Abstract
ATP Binding Cassette (ABC) transporters often exhibit significant basal ATPase activity in the absence of transported substrates. To investigate the factors that contribute to this inefficient coupling of ATP hydrolysis to transport, we characterized the structures and functions of variants of the bacterial Atm1 homolog from Novosphingobium aromaticivorans (NaAtm1), including forms with disulfide crosslinks between the nucleotide binding domains. Unexpectedly, disulfide crosslinked variants of NaAtm1 reconstituted into proteoliposomes not only transported oxidized glutathione, but also exhibited more efficient coupling of ATP hydrolysis to GSSG transport than the native transporter. These observations suggest that enhanced conformational dynamics of reconstituted NaAtm1 may contribute to the inefficient use of ATP. Understanding the origins of this uncoupled ATPase activity, and reducing the impact through disulfide crosslinking or other protocols, will be critical for the detailed dissection of ABC transporter mechanism to assure that the ATP dependent steps are indeed relevant to substrate translocation.