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Abstract 
 
Polygenic risk scores (PRS) bear great promise in understanding complex diseases and improving 
clinical diagnoses, but the competency of these risk scores in different populations is known to 
vary significantly, especially between those of European ancestry and those of other ethnic 
ancestries. Additionally, the applicability of these risk scores across populations different by 
disease, instead of ethnicity, is poorly understood. A current and largely unexplored population for 
the accuracy of PRS is that of individuals with autism. Combined with the increased prevalence 
of obesity in autistic populations, we seek to evaluate the difference in efficacy of PRS for obesity 
in autistic versus non-autistic populations. We show that genetic variants strongly associated with 
obesity in non-autistic populations are significantly less representative of the disease in autistic 
populations. Rather, these cases of obesity phenocopies in patients with autism may follow a 
different and non-conventional mechanism of action involving the regulation of oxytocin in the 
brain among other potential behavioral factors. Our findings elucidate the limits of PRS across 
populations contrasting by disease and suggest that obesity may be regulated differently in 
individuals with autism as compared to those without autism. 
 
 
Introduction 
 
Autism spectrum disorder (ASD) is a prevalent condition that affects a large proportion of the 
human population. Although it has been heavily studied in the past, there is still much more to 
investigate and learn about the disorder. One pattern that still remains unexplained is the increased 
prevalence of obesity in individuals with autism. Children and teenagers with autism are many 
times more likely to be overweight and to have obesity compared to healthy children [1, 2]. 
Furthermore, children with autism are at a higher risk for other related health issues including type 
2 diabetes mellitus, hypertension, hyperlipidemia, and non-alcoholic fatty liver disease [3]. 
Without a clear genetic explanation, scientists have hypothesized behavioral reasons for these 
disparities. Children with autism are often picky and selective eaters which may increase 
susceptibility to unhealthy eating [4]. Additionally, dyspraxia in children with ASD may limit and 
inhibit physical activity [5]. These phenotypic manifestations might partially explain the increased 
prevalence of obesity in autistic populations, but we wanted to investigate this issue from a genetic 
perspective. Our study seeks to assess the effectiveness of using polygenic risk scores to identify 
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obesity in patients with ASD in hopes of being able to intervene early and take preventative 
measures. 
 
A polygenic risk score (PRS) takes advantage of the polygenic nature of complex traits and the 
small effects of common and low-frequency variants. In fact, common single nucleotide 
polymorphisms (SNPs) have been found to explain a large proportion of the heritability for 
complex traits [6, 7, 8, 9]. Using the sum of the effects of multiple common SNPs is often more 
telling than using a single rare SNP. Polygenic risk scores have been claimed to have great 
potential in predictive power for complex traits and henceforth important clinical utility as well 
[10]. However, there still remains much to learn about the generalizability of these risk scores 
across different traits as well as different populations. 
 
In our study, we tested if the predictive power of a PRS can be applied in a population of 
individuals with autism for a complex trait such as obesity. There are already significant concerns 
regarding the use of polygenic risk scores across different ethnic populations [11, 12]. However, 
our study compares different populations, not by ethnicity, but by disease to observe if similar 
concerns arise. We first used the SNPs implicated in obesity from a non-autistic population to 
calculate obesity risk scores for children and young adults with autism from the Simons Simplex 
Collection. This evaluates how well the PRS performs in individuals with autism. Then we 
elucidated novel variants and pathways responsible for the increased prevalence of obesity in 
patients with ASD. We also evaluated the differences in explanatory power for obesity of single 
variants in non-autistic and autistic populations. 
 
 
Methods 
 
The Simons Simplex Collection (SSC) used in our study is an aggregate of clinical and genetic 
data for over 2,500 autistic children between the ages of 4 and 18 [13]. Genetic information for 
parents and siblings is included as well. It is a resource provided by the Simons Foundation Autism 
Research Initiative (SFARI). For our study, single nucleotide polymorphisms were gathered for 
each of the 10,220 members of the Simons Simplex cohort, including patients and their families, 
using Illumina genotyping microarrays. Of the 10,220 samples, 1,354 were tested with the Illumina 
Human1M V1 C microarray, 4,626 with Illumina Human1M-Duo V3 microarray, and 4,240 with 
the Illumina HumanOmni 2.5-quad microarray. To facilitate comparisons across these data, the 
raw DNA sequences used in the probes from each microarray were mapped onto Human Reference 
genome GRCh38 using the BLAT alignment tool [14]. For sake of quality control, only probes 
that matched to a single location on the reference genome and with 100% identity were retained. 
The reference and alternative alleles used on the microarray probes were then annotated using the 
Ensembl Variant Effect Predictor (VEP) tool [15]. Measured values for autistic patient’s body 
mass index (BMI), age, and sex were used in our study as well. 
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A set of 20,088 genotyped patients from the Partners Biobank were included in our study as a non-
autistic population control for our obesity risk scores. Patients are consented volunteers from seven 
medical institutions within the Partners Healthcare system. Samples were genotyped using three 
versions of the biobank SNP array offered by Illumina that is designed to capture the diversity of 
genetic backgrounds across the globe. The first batch of data (November 2015) was generated on 
the Multi-Ethnic Genotyping Array (MEGA) array, the first release of this SNP array. The second, 
third, and fourth batches (May 2016, Oct 2016, and Feb 2017) were generated on the Expanded 
Multi-Ethnic Genotyping Array (MEGA Ex) array. The fifth, sixth, and seventh batches (Feb 2017, 
Oct 2017) were generated on the Multi-Ethnic Global (MEG) BeadChip. MEGA was the initial 
release of a consortium array. As a consequence, a significant number of probes on this array were 
re-designed in later versions due to quality and probe re-synthesis issues. In order to ensure 
consistency, genotype data generated on MEGA and MEGA Ex were limited to the 1,416,020 
SNPs and 1,741,376 SNPs, respectively, that appear on the final commercial release of this 
biobank array. All genetic data was mapped in reference to Human Reference genome GRCh38. 
Of the 20,088 individuals, BMI data was available for 18,100 patients. Measured values for each 
patient’s age, race, and sex were used in our study as well.  
 
A set of 32 SNPs associated with obesity were used to calculate polygenic risk scores. These SNPs 
came from a study that used a systematic and replicable method for selecting the SNPs most 
strongly associated with obesity across multiple genome-wide association studies (GWAS) [16]. 
Furthermore, the use of this set of SNPs would allow for more valid comparisons between our 
results and the results from their study. Another set of 55 SNPs associated with obesity was 
compiled as well with the knowledge that a larger set of SNPs would help capture more of the 
variance for the phenotype. These SNPs came from two separate studies identifying genetic loci 
associated with body mass index [17, 18]. Tables of the two sets of SNPs and their weights can be 
found in the supplementary materials (Supp. Table S1, S2). 
 
To calculate polygenic risk scores, we took a simple weighted sum of the numerical genotypes for 
the SNPs associated with obesity in a patient. Numerical genotypes were assigned as 0, 1, or 2 in 
reference to the effect allele used in calculating PRS. SNPs we used that were not present in a 
patient were imputed using the R package ‘snpStats’ [19]. Predictiveness of our risks scores was 
evaluated using three different metrics. Firstly, the Pearson’s correlation coefficient r was used to 
quantify the strength of the correlation between our calculated risk scores and BMI. Secondly, the 
area under the curve (AUC) for the receiver-operating characteristic (ROC) curve for obesity 
measures the probability that a randomly chosen obese patient will have a PRS greater than that 
of a randomly chosen non-obese patient. This metric served to evaluate the predictive power of 
our calculated risk scores. AUC calculations and ROC curves were generated using the R package 
‘pROC’ [20]. Thirdly, a log odds-ratio was used to measure the strength of the association between 
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obesity and our risk scores. For all statistical analyses, a p-value < 0.05 was defined as statistically 
significant. Obesity was classified as having a BMI≥30 and non-obese as BMI<30. 
 
 
Results 
 
For all 2,317 sequenced autistic patients that we had BMI data for from the SSC, a polygenic risk 
score was computed using the set of 32 SNPs known to be associated with obesity (Supp. Table 
S1). Patients that were missing any of the 32 SNPs had those missing SNPs imputed prior to 
calculating the risk score. We then compared our calculated scores with the true BMI values for 
the cohort and found a weak and insignificant correlation. From Figure 1A, we see that the line of 
best-fit for a plot of BMI against obesity PRS has a near zero slope in this cohort of patients with 
ASD. We observe low risk scores for patients with a high BMI and high-risk scores for patients 
with a low BMI. To examine the correlation quantitatively, we correlated BMI and obesity PRS 
using the Pearson’s correlation coefficient and found r = 8.028E-03 (p-value = 0.699). We then 
calculated the same correlation coefficient for BMI and obesity PRS but controlling for 
demographic variables including age and sex and found r = 0.5761 (p-value = 2.2E-16). To 
compare our results with a baseline model, we also correlated BMI with only age and sex which 
gave r = 0.5764 (p-value = 2.2E-16).  
 
Furthermore, we plotted a receiver-operating characteristic (ROC) curve to measure AUC, the area 
under the ROC curve, and evaluate the predictive power of our obesity risk scores in distinguishing 
between obese and non-obese. From Figure 1B, we see that our risk score is only marginally more 
sensitive than random choice (AUC = 0.516, 95% CI = 0.454-0.578). 
 
 

 
Figure 1. Plots generated using 2,317 sequenced autistic patients from the SSC and the set of 32 obesity-
associated SNPs. (A) BMI measurements plotted against our calculated obesity polygenic risk scores. Scores on 
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the x-axis are plotted as standard deviations from the mean. The line of best-fit represents a linear model of the 
data and has equation BMI~0.037(PRS) + 18.651. A 95% confidence interval for the linear model is shown as 
the gray shaded area around the line of best-fit. (B) A receiver-operating characteristic (ROC) curve for obesity 
(BMI≥30) using obesity PRS as the predictor.  
 
 
To validate our methodology for computing obesity PRS, we replicated our calculations using a 
different cohort of non-autistic patients from the Partners Biobank (n = 18,100). Using the same 
set of 32 SNPs and identical methods for computing obesity PRS, we obtained risk scores for each 
patient in our new cohort. We then correlated our new scores with obesity using a logistic 
regression where obese was defined as BMI≥30. We also controlled for demographic factors 
including age, sex, and race. In this sample of non-autistic patients, our obesity risk score was 
positively and significantly correlated with BMI (logOR = 0.090, p-value = 0.002). 
 
We then expanded our set of 32 SNPs to a set of 55 obesity associated SNPs (Supp. Table S2) in 
an attempt to capture more of the polygenic nature of obesity. Using the same Partners Biobank 
cohort of patients, new obesity risk scores were generated and correlated with obesity using a 
logistic regression while controlling for age, sex, and race. Compared to the regression computed 
using the original set of 32 SNPs in the same patient cohort, the new regression had a slightly 
larger and more significant log of odds ratio (logOR = 0.112 and p-value < 0.001). 
 
Intrigued by the significance and strength of the results obtained using the Partner Biobank cohort, 
we used the new set of 55 obesity-associated SNPs to calculate new risk scores in the SSC cohort 
of patients with autism. Plotting BMI against these new risk scores produced a similar distribution 
as before when using the set of 32 SNPs, but Figure 2A exhibited a more evident positive 
correlation. In the new linear model for BMI and obesity PRS, the regression coefficient for obesity 
PRS was 0.250 whereas in the previous linear model generated using the set of 32 SNPs, the 
regression coefficient had been 0.037 (Figure 1A). The Pearson’s correlation coefficient was 
calculated for the new risk scores as well (r = 5.474E-02, p-value = 8.406E-03). When controlling 
for age and sex, r = 0.578 (p-value = 2.2E-16). A ROC curve was plotted to measure how well the 
new obesity risk scores predict obesity. Interestingly, the predictive power was poorer than before 
with a new AUC = 0.478 (95% CI = 0.416-0.539). This shows that for this cohort of autistic 
patients, obesity PRS could even be slightly worse than random guessing (Figure 2B). 
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Figure 2. Plots generated using 2,317 sequenced autistic patients from the SSC and the set of 55 obesity-
associated SNPs. (A) BMI measurements plotted against our calculated obesity polygenic risk scores. Scores on 
the x-axis are plotted as standard deviations from the mean. The line of best-fit represents a linear model of the 
data and has equation BMI~0.250(PRS) + 18.651. A 95% confidence interval for the linear model is shown as 
the gray shaded area around the line of best-fit. (B) A ROC curve for obesity (BMI≥30) using obesity PRS as 
the predictor. 
 
 
Because the risk scores calculated from obesity-associated SNPs were weakly correlated with BMI 
in the SSC autistic cohort, we attempted to identify novel SNPs in the autistic patients associated 
with obesity. First, we performed single-SNP linear regressions for each of the 568,737 sequenced 
SNPs against BMI, controlling for age and sex. Treating each SNP independently does not account 
for interrelationships such as linkage disequilibrium but allows for the identification of all SNPs 
associated with BMI, either in a causal manner or not. Considering the high number of separate 
linear regressions being conducted, we applied a Bonferroni p-value correction to maintain a strict 
p-value cut-off for significance and to avoid the multiple comparisons problem. After p-value 
correction, only five SNPs had a p-value < 1.0 and only one of those SNPs had a statistically 
suggestive p-value < 0.1 (Table 1). With seemingly insignificant results, we ran a LASSO 
regression of BMI on a multivariate model including age, sex, and all 568,737 SNPs together. We 
ordered the input variables based on significance from our multiple single-SNP linear regressions 
to take advantage of LASSO’s iterative algorithm that converges when the model stabilizes and 
significantly reduces run-time. This regression uses shrinkage to eliminate variables unrelated to 
BMI and resulted in 6 SNPs with a non-zero regression coefficient (Table 1). 
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Table 1. The left side of the table contains all variables with a non-zero coefficient from our LASSO regression 
of BMI on age, sex, and all 568,737 SNPs. The right side of the table shows the results from multiple separate 
single-SNP linear regressions of BMI on age, sex, and each individual SNP. All SNPs from correlations with a 
p-value less than 1.0 after Bonferroni correction are shown below. 

LASSO regression  Multiple single-SNP linear regressions 
Variable Coefficient  SNP p-value Coefficient 
Intercept 12.934  rs12273646 0.097 19.488 

rs12273646 3.453  rs11573755 0.184 19.016 
rs11573755 2.414  rs7231745 0.358 9.285 
rs7231745 1.277  rs37117 0.640 3.566 

age 0.625  rs9730633 0.871 3.464 
rs37117 0.433     

rs9730633 0.171     
rs909714 0.007     

 
 
Observing that SNPs associated with obesity in the general population might not be indicative of 
obesity in an autistic cohort, we expanded our analysis to look for SNPs known to be associated 
with both BMI and autism. 941 SNPs that were known to be associated with BMI from the GIANT 
Consortium were compiled into a set [21] and 159 SNPs known to be associated with autism from 
The Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium formed 
another set [22]. Comparing the two sets, only SNP rs4981693 was known to be associated with 
both phenotypes. The SNP is located within the non-coding RNA gene LOC102724934. We 
examined the expression of this SNP in obese versus non-obese autistic patients from our cohort. 
Of the 2,316 patients with autism who had genotype information on this SNP, 76 were obese 
(BMI≥30) and 2,240 were non-obese. An odds-ratio measuring the association of this SNP to 
obesity was calculated to be 1.160 with a 95% confidence interval of 0.692-1.675.  
 
 

Discussion 
 
The results from using the initial 32 obesity-associated SNPs showed that the calculated risks 
scores were unindicative of BMI in an autistic population. The linear regression between BMI and 
risk score had a near-zero coefficient (Figure 1A) and the correlation was weak and insignificant. 
This was interesting because these exact same 32 SNP were used to calculate obesity risk scores 
in a non-autistic population done by another study. The weights for each SNP and the method used 
to calculate the risk score were identical [16]. In their study, they used the Atherosclerosis Risk in 
Communities cohort and found a correlation between BMI and obesity PRS of r = 0.13 (p-value < 
1E-30) compared to our correlation coefficient of r = 8.028E-03 (p-value = 0.699). Furthermore, 
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their risk score as a predictor for obesity had an AUC = 0.57 (95% CI 0.55-0.58) as opposed to 
our AUC = 0.516 (95% CI 0.454-0.578). This shows that the SNPs used as predictors for BMI and 
obesity in non-autistic populations are not similarly as useful in an autistic population. Our 
regression model between obesity and risk score using the Partner’s Biobank cohort also illustrated 
how these SNPs were more strongly and significantly correlated with obesity in a non-autistic 
population. This difference suggests that obesity phenocopies in individuals with autism might 
follow a different mechanism compared to cases of obesity in individuals without autism. 
 
Our results from using an extended set of 55 obesity associated SNPs further supports our 
conclusion that obesity SNPs from a non-autistic population may not be representative of the 
phenotype in an autistic population. This larger set was an improved predictor for BMI in the SSC 
cohort as compared to the smaller set of 32 SNPs, but the correlation between BMI and risk score 
was still weak (r = 5.474E-02) and the AUC from using the risk score as a predictor of obesity 
(AUC = 0.478) fell below that of random choice. However, this set of SNPs still performed 
significantly better in the Partners Biobank cohort and was a much stronger predictor of obesity in 
a non-autistic population. The improved performance from a larger set of SNPs is to be expected 
as the additional SNPs can help explain more of the variance for a complex trait like BMI. This 
benefit has been noted and supported by other studies [23, 24]. A strong performance of risk scores 
as a predictor of BMI and obesity in non-autistic populations has been demonstrated using other 
populations as well such as the National Longitudinal Study of Adolescent Health Sibling Pairs 
[25]. In fact, the obesity SNPs that the authors used in that study largely overlap with the SNPs 
used in our study.  
 
Although the reasons behind the significant difference in predictive power of obesity risk scores 
in our autistic cohort and other non-autistic cohorts is most likely due to pathway differences in 
the manifestation of obesity in these different populations, there could be other smaller 
contributing factors as well. One common and proven issue when it comes to comparing results 
between different populations is population stratification, the idea that different populations might 
have systematic differences in allele frequencies. Other studies have clearly outlined the presence 
of population stratification and its influences in association studies [11, 12], and this issue may be 
apparent in our study as well. Additionally, our autistic cohort from the Simons Simplex Collection 
is a population of autistic children from the ages of 4 to 18. The distribution of BMI has been 
shown to shift upwards as the age of a population increases [26] and given that the non-autistic 
cohorts used in our study generally consists of adults, discrepancies in the distribution of BMI 
between populations may have slightly affected our results as well. A comparison of the BMI 
distribution from our SSC cohort and from the general U.S. adult population can be found here 
(Supp. Figure S1). 
 
The SNPs we found to be strongly correlated with BMI in our autistic cohort from running multiple 
single-SNP linear regressions were identical to the SNPs identified from our LASSO regression. 
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These results give confidence that the identified SNPs play a role in obesity in autistic patients. 
Interestingly, none of the SNPs we identified have previously been implicated to be involved in or 
associated with obesity, possibly suggesting a novel obesity pathway specific to individuals with 
autism. However, plotting BMI against the genotypes of those SNPs in our cohort shows how our 
regression models might be overfitting to our sample (Supp Figures 2A-F). We are limited by the 
size of our autistic cohort and a larger sample size would be required to confirm the association of 
the variants with obesity. In addition, the SNP rs4981693 we found from other studies [21, 22] and 
known to be associated with both obesity and autism was not found to be significantly associated 
with obesity in our autistic cohort with an odds ratio that had a 95% confidence interval of 0.692-
1.675. This suggests that this SNP does not offer the same explanatory power for obesity in patients 
with autism as opposed to those without autism, further supporting the prediction that another 
mechanism may be at play. 
 
In trying to explain the increased prevalence of obesity in patients with autism, previous studies 
provide evidence of alternative pathways for the disease [1, 3]. One study has shown that subjects 
with autism have diminished grey matter in an area of the hypothalamus responsible for producing 
oxytocin [27]. Oxytocin is known to play a role in regulating feeding, specifically by reducing 
food intake and increasing energy expenditure [28, 29]. Therefore, perhaps a decrease in oxytocin 
levels in patients with autism may affect their ability to regulate eating that could lead to an 
increased risk for obesity. The hormone oxytocin has already been suspected of playing a role in 
the regulation of social behaviors in patients with autism [30]. With a growing body of evidence 
suggesting a role in other neuropsychiatric diseases as well including eating disorders, it is likely 
that the deregulation of the oxytocinergic system observed in autistic individuals provides a new 
pathway for obesity [31]. Additional studies will be required to learn more about the role of 
oxytocin in obesity for individuals with ASD and solidifying alternative pathways for the disease. 
 
Our study found that well known SNPs associated with obesity are not as strongly representative 
of the disease in autistic populations. There are limitations to our study such as our lacking sample 
size that reduces the power of our regression models and prevents us from generalizing our results 
to larger populations. To further validate our results would require using a larger cohort of patients 
with ASD. In addition, more research in studying novel obesity pathways is needed, specifically 
those related to autism. 
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