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Abstract 

 

Rare genetic variants may play a prominent role in schizophrenia. We report on the to date largest whole exome 

sequencing study of schizophrenia case-control samples from related populations and combine with other available 

sequence data, analysing in total 34,084 individuals (14,302 cases). Three genes showed significant association at FDR 

< 0.10 (SETD1A, TAF13 and MKI67) and gene-set analyses highlighted the involvement of the synaptome and 

excitatory neurons, and demonstrated shared architecture with high-functioning autism. 
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Main text 

Schizophrenia is one of the most disabling psychiatric disorders. With heritability estimates of 60-80%1 2 genetics is the 

most prominent etiologic component and the genetic architecture is extremely polygenic including both common and 

rare variants3-5. Common variants have been estimated to explain ¼-1/3 of the heritability3,6, leaving a large proportion 

of the liability unaccounted for and indicating that rare variants may play a substantial role as recently observed in other 

complex traits7.    

Schizophrenia has a markedly reduced fecundity suggesting that variants with large effect sizes will swiftly be removed 

from the population by purifying selective pressure8. Accordingly, most rare variants identified so far are large copy 

number variants occurring de novo in affected offspring9 and only a single gene, SETD1A, harbouring deleterious de 

novo point mutations, has been robustly identif10,11.  Whole exome sequencing studies of rare variants in case-control 

samples have found an increased burden of particularly ultrarare protein-disrupting or -damaging variants (dURVs) 

among cases, identifying gene sets enriched for these variants and demonstrating that larger sample sizes are needed to 

identify the specific risk genes hit by dURVs4,5,12. 

Here we investigate the largest case-control sample of schizophrenia exomes to date, from a confined geographic region 

in Scandinavia with genetically13. To empower gene discovery, we combine the case-control results with results on 

published de novo mutations, and follow-up the top-findings in case-control exome data from the UK10KConsortium14 

as well as targeted sequence data15. In total we analyse sequence data from 34,084 individuals, including 14,302 cases. 

 

First, we set to analyse with the same methods three datasets from Scandinavian populations: a previously investigated 

Swedish sample (dbGAP phs000473.v2.p2, 4,969 cases and 6,245 controls5), a Danish cohort from iPSYCH16 (3,710 

cases and 6,375 controls) and a second Danish cohort recruited in clinical centres (1,866 cases and 1,093 controls). All 

samples were filtered to exclude relatedness, population structure, and outliers in the distribution of ultra-rare variants 

(Online Methods 1.2, 1.3 and 2.1). The analyses were performed on each dataset, and a random-effect meta-analysis 

was conducted to combine the results, in a total sample of 7,744 cases and 11,176 controls (Supplementary Figure S1). 

Based on results from previous exome studies and similar results from the present exomes (Online Methods 2.4), we 

focused on ultra-rare variants (URVs), defined as singletons in the dataset under analysis and absent from the ExAC 

database, after excluding samples with psychiatric disorders. The variants were further classified as synonymous, 

missense non-damaging, damaging and disruptive according to previous studies (Genovese et al. 5, and Online Methods 

2.5, Supplementary Figure S2). First, we investigated the burden of different URV categories on loss-of-function 

intolerant genes17: the analysis was conducted by doing logistic regression on the count of URV for each individual and 
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using a large number of covariates to account for potential confounding factors (Online Methods 3.1 and 3.2); the 

results (Figure 1) showed a significant burden of disruptive URVs (1.54*10-13 p-value for the meta-analysis). A similar 

trend was observed for missense damaging URVs, although the burden was significant only in the Swedish dataset, 

supporting that damaging and disruptive URVs (dURVs) can be combined together, as previously reported5. The burden 

of dURVs in Loss of Function (LoF) intolerant genes showed a p-value of 4.89*10-6. A similar association was 

observed for disruptive, damaging and dURVs also in missense-constrained genes (Supplementary Figure S3). We 

selected dURVs as our primary analysis.  We followed up the genome-wide burden analysis, by regressing on the 

counts of dURVs for a number of gene-sets previously identified based on pathways and expression analysis5: the 

results of this analysis (Supplementary Figure S4) showed a significant increase in genes annotated in the synaptome (p-

value 8.3*10-3), and in genes regulated by CHD8 (1.5*10-4), a transcription factor previously implicated in autism18,19. 

Interestingly, among 102 autism spectrum disorder (ASD) risk genes recently identified by the Autism Sequencing20, 

the 53 ASD predominant genes showed a significant genome-wide burden, driven by disruptive URVs (p-value 

9.07*10-4) (Supplementary Figure S4 and Supplementary Table 1), while the 49 genes enriched for variants in ASD 

cases with severe neurodevelopmental delay (ASD NDD genes) did not show any increased burden.  

The regression analysis with the counts of synonymous URVs on the same sets, performed as control, showed no 

significant results (Figure S4). 

 

The analysis of individual genes was performed with SKAT (Online Methods 5 and 6, and Supplementary Figures S5 

and S6), and results of dURV analysis are shown in Supplementary Table 2 with the top ranking genes EFCAB4B 

(CRACR2A P = 2.4*10-4) and DLGAP4 (P = 3.2*10-4) encoding, respectively, calcium release activated channel 

regulator 2A and DAP-4 which is a signaling molecule found at the postsynaptic density in neuronal cells that can 

interact with potassium channels and receptors. Although not surpassing genome-wide significance it is of note that 

both genes have been linked with schizophrenia or other mental disorders21,22.   

To increase the power for gene discovery we jointly analyzed our case-control dataset together with de novo mutation 

data from 1,077 case-parents trios23, using an extended version of the Transmission And De novo Association 

(extTADA) test developed by H. Nguyen and colleagues24.  As recommended by the authors, we clustered the data in 

different subsets, based on their covariates matrix in order to minimise the effect of covariates, which cannot be 

accounted for in the model itself (Online Methods 7.1). We identified subset of data with high correlation between the 

results of the genome-wide URV burden analysis with and without covariates (Supplementary Figure S7) and used 

these subsets as datasets to be combined in the extTADA analysis. The results suggest that 5.4% of genes in our sample 

contribute to the risk of schizophrenia (i.e. approximately 1,000 genes). In this analysis, we also found that the mean 
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relative risk for dURVs is 1.23 (Supplementary Figure S8). Three genes showed significant association at FDR 0.10, 

including SETD1A, TAF13 and MKI67 (Table 1). These results lend further support to SETD1A and, by adding 

evidence to previous reports5,23,24, suggest TAF13 and MKI67 as genes conveying risk of schizophrenia if hit by 

dURVs. TAF13, encoding a transcription initiation factor, is involved with neuronal development and 

homozygous TAF13 missense mutations may cause a Mendelian recessive form of intellectual disability and 

microcephaly25. MKI67 may, in addition to functions in regulating the cell cycle, have specialized functions in the 

adult nervous system26. 

Among the six top genes (FDR<0.20, Table 1), SETD1A and MKI67 harbour dURVs in the UK10K exome dataset 

(1,352 cases and 4,769 controls)14, and for both genes the same direction of effect was observed (Supplementary Table 

3). In a targeted sequencing study (5,207 cases and 4,991 controls15), the single dURV seen was in MKI67, among the 

controls. The scarcity of dURVs in the top-ranking genes in the UK cohorts indicates that studies of ultrarare variants in 

closely related populations may be an advantageous approach. Combining the results on SETD1A and MKI67 from all 

datasets with a weighted Z-method yielded a p-value of 1.36*10-7 and 1.87*10-4 for the two genes, respectively (Online 

Methods 8.2). 

 

Finally, a gene-set enrichment analysis performed with hypergeometric Fisher test on the top-100 extTADA 

associations confirmed the results of the genome-wide regression analysis, by highlighting the importance of CHD8 

regulated genes, synaptome genes, as well as genes expressed in excitatory neurons (Figure 2, Online Methods 9 and 

full results in Supplementary Table 4`). The results also reinforced the enrichment of ASD-predominant genes while the 

ASD-NDD genes showed no enrichment, suggesting that the (rare variant) genetic architecture of schizophrenia is 

primarily shared with high-functioning ASD and not (or to a lesser extent) with ASD ascertained for 

neurodevelopmental delay. 

 

The results presented underline the role of rare variants in schizophrenia, reveal novel aspects of the genetic 

architecture, and suggest that larger studies are needed to identify more of the specific risk genes and involved biology.  
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Figure 1 

 

Figure 1 caption: Odds Ratio estimates and 95% confidence intervals for genome-wide enrichment of different variant 

annotations in loss-of-function constrained (pLI>0.9) genes in each of the dataset, and random-effects meta-analysis. 

Datasets: Danish Biobank dried blood spots (DBS), SCZ clinical centres in Denmark (Clin), Swedish dataset from 

Ganna et al. (SWE), random-effects meta-analysis (metaanalysis). 
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Figure 2 
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Figure 2 caption: Enrichment results of top-100 significant genes in the extTADA analysis. Gene Ratio represents the 

ratio of significant genes belonging to the set compared to total significant genes. “padjust” indicates the FDR adjusted 

p-value (Benjamini-Hochberg method).  

 

Table 1: 

Gene BF PP q value Gene Description  

SETD1A 3525.40 0.99 0.00498 

SET domain 

containing 1A 

TAF13 293.20 0.94 0.03088 

TATA-box binding 

protein associated 

factor 13 

MKI67 81.60 0.82 0.07987 

marker of 

proliferation Ki-67 

EPHA2 64.64 0.79 0.11352 EPH receptor A2 

ZDHHC5 41.89 0.70 0.15010 

zinc finger DHHC-

type containing 5 

CEP104 27.50 0.61 0.19024 

centrosomal protein 

104 

 

Table 1 caption: Genes at q-value < 0.2, in the analysis performed with extTADA. The results are annotated with the 

gene function, as reported in WikiGene  
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Online Methods - Meta-analysis of Scandinavian Schizophrenia Exomes 
 
 

1.  The study sample 

1.1 iPSYCH Sample 
This sample (denoted “DBS” in figures and tables) is nested in the iPSYCH2012 sample, which is a population based 
case-cohort study sampled from a baseline cohort consisting of all children born in Denmark between May 1st 1981 and 
December 31st 20051. Cases were identified in the Danish Psychiatric Central Research Register2, that holds data on all 
individuals treated in Denmark at psychiatric hospitals and from outpatient psychiatric clinics. Cases in iPSYCH2012 
were identified with diagnoses of schizophrenia, bipolar affective disorder, affective disorder, ASD and ADHD up until 
2012. The control cohort constitute a random sample from the set of eligible subjects. DNA was extracted from Guthrie 
cards stored at the Danish Newborn Screening Biobank at Statens Serum Institute.  For exome sequencing, we selected 
a subset of about 20,000 ancestry-matched samples that were sequenced by the Genomics Platform of the Broad 
Institute in Cambridge, MA, using an Illumina Nextera capture kit and an Illumina HiSeq.  
For this study we selected 3,710 cases with schizophrenia and 6,375 controls from the control cohort with no diagnosis 
of schizophrenia.  
 
1.2 Clinical Sample 
This sample (denoted “CLIN” in figures and tables) included 1,866 and 1,093 controls. The patients were recruited 
from psychiatric hospitals in the Central Denmark and the Capital regions and diagnosed with schizophrenia according 
to ICD 10. The control individuals were ethnically Danish blood donors. 
The library preparation was performed according to the manufacturer’s instructions, and the exome was captured using 
Agilent SureSelect version 3 (Agilent Technologies, Santa Clara, CA, USA). The libraries were sequenced on an 
Illumina HiSeq2500 (Illumina, San Diego, CA, USA) at the BGI Centre in Copenhagen, Denmark. 
 
The study was approved by the Danish ethics committees and the Danish Data Protection Agency. 
 

 
2.  Data filtering 
 
2.1.  Phenotype Assignment and Ancestry 
Schizophrenia cases have been defined strictly as individual with diagnosis under criteria F20 under ICD-10, and 
controls as random sampled individuals without F20 diagnosis. European ancestry has been defined as having all 4 
grandparents from Denmark, Scandinavia or at least Europe: the ancestry information has been used to define the 
parameters for PCA filtering (see below). 
 
2.2.  Relatedness 
The filtered variants dataset has been used in order to identify a subset of variants to be used for relatedness analysis. To 
this goal, SNPs only have been chosen with HWE p-value> 0.000001, MAF > 0.02, call rate >90% using PLINK 1.9. 
Kinship analysis has been performed using PLINK and individuals with a score >0.2 have been flagged as related. 
Based on this list of pairs of related individuals, a prioritisation on phenotype has been performed in order to select only 
one individual from the pair and exclude the other. Individuals with schizophrenia have been preferentially included, 
individuals with uncertain phenotype have been always excluded, when both individuals were cases with schizophrenia 
a random selection was made. 
 
2.3.  Principal Component Analysis 
Principal Component Analysis has been performed in HAIL, using a list of variants selected from the sample according 
to the following criteria: (a) variants have been filtered in HAIL with a call rate >= 0.9, bi-allelic only and with minor 
allele frequency >1%; (b) the variants have been then processed in PLINK for LD pruning (“indep-pairwise option”) 
using a window of 2000, step size of 20 variants and r2 threshold of 0.01. 
Using the above selected list, the first 10 principal components have been calculated in HAIL and used to annotate the 
samples. The subsequent analysis has been performed in R. The European ancestry information (see above) has been 
used to select only the individuals within the 99% of the normal distribution of PC pairs of the individuals with EU 
ancestry. Individuals falling out of these defined limits were excluded from the analysis. Around 14% of the initial 

 
1 The iPSYCH2012 case-cohort sample: new directions for unravelling genetic and environmental architectures of severe mental 
disorders. (2018). The iPSYCH2012 case-cohort sample: new directions for unravelling genetic and environmental architectures of 
severe mental disorders., 23(1), 6–14. http://doi.org/10.1038/mp.2017.196 
2 Mors, O., Perto, G. P., & Mortensen, P. B. (2011). The Danish Psychiatric Central Research Register:. Scandinavian Journal of Public 
Health. http://doi.org/10.1177/1403494810395825 
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sample has been excluded. A further PCA analysis of the retained samples has been the performed in HAIL and we 
verified that no remaining variance in the PCs could be attributed to the ancestry: the new loadings have then been used 
as covariants for subsequent analyses. 
 
2.4.  Variants and samples filtering 
The analysis ready dataset has been prepared by excluding any variants with the following characteristics: 
1. Any call with a depth a) less than 10 or b) greater than 1000; 
2. Homozygous reference calls with a) GQ less than 25 or b) less than 90% reads supporting the reference allele; 
3. Homozygous variant calls with a) PL(HomRef) less than 25 or b) less than 90% reads supporting the alternate 

allele; 
4. Heterozygote calls with a) PL(HomRef) less than 25, b) less than 25% reads supporting the alternate allele, c) less 

than 90% informative reads (e.g. number of reads supporting the reference allele plus number of reads supporting 
the alternate allele less than 90% of the read depth), d) a probability of drawing the allele balance from a binomial 
distribution centered on 0.5 of less than 1e-9, or e) a location where the sample should be hemizygous (e.g. calls 
on the X chromosome outside the pseudoautosomal region in a male); 

5. Any call on the Y chromosome outside the pseudoautosomal region on a sample from a female. 
Following the application of these genotype filters, three call rate filters were used: first the removal of variants with a 
call rate below 90%, then the removal of samples with a call rate below 95%.  
Samples with total URV counts exceeding the 95 percentile of the distribution in each dataset have been removed from 
the analysis-ready dataset. Supplementary Figure S1 shows the composition of the datasets at the different stages of 
filtering. 
 
 
 
2.5.  Variant Annotation 
Variants have been annotated using Variant Effect Predictor, and the Loftee plugin. 
Ultra rare variants have been annotated according to the criteria described in Supplementary Figure 2, using Hail. 
Based on the above annotation, counts table have been produced using Hail. 
 
 
3.  Exome-wide analyses of ultra-rare variants 
 
3.1 Logistic regression analysis 
 
We followed a similar approach as in Genovese et al. 2016, and therefore we have calculated a logistic regression on 
the schizophrenia status for the whole genome with the following model 
 
𝑙𝑜𝑔𝑖𝑡(𝑆𝐶𝑍)~	𝑐𝑜𝑢𝑛𝑡𝑈𝑅𝑉𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 + 𝑆𝐸𝑋 + 𝐶𝑜𝑢𝑛𝑡𝑁𝑜𝑛𝑅𝑒𝑓𝑉𝑎𝑟𝑖𝑎𝑛𝑡𝑠 + 𝐶𝑜𝑢𝑛𝑡𝑇𝑜𝑡𝑆𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠 +𝑚𝑒𝑎𝑛𝐷𝑒𝑝𝑡ℎ

+ 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐷𝑒𝑝𝑡ℎ𝐴𝑏𝑜𝑣𝑒20 + 𝑏𝑖𝑟𝑡ℎ𝑌𝑒𝑎𝑟 + 𝑏𝑎𝑡𝑐ℎ𝑁𝑢𝑚𝑏𝑒𝑟 + 𝐿𝑖𝑏𝑟𝑎𝑟𝑦𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑆𝑒𝑡𝑁𝑢𝑚𝑏𝑒𝑟 + 𝑃𝐶1
+ 𝑃𝐶2 +	[… ] + 𝑃𝐶10 

 
The Odds ratio and 95% confidence intervals for the enrichment in different URV categories of missense-constrained 
genes as shown in Figure S3. 
 
 
3.2 Meta-analysis of the three datasets 
 
Once we obtained the significance estimates according to the approach described in 2.1, we used the R package 
“metagen” (https://cran.r-project.org/web/packages/metagen/index.html) in order to carry out the meta-analysis. We 
then plotted the fixed-effect results in each plot, as shown in Figure S3. 
 
 
4.  Gene-sets analyses of ultra-rare variants 
 
Also in this step, we followed a similar approach as in Genovese et al. 2016, and therefore we have calculated a logistic 
regression on the schizophrenia status for the whole exome with the following model 
 
𝑙𝑜𝑔𝑖𝑡(𝑆𝐶𝑍)~	𝑈𝑅𝑉𝑐𝑜𝑢𝑛𝑡𝑊ℎ𝑜𝑙𝑒𝐸𝑥𝑜𝑚𝑒 + 𝑆𝐸𝑋 + 𝐶𝑜𝑢𝑛𝑡𝑁𝑜𝑛𝑅𝑒𝑓𝑉𝑎𝑟𝑖𝑎𝑛𝑡𝑠 + 𝐶𝑜𝑢𝑛𝑡𝑇𝑜𝑡𝑆𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠 +𝑚𝑒𝑎𝑛𝐷𝑒𝑝𝑡ℎ

+ 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐷𝑒𝑝𝑡ℎ𝐴𝑏𝑜𝑣𝑒20 + 𝑏𝑖𝑟𝑡ℎ𝑌𝑒𝑎𝑟 + 𝑏𝑎𝑡𝑐ℎ𝑁𝑢𝑚𝑏𝑒𝑟 + 𝐿𝑖𝑏𝑟𝑎𝑟𝑦𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑆𝑒𝑡𝑁𝑢𝑚𝑏𝑒𝑟 + 𝑃𝐶1
+ 𝑃𝐶2 +	[… ] + 𝑃𝐶10 

 
Then we have calculated the logistic regression for each specific gene-set on the genome-wide count of variants as 
follows 
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𝑙𝑜𝑔𝑖𝑡(𝑆𝐶𝑍)~	𝑈𝑅𝑉𝑐𝑜𝑢𝑛𝑡	𝐼𝑛𝑆𝑒𝑡 + 𝑈𝑅𝑉𝑐𝑜𝑢𝑛𝑡𝑊ℎ𝑜𝑙𝑒𝐸𝑥𝑜𝑚𝑒 + 𝑆𝐸𝑋 + 𝐶𝑜𝑢𝑛𝑡𝑁𝑜𝑛𝑅𝑒𝑓𝑉𝑎𝑟𝑖𝑎𝑛𝑡𝑠

+ 𝐶𝑜𝑢𝑛𝑡𝑇𝑜𝑡𝑆𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠 +𝑚𝑒𝑎𝑛𝐷𝑒𝑝𝑡ℎ + 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐷𝑒𝑝𝑡ℎ𝐴𝑏𝑜𝑣𝑒20 + 𝑏𝑖𝑟𝑡ℎ𝑌𝑒𝑎𝑟
+ 𝑏𝑎𝑡𝑐ℎ𝑁𝑢𝑚𝑏𝑒𝑟 + 𝐿𝑖𝑏𝑟𝑎𝑟𝑦𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑆𝑒𝑡𝑁𝑢𝑚𝑏𝑒𝑟 + 𝑃𝐶1 + 𝑃𝐶2 +	[… ] + 𝑃𝐶10 

 
And in order to evaluate the effective contribution of the specific URV counts in the tested set, we have compared the 2 
model with ANOVA and used its chi-square test p-value as adjusted p-value for our analysis.  
 
 
Figure S4 shows the gene sets most significantly enriched genome-wide by dURVs, and comparison with enrichment of 
Synonymous URVs in the same sets.  
 
 
 
5.  Gene-level SKAT for rare variants 
 
We used RAREMETAL (see: Feng, S., Liu, D., Zhan, X., Wing, M. K., & Abecasis, G. R. (2014). RAREMETAL: fast 
and powerful meta-analysis for rare variants. Bioinformatics, 30(19), 2828-2829. 
http://doi.org/10.1093/bioinformatics/btu367 ) in order to: 1. calculate summary statistics on the 2 single studies, and 
generate covariance matrices In this step the first 4 Principal Components (see above final PCA in each dataset) have 
been used as covariates; 2. combine the two studies and perform meta-analysis of single variants association and gene-
collapsed methods (Burden, SKAT, VT, MB). 
Only variants with the following annotations have been included in the counts: transcript_ablation, 
splice_donor_variant, splice_acceptor_variant, stop_gained, frameshift_variant, stop_lost, start_lost, 
initiator_codon_variant, missense_variant, protein_altering_variant, splice_region_variant, 
incomplete_terminal_codon_variant, mature_miRNA_variant, TFBS_ablation, TF_binding_site_variant. 
 
 
Figure S5 shows a QQ-plot of the SKAT analysis performed with rare variants (i.e. MAF <0.05). 
 
6.  Gene-level SKAT for ultra-rare variants 
 
Using RAREMETAL and the same approach as described in paragraph 4, we have performed the same analysis on 
ultra-rare variants. 
Figure S6 shows the resulting QQ-plot of the SKAT performed with ultra-rare variants (see above, for criteria of 
annotation). 
Supplementary Table 2 contains the full results from the RAREMETAl run. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 25, 2019. ; https://doi.org/10.1101/836957doi: bioRxiv preprint 

https://doi.org/10.1101/836957


 14 

7.  extTADA Analysis 
 
7.1 Pre-analysis: identifying best clusters 
 
As described by extTADA developers in Nguyen et al. 2017, we sought to identify subsets of our data where covariates 
had little effect on the results on the logistic regression of the URV counts. 
 
Using the package mclust (https://cran.r-project.org/web/packages/mclust/index.html), we applied a parameterized 
Gaussian mixture model fitted by EM algorithm initialized by model-based hierarchical clustering using the matrix of 
covariates in the three different datasets. 
We summarized the resuls using Bayesian Information Criterion (BIC) for the specified mixture models numbers of 
clusters, and we identified the most optimal clusters in each datasets. 
Using this information, we partitioned the datasets and run on each partition the same logistic regression as described in 
2.1 above, with and without covariates, to verify the correlation of the 2 analysis results. 
 
Figure S7 shows regression analysis and resulting r2 values between p-values of logistic regression perform with 
covariates, and pvalues of logistic regression performed without covariates, within each of the clusters identified by 
multivariate cluster analysis of the datasets. 
 
Given the above shown results, we used the identified partitions to carry out the following extTADA analysis. 
 
7.2 extTADA analysis 
 
The extTADA analysis has been carried out as described in Nguyen et al. 2017, and for the de-novo counts and 
mutation rates we used the sample-adjusted ratios of mutation counts between 1,077 cases and 731 control presented in 
Nguyen work. 
 
Figure S8 shows the pairs plot of the extTADA analysis, showing the estimates for pi0 and hypergamma on each of the 
dataset clusters identified in the clustering analysis. 
 
 
8. Replication and combined p-values 
 
8.1 Replication studies in UK samples 
 
In order to replicate our results, the top 100 genes resulting from the extTADA analysis have been verified against the  
UK10K schizophrenia exome sequencing dataset (1,352 cases and 4,769 controls) and an Ion Torrent targeted 
sequencing study (5,207 cases and 4,991 controls) performed by Michael Owen, Michael O'Donovan, Elliot Rees and 
colleagues at Cardiff University. The dataset has been analysed using Firth’s penalized logistic regression model. 
 
8.2 Combined analysis of results 
 
Method for combining with formula form Jakob on effective counts 
The effective counts have been calculated as 

𝑵𝒆𝒇𝒇	 = 	𝟐	 ∗ 	(𝑵𝒄𝒂𝒔𝒆𝒔	 ∗ 	𝑵𝒄𝒐𝒏𝒕𝒓𝒐𝒍𝒔)	/	(𝑵𝒄𝒂𝒔𝒆𝒔	 + 	𝑵𝒄𝒐𝒏𝒕𝒓𝒐𝒍𝒔) 
Where Ncases and Ncontrols are the total number of cases and controls dataset used for the combined analysis. This is 
the number of cases in a hypothetical sample if it is assumed to be balanced with respect to controls and having the 
same statistical power as the current study with Ncases and Ncontrols. 
The above calculated effective counts have been used as weights, in order to combine the p-values of the different 
studies using the weighted sum z method implemented in the package metap (https://cran.r-
project.org/web/packages/metap/index.html) and according to suggestions in Zaykin DV (2011). “Optimally weighted 
Z–test is a powerful method for combining probabilities in meta–analysis.” Journal of Evolutionary Biology, 24, 1836–
1841. 
 
 
9.  Gene-set enrichment of top extTADA results 
 
We performed a gene-set enrichment of the extTADA results, for those genes with a posterior probability higher than 
0.5. 
In order to carry out the analysis, we have used the gene-sets described in Genovese et al. 2016, as well as the genes 
identified in Saeterstrom et al. 2019 (the full set of Autism Sequencing Consortium (ASC) genes, ASD-predominant, 
and genes for ASD with NDD). 
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The analysis has been performed with a hypergeometric test, using the function phyper from the stats package in R; p-
values have been adjusted using the Benjamini & Hochberg method (1995). 
Supplementary Table 3 reports the full results of this analysis, with FDR-corrected p-values. 
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