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Abstract 

Background  

Population structure among study subjects may confound genetic association studies, and lack 

of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) 

project largely contains individuals of European ancestry, but the final release (v8) also includes 

up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in 

GTEx provides an opportunity to improve portability of this research across populations and to 

further measure the impact of population structure on GWAS colocalization.  

Results 

Here, we identify a subset of 117 individuals in GTEx (v8) with a high degree of population 

admixture and estimate genome-wide local ancestry. We perform genome-wide cis-eQTL 

mapping using admixed samples in six tissues, adjusted by either global or local ancestry. 

Consistent with previous work, we observe improved power with local ancestry adjustment. At 

loci where the two adjustments produce different lead variants, we observe only 0.8% of tests 

with GWAS colocalization posterior probabilities that change by 10% or more. Notably, both 

adjustments produce similar numbers of significant colocalizations. Finally, we identify a small 

subset of GTEx v8 eQTL-associated variants highly correlated with local ancestry (R2 > 0.7), 

providing a resource to enhance functional follow-up. 

Conclusions 

We provide a local ancestry map for admixed individuals in the final GTEx release and describe 

the impact of ancestry and admixture on gene expression, eQTLs, and GWAS colocalization. 

While the majority of results are concordant between local and global ancestry-based 

adjustments, we identify distinct advantages and disadvantages to each approach. 

 

 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2019. ; https://doi.org/10.1101/836825doi: bioRxiv preprint 

https://doi.org/10.1101/836825
http://creativecommons.org/licenses/by-nc/4.0/


3 
 

Keywords 

local ancestry, population structure, admixture, eQTL, colocalization, GTEx, gene expression 

 

Background 

Thousands of genome-wide association studies (GWAS) have been published to date. 

Subsequently, large-scale expression quantitative trait loci (eQTL) datasets are studied to 

provide insights for genetic variants associated with complex traits. While the majority of such 

studies focus on single-ancestry populations or relatively homogeneous populations, the latest 

Genotype-Tissue Expression (GTEx) project (v8) includes up to 17% of individuals with non-

European or admixed ancestry (1). Genetic studies with individuals of admixed ancestries may 

suffer from additional challenges due to complex population substructure (2,3). Such 

substructure can lead to confounding genetic associations, and insufficient control may increase 

spurious findings (4,5).  

Global ancestry (GA), or the proportion of different ancestral populations represented 

across the entire genome, is routinely used to adjust for population structure in genetic 

association studies (6). This approach has the advantage of averaging genomic background 

effects and was used in eQTL mapping for the main GTEx releases (1,7). The potential 

disadvantage of correcting only for GA is that it does not precisely account for ancestry at any 

specific locus. The can be problematic when genes are differentially expressed in ancestral 

populations of admixed individuals. In contrast, local ancestry (LA), or the number of alleles 

derived from distinct ancestral populations at a given locus, may be more appropriate for 

population structure adjustment in admixed populations but typically suffers from much longer 

compute time and can be prone to errors in estimation at a variant level (5,8–12).  

LA adjustment in genetic association studies has been shown to reduce type I error rate 

(false positives) (13–15) and sufficiently control for population stratification (13,15). However, 
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the power of adjusting for LA is highly dependent on the underlying genetic architecture of the 

admixed population (8,12,15–17); some have recommended using LA adjustment as a method 

for follow-up of candidate loci as opposed to a discovery tool for GWAS (8,14,18). Fewer 

studies have investigated the effect of LA adjustment on eQTL mapping, demonstrating modest 

improvements in discovery power (5,10). Recently, Zhong et al. have demonstrated that the use 

of LA adjustment, compared to GA adjustment, can improve eQTL mapping while controlling for 

type I error rate and increasing statistical power (10). However, the implications of these 

differences for GWAS colocalization were not assessed.  

In this study, we describe the degree of admixture in the GTEx v8 cohort and estimate 

LA for a subset of 117 individuals with at least 10% admixture from European, African, and 

Asian ancestral populations. LA explains at least 10% of variance in residual expression for 1% 

of expressed genes (N=183). We perform cis-eQTL mapping in six tissues and assess the 

differences between LA adjustment and GA adjustment in the context of this admixed 

subcohort. For the subset of loci where the two ancestry adjustment methods yield different 

results, we perform GWAS/eQTL colocalization analyses with 114 previously published GWAS. 

We assess the effect of within-continent and between-continent population stratification of the 

eQTL-associated variants (eVariants) on differences in colocalization between the two ancestry 

adjustment methods. Finally, we identify a small subset of GTEx eVariants whose genotypes 

are highly correlated with LA, providing a resource to enhance functional follow-up of these loci.   

 

Results 

The final GTEx release includes African and Asian population admixture 

The GTEx v8 release includes whole genome sequencing and gene expression data for 

838 individuals, including 103 African American and 12 Asian American individuals (self-

reported ancestry). Genome-wide genotype-based principal components (gPCs) reflect GA and 
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have been used to adjust for population structure in both GWAS (6,9,13) and eQTL studies (7). 

Therefore, to understand the degree of population admixture represented in GTEx, we 

compared the first two gPCs with self-reported ancestry (Figure 1a). Figure 1a demonstrates 

that gPC1 and gPC2 reflect African and Asian ancestry, respectively; the majority of European 

Americans (698 out of 714 individuals) cluster together near the origin, suggesting that the 

samples in this cluster are relatively homogeneously European-descendent. These patterns are 

observed with finer resolution when genotype PCA is performed with combined GTEx and 1000 

Genomes data (Figure S1, Additional file 1). A subset of 117 individuals with more than 10% 

population admixture, referred to as 117AX, were retained for downstream analyses (Figure 1a; 

Table S1, Additional file 2).  

The 49 tissues used for QTL discovery in the GTEx v8 release have varying 

representation of 117AX. 27 of these tissues have a sample size of at least 30 admixed 

individuals (Figure 1b). Sample sizes for all 49 tissues are provided in Figure S2 (Additional file 

1). The pituitary and 13 central nervous system tissues have the lowest representation of 117AX 

relative to total sample sizes per tissue (mean 7%). We selected six tissues in which to perform 

cis-eQTL calling based on a minimum admixed sample size of 60 (19) and well-studied trait 

relevance (20–24): subcutaneous (subc.) adipose (N=84), tibial artery (N=89), lung (N=64), 

skeletal muscle (N=98), tibial nerve (N=78), and not sun-exposed (NSE) skin (N=71).  

Using RFMix (25), we performed three-population (European, African, and Asian) LA 

estimation on 117AX (see Methods; Figure 1c; Figure S3, Additional file 1). We provide these 

LA calls as a resource for further investigation of GTEx data (Table S2, Additional file 2). For 

each individual, genome-wide LA was averaged to provide GA estimates. Every sample in 

117AX has less than 90% GA from any one ancestral population out of Europe, Africa, and 

Asia. We correlated these GA proportions with the first five gPCs, which quantitatively 

demonstrates the strong relationships between gPC1 and African ancestry (r = -0.98) and gPC2 

and Asian ancestry (r = 1.0; Figure 1d).  
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In order to assess the importance of LA in the context of gene expression, we adapted 

an existing approach (26) to calculate the proportion of variance explained in 117AX gene 

expression by LA after accounting for GA and vice versa (see Methods; Figure 1e; Table S3, 

Additional file 2). On average, across genes in our six tissues of interest, GA explains more 

variance in gene expression than LA at the transcription start site for each gene (P-value < 

2.2e-16, two-sided t-test). However, LA explains at least 10% of variance in residual expression 

for 1% of expressed genes (N=183). At the extreme, LA explains 32% of variance in 

residualized expression of TBC1 Domain Family Member 3 (TBC1D3), a hominoid-specific 

oncogene (27), in Tibial Artery; LA also explains significantly more variance in TBC1D3 

expression than GA in all six tissues tested (two-sided t-test; P-value = 0.008). In a separate 

study of copy number, TBC1D3 was among the most variable (median 38.13, variance 93.2 

copies among 159 individuals) and population-stratified (mean 29.28, 34.17, and 43.86 copy 

numbers in European, Asian, and Yoruban samples, respectively) human gene families (28). 

Such biological evidence for residual variance in gene expression captured by LA supports the 

importance of considering LA in the context of eQTL mapping.  

 

Local ancestry adjustment increases power for discovery in cis-eQTL mapping 

 We performed cis-eQTL mapping in the admixed population (117AX) to identify 

associations between variants and gene expression within each of the six tissues indicated in 

Figure 1b (see Methods; Table S4, Additional file 2). We implemented linear models to test for 

an association between each gene-cis-variant pair. For each pair, two association tests were 

performed: the first to adjust for global ancestry (GlobalAA); the second to adjust for local 

ancestry (LocalAA). Importantly, LocalAA accounts for the number of European, African, and 

Asian alleles for each variant while GlobalAA uses the first five genotype principal components 

as a proxy for global ancestry, implementing the same ancestry adjustment used in the GTEx 

eQTL calling pipeline. 
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A quantile-quantile plot of the nominal P-values (-log10) of all association tests in 

GlobalAA and LocalAA demonstrates that LocalAA has more significant P-values (represented 

in the highest quantiles) relative to GlobalAA for five of the six tissues, with NSE skin showing 

more similar P-value distributions between the two methods (Figure 2a). This corroborates 

previous findings that LA adjustment results in more significant nominal P-values than GA 

adjustment in the context of cis-eQTL mapping (10).  

We applied a nominal P-value cutoff of 1e-6 to identify significant eQTLs; this threshold 

closely approximates the threshold required for an eQTL to subsequently pass a false discovery 

rate cutoff of 5%. More eGenes are called with LocalAA than GlobalAA in all six tissues (P-

value=0.016, binomial probability) (Figure 2b). The majority of eGenes overlap between the two 

methods, a subset of which have different associated lead eVariants between LocalAA and 

GlobalAA (Figure 2c). This subset of eGenes provided an opportunity to characterize 

differences in lead eVariants identified between the two ancestry adjustment methods and was 

the focus of downstream analyses.  

eGenes are considered unique to an ancestry adjustment method if the association 

reaches significance only with that method (nominal P-value cutoff of 1e-6 ; 839 total instances 

across tissues for 794 unique genes). The majority (64%) of eGenes that are unique to one 

method replicate at a P-value within one order of magnitude of the other method (Figure 2d). 

However, 29 of these eGenes only replicate in the other method at a P-value more than two 

orders of magnitude less significant (10 and 19 eGenes unique to LocalAA and GlobalAA, 

respectively). 15 of these 29 eGenes are in NSE skin; none are in tibial artery. Interestingly, in 

20 out of these 29 eGenes, despite the large difference in statistical significance, the lead 

variants between the two adjustment methods are identical.  

 

Different eQTL ancestry adjustments yield minor differences in GWAS colocalization  
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 Colocalization analyses assess the degree to which independent signals of association 

share the same causal variant (posterior probability of colocalization 4, PP4). We performed 

colocalization between our twelve sets of eQTL summary statistics (one per ancestry 

adjustment method per six tissues) and 114 GWAS using COLOC (29). We restricted 

colocalization tests to loci surrounding the subset of eGenes with different lead eVariants 

between LocalAA and GlobalAA (Figure 2c; Table S5, Additional file 2). We hypothesized that 

improvements in eQTL analysis by either LocalAA or GlobalAA would be reflected in 

systematically higher posterior probabilities for eQTL/GWAS colocalization. 

While GWAS colocalization was only tested at loci for which the two eQTL ancestry 

adjustment methods yielded different lead eVariants, colocalization probabilities are not 

systematically different between the two methods (P-value = 0.64, two-sided t-test); only 0.8% 

of tests have an absolute difference in PP4 greater than 0.1 (Figure 3a). Furthermore, loci with 

strong evidence of colocalization (PP4 > 0.5) have similarly high posterior probabilities of 

colocalization regardless of correction methods, indicating that robust effects are captured by 

both ancestry adjustments. Colocalizations are considered stronger with one ancestry 

adjustment method if two conditions are met: 1) PP4 > 0.5 for only one of the two eQTL 

adjustment methods; and 2) the absolute difference between GlobalAA PP4 and LocalAA PP4 

is greater than 0.3. 23 loci meet these conditions (see Figure S4, Additional file 1).  

For the 23 loci where one adjustment method has a stronger colocalization, most 

colocalization probabilities are stronger for GlobalAA versus LocalAA (N = 16). However, the 

locus with the strongest colocalization probability favors colocalization with LocalAA (LocalAA 

PP4 = 0.79; GlobalAA PP4 = 0.49). There is evidence that this colocalization between the 

LocalAA AP3S2 eQTL in subcutaneous adipose and the DIAGRAM Consortium Type II 

Diabetes (T2D) GWAS is biologically relevant (30). Variants near AP3S2 have previously been 

associated with T2D in at least 8 other GWAS, one of which was included in the DIAGRAM 

meta-analysis (31). Many of these GWAS were performed in diverse or non-European 
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populations (32–37). The eQTL tissue in this colocalization, subcutaneous adipose, also reflects 

known adipose pathologies associated with T2D (38). However, overall, we observe that neither 

LocalAA nor GlobalAA performs significantly better in the context of colocalization.  

 

Within- and between- continent genetic differences impact colocalization  

 We tested if population differentiation in LocalAA or GlobalAA lead eVariants affects 

colocalization probabilities. Fixation index, or FST, is a measure of genetic population 

differentiation, where higher FST indicates more divergent allele frequencies between two 

populations (2,39). We calculated FST,within and FST,between for each variant tested during eQTL 

calling using 1000 Genomes populations and allele frequencies (see Methods; Figure 3b). We 

only included African and European populations in this analysis due to the relatively small 

representation of Asian ancestry in 117AX (7.3%, Figure 1c).  

To define FST,within for a variant, we calculated FST for 10 pairs of European 

subpopulations and 10 pairs of African subpopulations; FST,within was defined as the maximum of 

these 20 values. As expected, FST is generally higher within Africa than within Europe, reflected 

in the higher number of variants with FST,within derived from a pairwise African population 

comparison (Figure 3c) (40). For example, 10% of tested variants have a maximum FST 

between LWK (Luhya in Webuye, Kenya) and GWD (Gambian in Western Divisions in the 

Gambia) out of the 20 pairwise subpopulation comparisons.  

 Linear regression was used to test the association between colocalization probability 

and FST,within and FST,between of lead eVariants. This regression was performed independently for 

each ancestry adjustment method; observations were limited to the strongest colocalization 

(maximum PP4) per eGene per tissue. A positive coefficient indicates that higher values of the 

predictor (FST) are associated with stronger colocalization probabilities (maximum PP4). Both 

FST,within and FST,between are significant predictors of maximum PP4 for both ancestry adjustment 

methods (Figure 3d). Interestingly, FST,within has a larger coefficient than FST,between in both 
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regressions. In other words, within-continent population differentiation at the lead eVariant has a 

greater impact on colocalization than between-continent population differentiation at the lead 

eVariant, regardless of the eQTL ancestry adjustment method.  

Furthermore, the coefficients for FST,within are the same between GlobalAA and LocalAA. 

If GlobalAA and LocalAA colocalizations are similarly affected by within-continent population 

differentiation, then both ancestry adjustment methods may correct for within-continent 

population structure to similar degrees. This similarity suggests both LocalAA and GlobalAA 

may benefit by accounting for finer-scale reference populations or inclusion of more gPCs but 

does not exclude the potential that some high FST variants are also enriched for functional 

effects.  

 

A subset of GTEx v8 eVariants are highly correlated with local ancestry 

One justification for performing LocalAA as opposed to GlobalAA is the unique ability to 

avoid confounding by local population structure (15). We examined the reported GTEx v8 

significant associations for evidence of confounding with LA. For each eVariant in the set of all 

significant associations across tissues, we found the variance in genotype explained by LA (the 

number of African and Asian alleles at the locus) across all 838 genotyped individuals (see 

Methods). The vast majority of eVariants are not strongly correlated with LA when the entire 

genotyped population of 838 individuals is considered (Figure 4a).  

However, transcriptome sample sizes within each eQTL tissue are often less than the 

full sample size (mean 310; standard deviation 171). Therefore, the degree of confounding 

between a variant’s genotype and LA in the context of eQTL mapping can vary between tissues. 

To this point, Figure 4b provides the variance in genotype explained by LA for eVariants when 

only subjects with matched genotype and expression data are included in the regression. Unlike 

Figure 4a, an eVariant has as many data points as tissues in which it is reported in a significant 

association. 20 eVariants whose corresponding eGenes have a colocalization probability of 
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greater than 0.5 are also annotated (41). Notably, 19 unique eVariants have proportions of 

variance explained by LA greater than 0.9 (Table S6, Additional file 2). These variants have 

large differences in reference allele frequencies between 1000 Genomes populations. For 

example, one such variant, chr1_1170732_A_G_b38 has reference allele frequencies of 0.993, 

0.996, and 0.124 in European, East Asian, and African populations, respectively. A 

comprehensive list of the 2,556 GTEx v8 significant associations where LA explains more than 

70% of the variance in the eVariant genotype are provided in Table S7 (Additional file 2). We 

expect that functional follow-ups of eQTL/GWAS colocalizations will benefit from cross-

referencing with these data. 

 

Discussion 

 In this study, we describe population admixture in the GTEx v8 release and assess the 

impact of ancestry adjustment on eQTLs discovered in an admixed subcohort (117AX).  

GTEx expands representation from non-European populations, including up to 17% of non-

European or admixed individuals. For eQTL mapping, the selection of tissues was limited to 

those with adequate 117AX samples sizes (>60). We recognize that these relatively small 

sample sizes will remain an important limitation of multi-population analyses in the GTEx study. 

Future comparable multi-tissue studies will benefit from increased representation of diverse 

populations.  

The observed trend that GA explains more variance in residual gene expression than 

LA, on average, agrees with the previous finding that GA explains significantly more heritability 

of gene expression than LA (42). However, LA can explain a large proportion of variance in GA-

corrected gene expression for a subset of genes. Interestingly, a gene whose expression is 

largely explained by LA, TBC1D3, is a highly expanded gene whose copy number is stratified by 

ancestral population (28,43). Given that copy number expansion is a local phenomenon that has 
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limited effects on global gene expression, population differences in gene copy numbers creates 

a scenario in which we would expect LA to explain more variance in gene expression than GA. 

This biological explanation for the differences in TBC1D3 expression explained by ancestry 

highlights a specific benefit of considering LA during eQTL mapping.  

We decided to include only admixed samples in eQTL mapping on the basis that we 

would not expect LocalAA to perform any better than GlobalAA in homogeneously European 

individuals, where the LA covariates are expected to be constant across the majority of the 

genome. For this same reason, we also excluded homogeneously African (N=14) and Asian 

(N=9) samples from eQTL calling. However, this does not preclude the use of LocalAA as an 

ancestry adjustment approach in a cohort with individuals of both homogeneous and 

heterogeneous ancestry. To this point, Zhong et al. reached similar conclusions when 

comparing LA and GA adjustments in either a strictly African American population or a cohort of 

mostly European-ancestry individuals with less than 25% African Americans (10).  

 After performing cis-eQTL mapping in six tissues, we observe that LocalAA has a 

modest improvement in power, consistent with previous observations (10,44). We also observe 

that most eQTLs agree between LocalAA and GlobalAA; the majority of eGenes that are called 

uniquely by one ancestry adjustment method are at the threshold of significance. Both of these 

observations are consistent with previous findings by Zhong et al. (10). Further, eGenes called 

uniquely by GlobalAA are not confounded by LA. Neither do differences in variance in gene 

expression explained by LA or GA explain these eGenes uniquely called by one method. This, 

combined with the fact that both methods indicate the same lead eVariant more often than not, 

even when the association only reaches significance with one method, suggests that eGenes 

uniquely called by GlobalAA may not in fact driven by confounding with LA. Instead, LocalAA 

and GlobalAA may have relatively more power for eQTL discovery in different contexts.  

To our knowledge, the effects of LA adjustment in eQTL mapping on GWAS 

colocalization have not previously been explored. We find that neither LocalAA nor GlobalAA in 
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eQTL mapping of six different tissues yields systematically stronger colocalizations across 114 

GWAS. In general, stronger colocalization events are captured by both ancestry adjustment 

methods. Contrary to our expectations, within- and between-continent population differentiation 

of the LocalAA and GlobalAA eVariants do not differentially impact colocalization probabilities. 

One colocalization that is significantly stronger with LocalAA than GlobalAA is between the 

AP3S2 eQTL in subcutaneous adipose and the DIAGRAM T2D meta-analysis of GWAS in 

diverse populations, including admixed populations. Possibly LA adjustment in eQTL mapping 

of an admixed population results in stronger colocalizations with GWAS of admixed individuals, 

but more work is required to demonstrate this.  

Finally, the additional step of LA inference and the incorporation of LA into models for 

eQTL calling or GWAS makes LocalAA significantly more computationally intensive than 

GlobalAA. Therefore, a significant improvement of power for discovery or fine-mapping would 

be required to motivate widespread implementation of LocalAA in large genetic association 

studies. Several groups recommend that GlobalAA is sufficient to control for type I error during 

screening for genetic associations, but LocalAA at loci of interest may improve fine-mapping or 

provide better effect estimates (5,8,9,18). Thus a candidate approach may be taken to adjust for 

LA only at a subset of loci where LA is expected to improve fine-mapping, which would reduce 

computational cost and maximize the potential benefit of LA adjustment.  

A practical example of this is performing eQTL mapping with GlobalAA and 

subsequently assessing residual variance explained by LA for discovered eQTLs. To assess 

this, we post-hoc analyzed GTEx release eVariants to discover 2,556 associations that have 

large amounts of variance explained by local ancestry (>70%). It remains a challenge to select a 

threshold for simply excluding QTLs based on the degree of variance explained by local 

ancestry. We provide this list to enhance future analysis of eQTL/GWAS associations. 
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Conclusions 

Despite claims of the importance of accounting for LA when performing genetic 

association studies in admixed populations (15,16), the impact of LocalAA in the context of 

eQTL mapping has been relatively underexplored. We performed genome-wide LA inference in 

an admixed subcohort of GTEx v8 and provide these LA calls as a resource to further 

investigate GTEx data. We then performed cis-eQTL mapping in this admixed subcohort to 

compare GlobalAA and LocalAA ancestry adjustment methods. We observe a modest 

improvement in power with LocalAA relative to GlobalAA. While both methods yield the same 

lead eVariant for the majority of eGenes, small subsets of eGenes have different lead eVariants 

between methods or pass the eQTL significance threshold in only one of the methods. We do 

not see systematic differences in colocalization probabilities when we perform colocalization 

between GWAS and eQTLs where the two ancestry adjustments yield different lead eVariants. 

Interestingly, higher within-continent divergence of lead eVariant allele frequencies is 

significantly associated with higher GWAS colocalization probabilities for both eQTL ancestry 

adjustment methods. Finally, we provide a resource of GTEx v8 eVariants that are potentially 

confounded by LA. Together, these results describe the population structure of admixed 

individuals in the final GTEx release and demonstrate limited confounding based on local 

ancestry. 

 

Methods 

Genotype data 

 We used GTEx v8 release genotype data (1). Briefly, whole genome sequencing (WGS) 

was performed for 899 samples from 869 unique GTEx donors, to a median depth of 32x. 

Alignment to the human reference genome build GRCh38 was performed with BWA-MEM 

(http://bio-bwa.sourceforge.net). Variants were called with GATK HaplotypeCaller v3.5, and 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2019. ; https://doi.org/10.1101/836825doi: bioRxiv preprint 

https://doi.org/10.1101/836825
http://creativecommons.org/licenses/by-nc/4.0/


15 
 

multi-allelic sites were split into biallelic sites using Hail v0.1 (http://hail.is). After performing 

quality control, the final analysis freeze set contained variant calls from 838 donors. SHAPEIT 

v2 (45) was used to impute missing calls and phase the sample- and variant-QCed variant call 

file (VCF). 

 

Genotype principal component analysis 

 We used GTEx v8 release genotype principal components (gPCs) (1). gPCs were 

computed based on the sample- and variant-QCed WGS VCF using EIGENSTRAT (6). PCA 

was performed on a set of LD-independent variants with a call rate ≥ 99% and MAF ≥ 0.05. LD 

pruning was performed using PLINK 1.9 (46). 

 

Gene expression data  

 We used GTEx v8 release normalized gene expression data; detailed method 

descriptions can be found in the main GTEx publication (1). RNA sequencing (RNA-seq) was 

performed at the Broad Institute using the Illumina TruSeqTM RNA sample preparation protocol, 

which was based on polyA+ selection of mRNA and was not strand-specific. RNA-seq data 

were aligned to the human reference genome GRCh38/hg38 with STAR v2.5.3a (47). Gene-

level expression quantification was performed using RNA-SeQC (48) with a gene annotation 

available on the GTEx Portal (gencode.v26.GRCh38.genes.gtf). Quantified gene expression 

(TPM and raw counts) for each tissue was filtered and normalized according to the GTEx eQTL 

discovery pipeline (https://github.com/broadinstitute/gtex-pipeline/tree/master/qtl). For each of 

the six tissues in which we chose to perform eQTL mapping, we subsetted normalized gene 

expression to include only 117AX samples.  

 

Local ancestry inference 
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LiftOver (49) was used to convert the phased GTEx v8 whole genome sequencing 

variant call file (VCF) (dbGaP accession number phs000424.v8) from reference genome Human 

Build 38 (hg38) to Human Build 37 (hg19) for compatibility with 1000 Genomes and the hg19 

HapMap genetic map. The resulting GTEx VCF was filtered to include self-reported African 

Americans and Asian Americans (103 and 12 individuals, respectively) as well as 25 admixed 

individuals as identified by the genotype PCA (Figure 1a), resulting in 140 individuals. 1000 

Genomes Phase 3 phased VCFs (ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/release/20130502) were filtered to include biallelic variants 

and only individuals in the following populations: Han Chinese in Beijing, China (CHB); 

Japanese in Tokyo, Japan (JPT); Utah Residents (CEPH) with Northern and Western European 

Ancestry (CEU); Yoruba in Ibadan, Nigeria (YRI); Gambian in Western Divisions in the Gambia 

(GWD); Mende in Sierra Leone (MSL); Esan in Nigeria (ESN). The intersection of autosomal 

variants in the resulting GTEx and 1000 Genomes VCFs (N = ~28M) was identified for LA 

inference. For compatibility with RFMix v1.5.4, variant positions were converted from base pairs 

to centimorgans (https://github.com/joepickrell/1000-genomes-genetic-maps) using the HapMap 

hg19 genetic map (ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2011-01_phaseII_B37).  

RFMix v1.5.4 (https://sites.google.com/site/rfmixlocalancestryinference/) was run in 

PopPhased mode with the additional --forward-backward option. All other parameters were set 

to the default values. The 1000 Genomes populations were used as reference panels for 

European (EUR), Asian (ASN), and African (AFR) populations as follows: EUR (CEU, N=99); 

ASN (CHB, JPT, N=207); AFR (YRI, GWD, MSL, ESN, N=405). This generated posterior 

probabilities for the assignment of each phased allele to each of the three reference populations 

(EUR, AFR, ASN). An allele was assigned to a reference population only if the posterior 

probability was at least 0.9; otherwise, the local ancestry was indicated as “unknown”. For each 

individual, consecutive phased alleles with the same LA assignment were collapsed into BED 

files of haplotype blocks with the same LA (Table S2, Additional file 2). These BED files were 
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then used to calculate global ancestry fractions per individual. Scripts used to collapse LA into 

BED files and calculate global ancestry fractions are available at 

https://github.com/armartin/ancestry_pipeline.  

Of the 140 GTEx v8 individuals whose LA was inferred, 117 individuals with less than 

90% global ancestry in a single population (among EUR, AFR, and ASN) were defined as 

admixed and retained for downstream analyses. This cohort is referred to as 117AX in this 

paper. VCFtools (50) was used to filter the hg19 GTEx VCF down to variants with a minor allele 

count (MAC) of at least 10 in 117AX. For the remaining 8,088,666 variants, the LA BED files 

(Table S2, Additional file 2) were used to count the number of EUR, AFR, ASN, and unknown 

alleles at each SNP within 117AX. These allele counts were used as LA covariates in eQTL 

mapping with LocalAA.  

 

Variance in gene expression explained by ancestry  

 We adapted an existing approach (26) to quantify variance in gene expression explained 

independently by LA or GA. For each expressed gene in each tissue, we performed two-step 

regressions to quantify variance explained by LA (or GA) in gene expression residualized by GA 

(or LA). First, we regressed out the effects of one type of ancestry on gene expression using the 

following multiple linear regression, where 𝛾" is the effect of ancestry covariate 𝑎"	on gene 

expression 𝑔, and 𝑒' is the residual: 

𝑔 =)𝛾"𝑎"

*

"+,

+ 𝑒' 

𝑚is five for GA (five genotype PCs) and two for LA (numbers of alleles assigned to African or 

Asian ancestry at the gene’s transcription start site). Then, we quantified variance in 

𝑒'explained by the other type of ancestry (𝑎∗) by taking the coefficient of determination from the 

following linear regression:  
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𝑒' =)𝛾"𝑎"∗
*

"+,

+ 𝜖 

This process was performed for both LA and GA. All regressions were performed with the lm() 

function in R. 

 

cis-eQTL mapping with LocalAA and GlobalAA  

Genome-wide cis-eQTL mapping in 117AX was performed in six GTEx v8 tissues: 

Subcutaneous adipose (subc. adipose), tibial artery, lung, skeletal muscle, tibial nerve, and not-

sun-exposed suprapubic skin (NSE skin). All methods in this section were performed 

independently for each tissue. Normalized gene expression files filtered to include only 117AX 

samples were used to calculate 15 hidden confounders with PEER (51) according to the GTEx 

eQTL discovery pipeline (https://github.com/broadinstitute/gtex-pipeline/tree/master/qtl). 

Additional sample-level covariates, including gPCs, WGS sequencing platform (HiSeq 2000 or 

HiSeq X), WGS library construction protocol (PCR-based or PCR-free), and donor sex were 

extracted from GTEx v8 release covariate files. 

We assumed an additive genetic effect on gene expression and fit the following linear 

model for each gene-variant pair (gene g, variant v): 

𝐺 = 𝛽𝑉	 +)𝛼"𝑐"

6

"+,

+)𝛾"𝑎"

*

"+,

+ 𝑒 

where 𝐺 is expression of gene g across 117AX samples in the given tissue, 𝑉 is the number of 

alternate alleles at variant v, coded as 0, 1, or 2; 𝛽 is the effect of the alternate allele of variant v 

on gene g expression; 𝛼" is the effect of the technical or biological covariate 𝑐" on gene g 

expression, including donor sex, sequencing platform, library construction protocol, and fifteen 

hidden confounders; 𝛾" is the effect of ancestry covariate 𝑎"on gene g expression; and 𝑒 is the 

residual. Any of the 8,088,666 filtered variants within a megabase of the transcription start site 

of a gene were tested for an association with that gene’s expression. The significance of an 
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association was taken to be the two-sided P-value corresponding to the t-statistic of the 𝛽 

coefficient estimate. All regressions were performed with the lm() function in R.  

For each gene-variant pair, two iterations of this regression were performed: one to 

adjust for global ancestry (GlobalAA), in which case each 𝑎" is one of the first five genotype 

principal components (gPCs); and one to correct for local ancestry (LocalAA), in which case 

there are two ancestry covariates, coded as the number of alleles at variant V assigned to 

African and Asian populations, respectively. gPCs were not included as covariates in the 

LocalAA model. For LocalAA, samples with any number of alleles with unknown ancestry for the 

given variant were excluded; the covariates matrix was necessarily reconstructed for each 

variant tested. This is unlike GlobalAA, where the GA covariates are also sample-level 

covariates and can be reused for every association test.  

After eQTL mapping was completed, the most significant (lead) eVariant (or eVariants, in 

the case of tied P-values) was identified for each gene, independently for the two ancestry 

adjustment methods. A nominal P-value cutoff of 1e-6 was applied to identify significant 

associations. LD (R2) was calculated between single pairs of GlobalAA and LocalAA lead 

eVariants for each eGene using PLINK (46); an eGene was defined as having different lead 

eVariants between the two ancestry adjustment methods if 1) there was no intersection between 

the two sets of lead eVariants and 2) the LD between the tested pair of GlobalAA and LocalAA 

lead eVariants was less than 1.0.  

 

Variance in GTEx eVariant genotype explained by local ancestry  

In order to identify potential confounding by LA in GTEx v8 eQTLs, we first needed LA 

calls for all 838 individuals with both WGS and RNA-seq data (1). The remaining 698 individuals 

for which we did not perform LA inference have self-reported European ancestry and cluster 

tightly together in gPC space (Figure 1a). Therefore, we approximated LA in these 698 

individuals to two European alleles at all tested loci. Then LA covariates for this analysis were 
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the union of computationally inferred LA in 140 admixed or non-European individuals and 

approximated LA in the remaining 698 homogeneously European individuals.  

We calculated the variance explained by LA in the genotype of each eVariant implicated 

in reported GTEx v8 eQTLs. The following linear model was fit for each eVariant: 

𝑉 = 𝛼 ∗ 𝐴𝐹𝑅 + 𝛽 ∗ 𝐴𝑆𝑁 + 𝑒 

where V is the genotype vector (number of minor alleles), and AFR and ASN are the two LA 

covariate vectors, representing the number of alleles assigned to African and Asian populations, 

respectively. The resulting coefficient of determination of each regression was recorded. We did 

this in two settings: 1) for the set of unique eVariants across all GTEx v8 eQTLs, where 

genotypes and LA for all 838 individuals were included in the regression (Figure 4a), and 2) for 

all eVariants within each tissue, with samples subsetted to those with matched gene expression 

in the given tissue (Figure 4b). 1) provides a global picture of the degree of correlation between 

eVariant genotypes and LA while 2) reflects the actual samples used to call eQTLs in each 

tissue. For 2), we also intersected GTEx v8 eQTLs with GTEx v8 GWAS colocalization results 

(see below) to identify loci with high posterior probabilities of colocalization between eQTLs and 

GWAS (PP4 > 0.5) associated with eVariants whose genotypes are highly correlated with LA 

(R2 > 0.7).  

 

Imputation of GWAS summary statistics  

 Harmonization and imputation of previously published GWAS are described in detail by 

(41) and (1). Briefly, summary statistics were harmonized and lifted over to hg38; an in-house 

implementation of BLUP (Best Linear Unbiased Prediction) (52,53) was used to impute z-scores 

for those variants reported in GTEx without matching data in the GWAS summary statistics.  

 

Colocalization between eQTL and GWAS signals 
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Colocalization between 117AX eQTL signals and GWAS signals was performed with 

COLOC (29). For each of the six tissues in which eQTL mapping was performed, the eQTL 

summary statistics were subsetted to include only associations with eGenes that had different 

lead eVariants between the two ancestry adjustment methods (LocalAA and GlobalAA) in any of 

the six tissues. Colocalization was performed between each subset of eQTL summary statistics 

(one for each ancestry adjustment method and tissue; twelve in total) and each of the 114 

imputed GWAS summary statistics. Nominal P-value cutoffs of 1e-5 and 1e-4 were applied to 

the GWAS and eQTL summary statistics, respectively, in order to select genes that were eligible 

for colocalization analyses. The reference genome, used to calculate eQTL effect allele 

frequencies, was the same GTEx VCF used for eQTL mapping in 117AX. eQTL effect sizes and 

standard errors and GWAS P-values were used for colocalization. The seed variant was set to 

be the GWAS lead variant to have identical seed variants for corresponding colocalizations in 

the two ancestry adjustment methods; variants within a 500kb window of the seed variant were 

considered. The COLOC “type” parameter in the coloc.abf() function was set to “quant” (rather 

than case-control “cc”) for all GWAS due to the unavailability of ratios of cases to controls. 

Figure 4b references colocalizations identified by an independent analysis of the 114 

imputed GWAS and eQTLs reported in the GTEx v8 release (41). Briefly, COLOC was used to 

perform colocalization with variants in the cis-window of each gene with at least one eVariant 

(cis-eQTL per-tissue q-value < 0.05). For binary GWAS traits, case proportion and 'cc' trait type 

parameters were used. For continuous GWAS traits, sample size and 'quant' trait type 

parameters were used. In both cases, imputed or calculated z-scores were used as effect 

coefficients in Bayes factor calculations. enloc enrichment estimates (54) were used to define 

data-based priors for COLOC in a consistent manner with other GTEx companion papers (41).  

 

FST analyses 
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 All FST were obtained using the VCFtools calculation of Weir and Cockerham FST (55). 

For each variant, 20 within-continent FST were calculated: 10 pairwise calculations between the 

five 1000 Genomes European populations (CEU, TSI, FIN, GBR, IBS), and 10 pairwise 

calculations between the five 1000 Genomes continental African populations (YRI, LWK, GWD, 

MSL, ESN). The maximum of these 20 within-continent FST were recorded as FST,within for each 

variant. These subpopulations were also combined into European and African populations to 

calculate FST between Africa and Europe (FST,between) for each variant. 

 Linear regression was used to assess the effect of FST,between and FST,within of lead 

eVariants on GWAS colocalization probability. First, we considered results from LocalAA 

analyses. We identified the highest LocalAA colocalization probability per eGene per tissue 

(PP4LocalAA). Then we matched each eGene with FST,between and FST,within for the corresponding 

LocalAA lead eVariants (FST,between,LocalAA and FST,within,LocalAA, respectively). If there was more than 

one LocalAA lead eVariant for an eGene, FST,between,LocalAA and FST,within,LocalAA were defined as the 

maximum of the values within the tied lead eVariants. Then we fit the following model: PP4LocalAA 

~ FST,between,LocalAA + FST,within,LocalAA. We repeated this process for GlobalAA analyses. Coefficient 

estimates for FST,between,LocalAA, FST,within,LocalAA, FST,between,GlobalAA, and FST,within,GlobalAA are provided in 

Figure 3d. Loci tested for colocalization were matched between the two regressions.  
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Figure 1. Population admixture in the GTEx v8 cohort.  
(a) Genotype principal components (gPCs) reflect global ancestry. Points are colored by self-
reported ancestry. Circled points indicate the 117 individuals defined as admixed (117AX). (b) A 
subset of GTEx v8 tissues have an 117AX sample size of at least 30. The six tissues selected 
for cis-eQTL mapping in 117AX are colored and shown in bold. (c) LA tracts collapse 
consecutive variants on a single parental chromosome with the same ancestry assignment into 
contiguous haplotype blocks. The fine spatial resolution of local ancestry contrasts with the 
global ancestry proportions indicated in the legend. Haplotypes (columns) are paired by 
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individual; rows are autosomal chromosomes. Individuals are sorted from left to right by 
decreasing proportions of European admixture. (d) gPCs are highly correlated with global 
ancestry proportions averaged from genome-wide local ancestry. (e) Local (or global) ancestry 
explains a fraction of variance in residual gene expression after correcting for global (or local) 
ancestry. Local ancestry is defined as the local ancestry at the transcription start site of each 
gene; global ancestry is the first five gPCs. Points are colored by tissue; colors correspond with 
(a). VE = variance explained. 
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Figure 2. Comparison of cis-eQTLs called by LocalAA or GlobalAA.  
Cis-eQTL mapping was performed in six tissues. A nominal P-value threshold of 1e-6 was 
applied to identify significant associations. (a) A Q-Q plot of nominal P-values for all tests 
indicates a modest improvement of power in most tissues when using LocalAA. (b) LocalAA 
identifies more eGenes than GlobalAA in all six tissues (P-value=0.016, binomial probability). 
(c) The majority of eGenes are identified by both ancestry adjustment methods (gray + purple). 
The two methods report different eVariants for a small fraction of these eGenes (purple). 
Numbers indicate eGenes uniquely called by one of the ancestry adjustment methods, which 
are plotted in (d). (d) The majority of eGenes unique to one ancestry adjustment method fall 
near the significance threshold, as indicated by the rug plot. Dotted lines demarcate the region 
outside of which eGenes in one method have a nominal P-value at least two orders more 
significant than the alternate method. Points are colored by tissue.  
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Figure 3. Impact of eQTL ancestry adjustment methods on colocalization with GWAS.  
(a) Each point represents a GWAS/eQTL colocalization test near a single eGene (colored by 
eQTL tissue). The y- and x- axes respectively show the posterior probability of colocalization 
(PP4) for this test using either LocalAA or GlobalAA eQTL statistics. We performed 
colocalization for the subset of loci where LocalAA and GlobalAA called eQTLs with different 
lead eVariants (nominal P-value threshold of 1e-4). Points are labelled with eGenes and GWAS 
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traits if the colocalization is stronger with one eQTL ancestry adjustment method (see main 
text). SR = self-reported; DBD = diagnosed by doctor. (b-d) In order to identify the effect of 
population structure on PP4, we calculated within- and between- continent divergence in allele 
frequencies (FST) for all variants tested during eQTL mapping. We used continental African and 
European 1000 Genomes subpopulations for these calculations. (b) Between-continent FST 
(FST,between) is the FST between Africa and Europe. Within-continent FST (FST,within) is the maximum 
of 20 FST calculated for pairwise subpopulations within Europe or Africa. (c) provides the 
frequency in which each of the 20 pairwise comparisons per variant yields FST,within. (d) We 
tested the effects of FST,within and FST,between of lead eVariants on PP4. For each eQTL adjustment 
method, the best colocalization (maximum PP4) per eGene per tissue was identified; we 
regressed the maximum PP4 on FST,within and FST,between of the method’s lead eVariant. A positive 
regression coefficient indicates that larger values of the predictor (FST) are associated with 
higher maximum probabilities of colocalization. Error bars indicate standard errors of the 
coefficient estimates. ** and *** indicate P-value < 1e-3 and P-value < 1e-5, respectively.  
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Figure 4. Correlation between genotype and local ancestry in GTEx v8 eVariants. 
(a) The majority of GTEx v8 eVariants are not confounded by local ancestry when all 838 
genotyped individuals are considered. (b) Local ancestry explains more than 70% of the 
variance in genotypes for a subset of GTEx v8 eVariants. Unlike (a), (b) considers only 
individuals with matched genotype and gene expression data for each tissue, which reflects the 
sample used to call these significant associations. eQTLs with posterior probabilities of GWAS 
colocalization of at least 0.5 are labelled with the eGene and GWAS trait.  
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