under-expressed genes (using multiplicative factors for mean expression
levels), zero inflation, batch e�ects, and other technical and biological factors unique to scRNA-seq data.
A simple dataset of 300 cells and 500 genes was simulated such that the cells were approximately evenly
distributed among three biological groups: two groups making up a target dataset, and a third group
corresponding to a background dataset. 5% of the genes are di�erentially expressed between the background
dataset and each of the two target datasets but not between the two target datasets, 10% of the genes are
di�erentially expressed between the background dataset and the first target dataset but not the second
target dataset, and 10% of the genes are di�erentially expressed between the background dataset and the
second target dataset but not the first target dataset. There is overlap between these three sets of genes
and, in particular, a total of 98 genes are di�erentially expressed between the two target datasets. Based on
these levels of di�erential expression, cells are more dissimilar between the two target datasets than between
either of the target datasets and the background dataset. Therefore, the samples comprising the background
dataset can be viewed as a set of controls for use by cPCA and scPCA. Additionally, a large batch e�ect was
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included to confound the biological variation between groups, e�ectively dividing each biological group into
two subgroups of equal size (fig. 1A).
PCA, t-SNE, UMAP, cPCA, and scPCA were applied to the log-transformed and column-centered target
data to determine whether these methods could identify the biological signal of interest, i.e., the two groups
in the target dataset (fig. 1B, n.b., PCA was not included due to the similarity of results to fig. 1A).
We note that cPCA was not performed in the traditional manner of Abid et al. [1], but with automatic
hyperparameter selection as described in Section 2.2. The number of a priori specified clusters for the cPCA
and scPCA methods was set to 2, and the column-centered background data were used in their contrastive
steps. While PCA, t-SNE, UMAP, and cPCA were incapable of completely eliminating the batch e�ect in
their two-dimensional representations, scPCA successfully removed the unwanted variation while producing
the tightest clusters, as indicated by the average silhouette widths (see also fig. S3), and generating sparse,
interpretable loadings.
To compare the loadings produced by cPCA and scPCA, each of their loadings’ vectors were standardized as
follows. The ith entry of the jth standardized loadings vector is given by: |Vij |≠mini|Vij |

maxi|Vij |≠mini|Vij | , where V is a
p ◊ k loadings matrix. Juxtaposing the relative absolute weights of the first loadings vectors produced by
cPCA and scPCA, each of which linearly separate the target dataset’s groups, we find scPCA’s to be, as
expected, much sparser (see fig. 1C). In fact, only 20 genes have non-zero values in scPCA’s first loading
compared to 500 in cPCA; moreover, these 20 genes correspond to those which have the largest absolute
entries in cPCA’s first loading vector. Furthermore, these genes are among the most di�erentially expressed
in the target dataset, based on the values of their multiplicative di�erential expression factors (fig. S2).
scPCA’s results were also compared to those of the two leading latent factors found by ZINB-WaVE, a
method of choice for dimensionality reduction for scRNA-seq data, under conditions in which the batch factor
is viewed as known and unknown (fig. 1B). In both cases, ZINB-WaVE was applied to the count matrix of the
simulated target dataset with no gene-level covariates. When the batch factor was treated as unknown, no
cell-level covariates were included in the model; however, when we treated the batch factor as known, a binary
cell-level covariate was added to indicate each sample’s batch membership. When the source of unwanted
variation is not explicitly regressed out in the ZINB-WaVE model, we find the results to be virtually identical
to those of PCA. Even when the batch e�ect is included in the model, the clusters of the biological groups
are elongated and less dense than those produced by scPCA, and the first latent factor does not linearly
separate the groups.
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Figure 1: Simulated scRNA-seq data. A Plot of the first two principal components of the complete simulated
dataset (i.e., the combination of the target and background datasets). The batch e�ect and the biological signal
are responsible for approximately identical amounts of variance. B The two-dimensional representations of
the target dataset by t-SNE, UMAP, cPCA, scPCA, and ZINB-WaVE, with accompanying average silhouette
widths quantifying the strengths of the batch e�ect and the biological signal. Only scPCA fully removes the
batch e�ect in two dimensions when batches are not adjusted for explicitly. C A gene-by-gene comparison
of the relative absolute weights in the first loading vectors of cPCA and scPCA, in decreasing order with
respect to the values produced by cPCA.
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3.2 Dengue Microarray Data

Kwissa et al. [17] used gene expression microarrays to analyze the whole-blood transcriptome of 47 dengue
patients hospitalized at the Siriraj Hospital in Bangkok and 9 local healthy controls. Of the a�ected patients,
18 were classified as having acute dengue fever (DF), 10 as having acute dengue hemorrhagic fever (DHF),
and 19 as convalescent at least four weeks after discharge.
As part of data pre-processing, all but the 500 most variable genes were filtered out. The target dataset
consists of the log-transformed microarray expression measures of 47 patients with some form of dengue,
while the background dataset consist of the log-transformed microarray expression measures of the control
samples. PCA, cPCA, scPCA, t-SNE, and UMAP were then applied to the column-centered matrix of the
target data with the goal of discerning three unique clusters (fig. 2A), one for each sub-class of dengue (DF,
DHF, and convalescent). cPCA and scPCA took as additional input the column-centered background dataset
and specified three clusters a priori. t-SNE’s embedding was found to be similar to UMAP’s and is therefore
only included in the supplementary materials (fig. S4).
Of the four dimensionality reduction methods, only cPCA and scPCA successfully fully separated the
convalescent patients from those with DF and DHF in two dimensions. scPCA’s low-dimensional representation
was virtually identical to that of cPCA, producing very similar average silhouette widths among classes,
though only a tenth of the genes have non-zero values in the first and second columns of the loadings matrix,
and the most important genes identified by each methods’ first loading di�er substantially (fig. 2B). The genes
found by scPCA include CD38, HLA-DQB1, and RSAD2 (Viperin), which have been previously associated to
the susceptibility to, protection against, or presence of dengue [5, 4, 6]. For a full list of these genes, refer to
Table S1 and Table S2.
No method successfully distinguished between the three sub-classes of dengue. In fact, previous research
suggests that the transcriptome of patients with DF and DHF are virtually indistinct [17]. Instead, Kwissa
et al. [17] found that DF and DHF patients may form distinct clusters based on viral load and concentration
of the DENV NS-1 antigen in their plasma. This may explain the sub-clusters within the DF and DHF cases
found by UMAP. Though the number of pre-specified clusters for each algorithm was set to three, cPCA’s
and scPCA’s projections onto two dimensions contain two clusters. To test the sensitivity of these methods
to this tuning parameter, both methods were reapplied to the data with varying numbers of pre-specified
clusters. Each of cPCA’s iteration produced virtually identical embeddings (fig. S5). However, scPCA’s
produced identical results to those of PCA when the number of clusters was set to four or higher (fig. S6).
This may provide an empirical approach to selecting the appropriate number of clusters for scPCA, i.e.,
selecting the largest value before which the quality of the embedding deteriorates.
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Figure 2: Dengue microarray data. A Two-dimensional representations of the target dataset by PCA, UMAP,
cPCA, and scPCA, with accompanying average silhouette widths quantifying the strengths of the biological
signal. cPCA and scPCA are the only methods that fully separate the convalescent patients from those with
DF and DHF. The second PC of the PCA plot is dominated by some batch e�ect, and the low-dimensional
representation produced by UMAP also appears to be a�ected by some source of unwanted variation. B
The relative absolute weights in the two leading loading vectors of scPCA are much sparser than those of
cPCA, though their two-dimensional embeddings are virtually identical. The genes are in decreasing order of
cPCA’s relative absolute weights, demonstrating that the genes with non-zero weights in scPCA’s loadings
generally correspond to the those genes with the largest absolute weights in cPCA’s loadings. This is much
more apparent in the second loadings vector where the distribution of cPCA’s absolute weights has a thin
tail, attributing increased importance to a small subset of genes.
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3.3 Leukemia Patient scRNA-seq Data

Finally, we tested scPCA on scRNA-seq data from the cryopreserved bone marrow mononuclear cell (BMMC)
samples of two acute myeloid leukemia (AML) patients (Patient 035: 4,501 cells; Patient 027: 7,898 cells),
before and after undergoing allogeneic hematopoietic stem cell transplant treatment [34]. The BMMCs of
two healthy individuals from the same publicly available dataset (Healthy 1: 1,985 cells; Healthy 2: 2,472
cells) were used to generate a control dataset. Following pre-processing, all but the 1,000 most variable genes
measured across all 16,856 cells were removed. The scRNA-seq data from the AML patients were then split
into separate target datasets since Zheng et al. [34] found evidence of distinct subpopulation membership
following transplantation. Data belonging to the healthy controls were combined to create the background
dataset. PCA, t-SNE, UMAP, ZINB-WaVE, cPCA, and scPCA were applied to the target datasets to explore
di�erences in the AML patients’ BMMCs’s transcriptome engendered by the treatment (fig. 3, S7).
Of the six dimensionality reduction methods applied to Patient 035’s data (fig. 3A), cPCA and scPCA
best capture the biologically meaningful information relating to treatment status. Each produces linearly
separable clusters corresponding to pre- and post-treatment cells; scPCA’s projection yields a tighter cluster
of pre-transplant cells when compared to that produced by cPCA, and the opposite is true regarding the
clusters of post-transplant cells. Additionally, scPCA’s projection required considerably less information even
though its results are analogous to cPCA’s: 176 genes and 17 genes have non-zero entries in the first and
second columns of the loadings matrix produced by scPCA, respectively (fig. 3B). In general, the leading
loadings of cPCA and scPCA place an increased importance on the same genes. Regarding the other methods’
results, PCA and t-SNE fail to separate the pre- and post-transplant cells, and UMAP’s and ZINB-WaVE’s
embeddings resemble a trajectory more closely than they do a set of clusters.
Similarly to Patient 035’s results, the two-dimensional embeddings of Patient 027’s data produced by PCA,
t-SNE, UMAP, and ZINB-WaVE do not contain distinct clusters of pre- and post-transplant BMMCs (fig. S7);
however, cPCA and scPCA generate low-dimensional representations of the data in which samples are
clustered based on treatment status. Although cPCA’s representation produces denser groupings, the first
two columns of scPCA’s loading matrix contain non-zero values in only three genes, STMN1, LINC00152,
and PDLIM1, all of which have been previously linked to leukemia [21, 32, 12].
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Figure 3: AML Patient 035 scRNA-seq data. A The two-dimensional embeddings of the patient’s BMMC cells
produced by PCA, ZINB-WaVE, t-SNE, UMAP, cPCA, and scPCA, with accompanying average silhouette
widths quantifying the strengths of the biological signal. cPCA and scPCA produce representations of the
data in which the pre- and post-transplant cells form discernible clusters. Based on visual inspection and
average silhouette width, scPCA’s grouping of pre-transplant cells is denser than that of cPCA’s and the
opposite is true of the post-transplant cells’ cluster. B scPCA’s embedding is much sparser, increasing
interpretability of the exploratory analysis.
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4 Discussion

We have proposed a novel dimensionality reduction technique for use with high-dimensional biological data:
sparse contrastive principal component analysis. A central contribution of the proposed method is the
incorporation of a penalization step that ensures both the sparsity and stability of the principal components
generated by contrastive PCA. Our approach allows for high-dimensional biological datasets, such as those
produced by the currently popular scRNA-seq experimental paradigm, to be examined in a manner that
uncovers interpretable as well as relevant biological signal after the removal of unwanted technical variation,
all the while placing only minimal assumptions on the data-generating process.
We also present a data-adaptive and algorithmic framework for applying contrastive dimensionality reduction
techniques, like cPCA and scPCA, to high-dimensional biological data. Where the original proposal of cPCA
relied upon visual inspection by the user in selecting the “best” contrastive parameter [1], a notoriously
unreliable process, our extension formalizes the data-adaptive selection of tuning parameters. The automation
of this step translates directly to significantly increased computational reproducibility. We have proposed the
use of cross-validation to select tuning parameters from among a pre-specified set in a generalizable manner,
using average silhouette width to assess clustering strength. Several other approaches to the selection of tuning
parameters, including the choice of criterion for assessing the “goodness” of the dimensionality reduction
(here, clustering strength as measured by the average silhouette width), may outperform our approach in
practice and could be incorporated into the modular framework of scPCA — we leave the development of
such approaches and assessments of their potential advantages as an avenue for future investigation.
We have demonstrated the utility of scPCA relative to competing approaches, including standard PCA,
cPCA, t-SNE, UMAP, and ZINB-WaVE (where appropriate), using both a simulation study of single-cell
RNA-seq data and the re-analysis of several publicly available datasets from a variety of high-dimensional
biological assays. We have shown that scPCA recovers low-dimensional embeddings similar to cPCA, but
with a more easily interpretable principal component structure, and in simulations, diminished technical
noise. Further, our results indicate that scPCA generally produces denser, more relevant clusters than t-SNE,
UMAP, and ZINB-WaVE. Moreover, we verify that clusters derived from scPCA correspond to biological
signal of interest. Finally, as the cost of producing high-dimensional biological data with high-throughput
experiments continues to decrease, we expect that the availability and utility of techniques like scPCA — for
reliably extracting rich, sparse biological signals while data-adaptively removing technical artifacts — will
strongly motivate the collection of control samples as a part of standard practice.
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