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Abstract 
Sex differences have been shown in laboratory biomarkers; however, the extent to which this is 
due to genetics is unknown. In this study, we infer sex-specific genetic parameters (heritability 
and genetic correlation) across 33 quantitative biomarker traits in 181,064 females and 156,135 
males from the UK Biobank study. We apply a Bayesian mixture model, Sex Effects Mixture 
Model, to Genome-wide Association Study summary statistics in order to (1) estimate the 
contributions of sex to the genetic variance of these biomarkers and (2) identify variants whose 
statistical association with these traits is sex-specific. We find that the genetics of most 
biomarker traits are shared between males and females, with the notable exception of 
testosterone, where we identify 119 female and 444 male-specific variants. These include 
protein-altering variants in steroid hormone production genes (POR, CYP3A43, UGT2B7). 
Using the sex-specific variants as genetic instruments for Mendelian Randomization, we find 
evidence for causal links between testosterone levels and height, body mass index, waist 
circumference, and type 2 diabetes. We also show that sex-specific polygenic risk score models 
for testosterone outperform a combined model. Overall, these results demonstrate that while sex 
has a limited role in the genetics of most biomarker traits, sex plays an important role in 
testosterone genetics.  

 
Introduction 
Sex differences have been documented in many phenotypes and diseases (Ober, Loisel, and 

Gilad 2008). Across quantitative traits, men and women typically have overlapping distributions 

with different means, examples of these traits include height and body mass index (BMI) 

(Winkler et al. 2015). Previous studies have demonstrated that some of this difference is due to 

sex-specific genetic factors (Ober, Loisel, and Gilad 2008; Khramtsova, Davis, and Stranger 
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2019) . Genome-wide Association Studies (GWAS) are increasingly used to identify variants that 

contribute to sex differences, and recently, gene-by-sex interactions have been identified across 

many phenotypes, including in anthropometric traits (Rask-Andersen et al. 2019; Randall et al. 

2013) , irritable bowel syndrome (Bonfiglio et al. 2018), and glioma (Ostrom et al. 2017).  

 

Examination of blood and urine laboratory biomarker levels reveal sex differences 

(Sinnott-Armstrong et al., n.d.); however, it is unknown to what extent these differences are 

related to underlying differences in the genetic architecture in men and women versus 

environmental effects. Narrow-sense heritability (h2) is the fraction of phenotypic variability 

explained by additive genetic variance. Heritability analysis helps to estimate the extent to which 

a trait can be predicted based on genetic risk rather than environmental factors. Initially, 

heritability was estimated from family studies using linkage; but now, with the increasing 

availability of genome-wide data, heritability is often estimated using genetic variants such as 

single nucleotide polymorphisms (SNP). SNP-based heritability represents the fraction of 

phenotypic variance due to additive effects from common genetic variation (Gamazon and Park, 

n.d.; Yang et al. 2017). Methods for estimating SNP-based heritability include LD-score 

regression, GREML (genomic related matrix restricted maximum likelihood), Haseman-Elston 

Regression, and the moment-matching approach (Bulik-Sullivan, n.d.; Hill 1978; Ni et al. 2018; 

Speed and Balding 2019). These methods are applied to a sample of unrelated individuals in 

order to quantify the proportion of phenotypic variance explained by all genetic variants in the 

GWAS.  
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At a trait-level, we can use the sex-specific heritabilities and the genetic correlation between 

males and females to examine what fraction of the genetics of that trait is shared between sexes. 

The UK Biobank is a prospective population-based study of 500,000 individuals that includes 

both genetic and phenotypic data, allowing for rich SNP-based estimation of heritability (Sudlow 

et al. 2015) . While most traits do not show sex effects on heritability(Ge et al. 2017),(Stringer, 

Polderman, and Posthuma 2018), previous studies have documented these differences are found in a subset 

of traits; for example, one study used traditional methods to identify differences in 11 out of 20 

quantitative traits in the Hutterite population (Pan, Ober, and Abney 2007), and two recent 

studies found differences in fat distribution (Pulit et al. 2019) and anthropometric traits in the UK 

Biobank population with SNP-based methods (Rawlik, Canela-Xandri, and Tenesa 2016). These 

results demonstrate that sex differences in genetic effects exist, but to date, no analysis of these 

sex differences across biomarkers has been conducted. 

 

Here we present an approach for estimating the extent to which genetic effects are correlated 

between sexes and identifying the proportion of relevant variants that have shared effects versus 

effects that are specific to each sex. We apply this approach to blood and urine biomarker data 

from the UK Biobank to examine sex differences in genetic effects, and find differences 

primarily in the genetic determinants of testosterone level. Furthermore, we use these identified 

sex differences to provide hypotheses about biological mechanisms including (1) examination of 

protein-altering variants and tissues where these genes are selectively expresssed, (2) causal 

inference using Mendelian Randomization to assess relationships between testosterone and other 

traits, and (3) improved genetic risk prediction models for testosterone. 
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Results 

Sex Effect Mixture Models 
We built a two-component Bayesian Sex Effect Mixture Model (SEMM) for estimating the 

contributions of sex to genetic variance using GWAS summary statistics (Figure 1). The model 

contains a null component, for variants that do not contribute to the trait, and a non-null 

component, for variants related to the trait, representing the genetic contribution to that trait. 

Variants driving male and female traits in the non-null component are modeled as 

two-dimensional vectors drawn from a multivariate normal distribution with a 

variance-covariance matrix that can be used to estimate the genetic correlation between sexes. To 

assess whether our approach obtains reliable statistical summaries on real GWAS data we 

applied the two-component SEMM to traits studied in (Rawlik, Canela-Xandri, and Tenesa 

2016)  and obtained comparable heritability and genetic correlation estimates (Supplemental 

Figure 1, Supplemental Table 1).  

 

We extended our two-component SEMM to a four-component model to identify genetic variants 

with different effects in males and females (Figure 1). To do so, we add two components; one 

for detecting genetic variants that have stronger effects in males and the other for detecting 

genetic variant with stronger effects in females. Similar to the two-component model, the 

four-component SEMM also contains a no-effect and shared-effect component. Through fitting 

this model, we are able to separate genetic variants with different effects between men and 

women from those with shared effects. A “shared” effect would mean that the same genetic 
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variant or set of variants have the same effect in males and females; “sex-specific” effects would 

indicate that the effect of these variants in males is different from that in females -- e.g. this 

variant is associated with higher lab test values in females but not in males. 

 

To demonstrate the efficacy of the four-component SEMM on real data, we applied the model to 

four traits, waist-hip ratio, arm-fat-ratio, leg-fat-ratio, and trunk-fat-ratio with previously 

identified sex-specific genetic effects (Rask-Andersen et al. 2019)(Randall et al. 2013). We 

identified 371, 528, 840, and 1,221 genetic variants that had significantly stronger associations in 

females in waist-hip-ratio, arm-fat-ratio, leg-fat-ratio, and trunk-fat-ratio respectively.  In males, 

only 13 variants were found in arm-fat-ratio (estimated False Discovery Rate (FDR) 4.7-6.6% 

across all traits and sexes, see Supplemental Tables 2a-c for numbers of variants, the false 

discovery rates of these estimates, and the estimated model parameters). Included in the 

female-specific waist-hip ratio variants were genetic variants proximal to four of the six 

previously reported genes (COBLL1/GRB14 , VEGFA, PPARG, HSD17B4). Fat ratio variants 

were proximal to one of the male- and fifty-four of the female-specific genes previously 

identified, indicating that we capture known sex-specific signal. (see Supplemental Table 2d for 

the overlap with (Rask-Andersen et al. 2019) and Supplemental Tables 3a-c  for the full lists of 

variants).  

 

Sex-differential heritability 
We applied the two-component SEMM to 33 biomarkers in the UK Biobank previously 

described in (Sinnott-Armstrong et al., n.d.) in order to estimate the male and female 
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heritabilities and the shared genetic effects between sexes for each trait (Methods and 

Supplemental Table 4 for a full list of these traits. While a large fraction of biomarkers had 

overlapping heritability estimates, we found sex differences in the heritability of  17 of 33 

biomarkers, including testosterone, IGF-1, Non-albumin protein, SHBG, total protein (higher in 

males than females), Apoplipoprotein B, C-reactive protein, cholesterol, creatinine, Cystatin C, 

eGFR, Gamma glutamyltransferase, HDL-C, LDL-C, Potassium in urine, Sodium in urine, urate 

(higher in females than males, Figure 2A). Of these, Cholesterol, Creatinine and Sodium in 

Urine, LDL, Testosterone, and Urate showed greater than 1.3 fold differences. For the majority 

of traits, the between-sex genetic correlations were close to 1.0, which indicates shared additive 

genetic effects between males and females (Figure 2B). By contrast, for testosterone, we 

estimated a genetic correlation of only 0.120 (95% HPD 0.0805 to 0.163), indicating that the 

genetic effects in males and females are largely non-overlapping (see Supplemental Table 5 for 

estimated heritabilities and genetic correlations for all biomarker traits).  

 

The heritability of a particular trait can vary across the lifetime, as genetics may explain more or 

less of the variation in that particular trait. Previous studies have found that pre- and 

post-menopausal women have different heritability for BMI, waist and hip measures (Kelemen et 

al. 2010), and lipid biomarkers (Middelberg et al. 2002). To examine this across biomarkers in 

the UK Biobank population, we applied our two-component SEMM to GWAS summary 

statistics for pre- and post-menopausal women. We found that the genetic correlations between 

pre- and post-menopausal women were generally close to 1.0, and all traits had higher or 

equivalent within-sex genetic correlations (between pre- and post- menopausal women) when 
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compared to between-sex correlations of either group with men (Figure 3, Supplemental Table 

6).  

Identification of genetic variants with sex-specific effects 
We applied our four-component SEMM to all 33 biomarkers to identify genetic variants with 

sex-specific and shared effects. In total, our analysis found 26,487 variants with effects on the 

traits of interest (Methods, Supplemental Table 7). As expected, the majority (25,880) of these 

variants showed shared effects between sexes, and most traits had few or no sex-specific 

variants. We identified 146 and 463 genetic variants with sex-specific effects in females and 

males respectively, the bulk of them corresponding to sex-specific genetic effects on testosterone 

levels (81.5% and 95.9% respectively; see Figure 4 to visualize the effect sizes of these variants 

and Supplemental Table 8  for a full list of genetic variants).  

 

Of the variants associated with testosterone, 55 male-specific variants, 1 female-specific, and 1 

shared variant are located on the X chromosome, this indicates enrichment of X chromosomal 

variants in male testosterone genetics and is consistent with previous reports (Ohlsson et al. 

2011)  In addition, we recover variants in known testosterone-related genes (AR, JMJ1DC, and 

FAM9B) specifically in males, but not in females.  

 

Previous studies of testosterone genetics have focused on males; here we identify multiple 

female-specific variants with strong positive or negative effects on testosterone. We examined 

the subset of these variants that encode missense variants in protein-coding regions; this included 

17 variants in females and 59 variants in males (listed in Supplemental Table 8a and 8b 
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respectively). In females, these variants include rs149048452 in STAG3  ( =-0.33 and 

p=8.94x10-9 in females) and rs17853284 in POR (  =-0.23 and p=8.91x10-15).  STAG3 encodes 

a part of the cohesin complex involved in meiosis, previously researchers have found that 

mutations in this gene are associated with premature ovarian failure (Le Quesne Stabej et al. 

2016) . POR encodes a cytochrome p450 oxidoreductase; deficiencies in this enzyme have been 

associated with amenorrhea, disordered steroidogenesis, and congenital adrenal hyperplasia 

(Idkowiak et al. 2005). Many female-specific missense variants are located in genes associated 

with steroid hormone production (LIPE, POR, CYP3A43, UGT2B7 ) or gamete formation 

( STAG3, MCM9, TSBP1, ZAN); although ZAN and TSBP1  encode the sperm zonadhesin protein 

and testis-expressed protein 1 respectively. To our knowledge, these associations with 

testosterone levels have not been discovered previously, and may help us to understand 

testosterone levels in women. 

 

To assess the replicability of these findings, we also examined the effect sizes of sex-specific 

variants in a held-out cohort of Non-British White individuals (n=10,546 males and 14,269 

females) (Supplemental Figure 3, Supplemental Table 9). For testosterone, we see a pattern of 

high concordance between the discovery and validation effect size estimates for sex the variants 

are associated with (R2 > 0.56) but not for the opposite sex (R2 < 0.05); this is also seen in the 

anthropometric traits we examined. The results indicate that variants we identify with SEMM 

have consistent but attenuated effects in a held-out cohort, which is expected due to winner’s 

curse (Palmer and Pe’er 2017)  .  
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Sex-specific genetic effects on testosterone are selectively expressed in liver 
Given the substantial number of sex-specific variants associated with testosterone levels, we 

sought to understand the impact of those variants on the tissue-specific expression of the nearby 

genes. Tissue-Specific Enrichment Analysis (TSEA) leverages gene expression data from the 

Genotype-Tissue Expression (GTEx) dataset to calculate the enrichment of tissue genes within a 

provided gene list. We applied TSEA to the genes containing variants associated with 

testosterone levels identified by SEMM. In the male component genes, we found enrichment for 

liver-specific genes (Benjamini-Hochberg corrected p = 3.91x10-7 respectively, Supplemental 

Figure 4). By contrast, the female component genes showed no significant enrichment after 

correction for multiple hypothesis testing (Benjamini-Hochberg corrected p > 0.1). In men, low 

serum testosterone levels are associated with cirrhosis and non-alcoholic fatty liver disease 

(NAFLD), with decreasing levels corresponding to increased disease severity (Sinclair et al. 

2015; Mody et al. 2015; Yim et al. 2018). Previous studies also find this inverse relationship in 

post-menopausal women (Sinclair et al. 2015; Mody et al. 2015; Yim et al. 2018); however, 

women with polycystic ovarian syndrome, which is associated with increased androgens, have 

increased risk of NAFLD independent of obesity status (Kim et al. 2017).  

Mendelian randomization of sex-specific genetic effects 
After identifying genetic variants with sex-specific effects on testosterone levels, we used 

Mendelian Randomization (MR) to examine whether these biomarkers are causally related to 

disease outcomes or other commonly measured traits. The intuition is that if a genetic variant is 

associated with differing levels of the biomarker, this provides a natural experiment, and we can 
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examine whether the predicted variance in that biomarker based on the genetic variant is 

associated with the outcome variance, which indicates a causal effect. Recently, an MR study 

found evidence for a causal link between higher testosterone levels and cardiovascular disease in 

men using JMJD1C  variants in the UK Biobank population (Luo et al. 2019) (Twelve of the 

genetic variants assigned to our male-specific component are located in JMJD1C ). Additional 

studies in men used testosterone variants as instruments to test for a causal relationship of 

testosterone on cognition (Zhao et al. 2016) and BMI (Eriksson et al. 2017), but did not find 

evidence of associations. While there is an extensive focus on testosterone levels in men,  (Luo et 

al. 2019) and  (Schooling et al. 2018)  performed the only testosterone MR study that included 

women. The authors found evidence of causal links between testosterone and a variety of 

cardiovascular risk factors in men or men and women combined, but not in women. However, 

this analysis was limited by their genetic instruments; a previous GWAS in post-menopausal 

women did not find genetic variants associated with testosterone levels (Prescott et al. 2012).  

 

The sex-specific testosterone variants identified by our analysis provide a unique opportunity to 

further examine the causal effects of testosterone levels in both men and women. We aggregated 

a total of 10 outcomes (Supplemental Table 10), including anthropometric traits (height, BMI, 

waist circumference [WC], and hip circumference), disease outcomes (heart disease, stroke, and 

diabetes), and sex-specific traits (ages at menarche and menopause, prostate cancer, Methods), 

and assessed the causal effects of these variants using the Inverse-Variance Weighted (IVW) 

Method (van der Plaat et al. 2019; Bowden et al. 2017)  (see Figure 5 and Supplemental Table 

11 for the results).  
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We found that testosterone levels showed evidence of a causal association with BMI and WC 

using female-specific variants as instruments with estimated effects consistent with higher 

testosterone increasing BMI and WC (p=8.0x10-5, 8.6x10-5; β = 0.10, 0.04; standard error = 

0.026, 0.01 respectively Supplemental Figure 5). A previous MR study on the UK Biobank 

examined testosterone for causal effects on waist circumference and BMI, but did not find 

evidence of an association (Schooling et al. 2018); however, it is possible we are able to find 

these associations because we used sex-specific genetic instruments. Both female and male 

variants showed evidence of a causal association with height (p=3.7x10-6 and 7x10-10), with 

higher testosterone associated with decreased height (β =-0.96 and -0.12, SE=0.021, 0.020). This 

is in contrast to previous findings of a positive relationship between height and testosterone 

levels at a population level (Schooling et al. 2018; Handelsman et al. 2015) and in a previous 

MR study (Schooling et al. 2018; Handelsman et al. 2015). For all of these associations, we 

observe similar effects in both the UK Biobank and GIANT datasets, and using MR Egger and 

IVW ( Supplemental Table 11 contains a full list of the effect sizes and p-values for all MR 

tests).  

 

Male-specific testosterone levels show evidence of an association with type 2 diabetes 

(p=3.6x10-5); higher testosterone is related to type 2 diabetes risk reduction (β =-0.52, SE=0.12) 

using data from the combined DIAGRAM and MetaboChip study (Morris et al. 2012). This 

association was found using the IVW method; MR Egger estimates indicate the relationship is in 

the reverse direction and is not significant ( =0.81, SE=0.59, p=0.18). Further work is required 
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to examine if this discrepancy is due to confounding. Several longitudinal studies have shown 

that low levels of testosterone predict the later development of type 2 diabetes or metabolic 

syndrome (Stellato et al. 2000; Antonio et al. 2015) . However, in a small clinical trial of 88 

individuals the effect of testosterone treatment on glucose metabolism was assessed finding no 

evidence of an effect (Gianatti et al. 2014). This study contradicted earlier data from the TIMES2 

clinical trial study (n=220) showing evidence of testosterone replacement therapy effects on 

insulin resistance and symptoms of hypogonadal men with type 2 diabetes or metabolic 

syndrome.  

Sex-specific multivariate polygenic risk prediction 
Motivated by the sex differences in testosterone genetics, we tested whether constructing 

sex-specifc polygenic risk scores (PRS) would have better performance for predicting 

testosterone levels than a sex-combined model. We applied batch screening iterative lasso 

(BASIL) to train multivariate penalized regression models for males and females independently 

(“sex-specific” model) and both males and females combined (“combined” model, Methods) 

(Qian et al. 2019). In male and female individuals separately, we compared the sex-specific to 

the combined models to see if building a separate model for each sex affected our ability to 

predict covariate-adjusted testosterone levels. We evaluated the model on a held-out test set, and 

found that the sex-specific PRS and the combined PRS are consistent (⍴ = 0.59 and 0.60, both 

with p < 2.2x10-16 for the correlation between the combined model and each of male and female 

models, respectively, Supplemental Figure 6). Still, we found the sex-specific PRS models have 

improved predictions of covariate-adjusted testosterone in the sexes they were trained on (R2 = 

0.31 and 0.18 for male and female, respectively) over the combined model (R2 = 0.21 and 0.13 
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for male and female, respectively). Sex-specific PRS trained for the opposite sex have low 

predictive performance (R2 = 0.020 and 0.023 for female-specific PRS evaluated on males and 

male-specific PRS evaluated on females, respectively). Overall, these results highlight the 

benefits of sex-specific polygenic prediction for testosterone levels (Figure 6). 

Discussion 
While known sex differences in biomarker levels have been reported, the extent to which these 

differences are encoded in the genome is not known. To answer this question, we studied the 

genetics of 33 biomarkers in UK Biobank males and females using a two and four-component 

Bayesian Mixture Model, SEMM. SEMM has the benefit of both identifying the underlying 

genetic architecture and identifying genetic variants with shared and sex-specific effects. For the 

majority of the traits we analyzed we do not see strong sex differences in genetic effects, which 

is expected and been previously documented in the literature (Stringer, Polderman, and 

Posthuma 2018). Namely, the genetics of these traits are shared (as indicated by genetic 

correlations close to one), the traits have similar heritability, and most of these traits have no 

variants with sex-specific effects.  

 

By contrast, we found little overlap between males and females in the genetics of testosterone 

levels. In addition to finding significant sex differences in genetic architecture, we also identified 

over five hundred genetic variants with male- or female-specific effects on testosterone levels. 

Because of the male-female differences in testosterone genetics, we examined the subset of 

protein-altering variants and the tissue-specific expression patterns of genes with variants that 
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have sex-specific genetic effects. The protein-altering variants associated with female-specific 

effects testosterone include variants in genes associated with steroid hormone production and 

gamete production. Tissue-specific enrichment analysis reveals that the genes proximal to these 

sex-specific variants are enriched in liver in males but not females. It is hypothesized that this 

relationship between testosterone and liver disease may have different etiology in men and 

women, and may also be mediated by interactions between testosterone, insulin resistance, 

obesity, and metabolic syndrome (Yim et al. 2018). Additionally, we built sex-specific polygenic 

risk models, which showed improved predictive performance over a sex-combined model.  

 

We used Mendelian Randomization to assess whether testosterone may be causally implicated in 

a broad range of diseases and phenotype measurements. In this study, we found evidence of MR 

associations of testosterone with both BMI and waist circumference using female-specific 

variants associated with testosterone levels as instruments, height using both male and female 

variants, and type 2 diabetes using male-specific variants. The associations of testosterone with 

BMI and waist circumference indicate an increasing effect of testosterone on both traits, which is 

consistent with the hypothesis that testosterone is involved in obesity and metabolic syndrome. 

However, these relationships have not been previously reported from MR; it is possible that we 

are able to identify these associations because the female sex-specific genetic variants represent a 

different set of genetic instruments than have been previously used. The evidence of an 

association with height shows a decreasing effect of testosterone in height, which is surprising, 

as previous studies have indicated that higher testosterone may be associated with higher stature 

(Schooling et al. 2018; Handelsman et al. 2015). However, testosterone is sometimes used as a 
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therapy for tall males with delayed puberty, and results in accelerated initial growth but overall 

stunting of stature (Zachmann et al. 1976). Further work is required to understand this 

association. Finally, the potential causal relationship with type 2 diabetes supports the hypothesis 

that testosterone treatment for reducing diabetes risk in men may be a worthwhile approach; 

however, this must be taken with caution because the relationship was seen using the IVW but 

not MR Egger method. A current study, T4DM, is underway to examine whether testosterone 

treatment can prevent type 2 diabetes in men who have prediabetes and low testosterone 

(Bracken et al. 2019). 

 

SEMM is made publicly available as an R package. Additionally, the inference results are 

available for visualization as a web application in the Global Biobank Engine (McInnes et al. 

2019) , and all the sex-specific genetic variants are included in the Supplemental tables 

( Supplemental Tables 3 and 8 ). While we applied this method to examine sex differences in 

genetic effects, SEMM could also be used to for any other type of binary gene-covariate 

analysis.  

 

Our understanding of male and female reproductive health is limited and evolving (Yamin and 

Boulanger 2014). We anticipate that further aggregation of UK Biobank data in these areas 

combined with the analysis of the genetic architecture of readily available traits across sexes will 

help identify the extent to which genetic effects that impact health outcomes are shared and 

sex-specific. Testosterone is frequently thought of as a male sex hormone because of its higher 

levels in men and involvement in the development of the male reproductive tract and secondary 
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sex characteristics. However, females also produce testosterone, albeit at lower levels. Elevated 

testosterone levels in women have been associated with polycystic ovarian syndrome, insulin 

resistance, dyslipidemia, and hypertension (Amer 2009; Haring et al. 2011; Mody et al. 2015). 

 

Previous work examining the genetics of testosterone in females did not find associations 

(Prescott et al. 2012) and previous Mendelian Randomization studies have been limited by the 

lack of known testosterone variants in women (Schooling et al. 2018). Our analysis expands on 

and addresses this issue by using a larger population, carefully adjusted biomarkers, and our 

SEMM method to identify these variants. Our results demonstrate that the genetics of 

testosterone levels is complex and highly polygenic in both males and females. Further, our work 

highlights the importance of also examining female variability in testosterone levels, and of 

considering sex as a variable in these analyses. We anticipate that future analyses that include 

rare genetic effects, more diverse population cohorts, and improved integration with reproductive 

health outcomes will improve our understanding of the translational impact of these findings. 
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Methods 

Genotype and phenotype data 
We used genotype data from the UK Biobank dataset release version 2 and the hg19 human 
genome reference for all analyses in the study (Bycroft et al. 2018). To minimize the variability 
due to population structure in our dataset, we restricted our analyses to unrelated White British 
individuals based on the following four criteria reported by the UK Biobank in the file 
“ukb_sqc_v2.txt”: 

1. used to compute principal components (“used_in_pca_calculation” column) 
2. not marked as outliers for heterozygosity and missing rates (“het_missing_outliers” 

column) 
3. do not show putative sex chromosome aneuploidy (“putative_sex_chromo- 

some_aneuploidy” column) 
4. have at most 10 putative third-degree relatives (“excess_relatives” column). 
5. White British ancestry (“in_white_British_ancestry_subset” column) 

We subsequently focused on a subset of individuals with non-missing values for covariates and 
biomarkers as described below. 
 
For validation, we used unrelated individuals from the Non-British White population, using a 
combination of genotype PCs provided by UK Biobank (-20 ≤ PC1 ≤  40 and -25 ≤ PC2 ≤ 10) and 
their self-reported ethnicity in response to UK Biobank Field ID 21000. 
 
We annotated variants using the VEP LOFTEE plugin (https://github.com/konradjk/loftee) and 
variant quality control by comparing allele frequencies in the UK Biobank and gnomAD 
(gnomad.exomes.r2.0.1.sites.vcf.gz) as previously described (DeBoever et al. 2018). We focused 
on variants outside of major histocompatibility complex (MHC) region 
(chr6:25477797-36448354) and performed LD-pruning using PLINK with "--independent 50 5 
2" as previously described (DeBoever et al. 2018; Tanigawa et al., n.d.). We filtered for variants 
with Hardy-Weinberg Equilibrium < 10-7 and less than 1% missingness. For X chromosome 
variants, we used plink --xchr-model 2, which codes males as 0/2; this accounts for X 
inactivation in females, but many genes escape from inactivation. 
 
For polygenic risk modeling, we additionally used copy number variation (CNV) data and HLA 
allelotype information from the UK Biobank (UK Biobank data field ID 22182) (Aguirre, Rivas, 
and Priest, n.d.; Bycroft et al. 2018). Using PLINK v1.90b6.7, we combined all 805,426 
genotyped variants on arrays, 275,180 CNVs, and 362 allelotypes into a combined dataset 
consists of in total of 1,080,968 variants. 

Anthropometric Traits 
To demonstrate the utility of our method, we applied SEMM to anthropometric traits previously 
examined in (Rawlik, Canela-Xandri, and Tenesa 2016; Rask-Andersen et al. 2019) (UK 
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Biobank field IDs for these traits are provided in Supplemental Table 1). Four traits were 
derived: arm-fat-ratio, leg-fat-ratio, trunk-fat-ratio, and waist-hip-ratio (WHR). WHR was 
calculated by taking the ratio of waist circumference (ID:48) to hip circumference (ID:49). Fat 
ratio traits were calculated as described in (Rask-Andersen et al. 2019) using impedance 
measures. Briefly, we took the fat mass for each body area: trunk (ID:23128), arm (ID:23124, 
23120), or leg (ID:23116, 23112) -- for arm and leg we summed right and left together -- and 
divided by the total fat mass (ID:23100). For each of the anthropometric traits, we removed 
individuals missing data or with values outside six standard deviations of the mean. 

Selection of Biomarker Traits 
We focused on 33 biomarkers of the 38 biomarkers described in (Sinnott-Armstrong et al., n.d.) 
(UKBB field ID column in Supplemental Table 4). This included blood biochemistry assays 
(28 assays total) and urinalysis (4 assays total) and two derived blood biomarkers (Non-albumin 
protein and eGFR) described in (Sinnott-Armstrong et al., n.d.). Cholesterol, Apolipoprotein B, 
and LDL were adjusted by statins, as described below. Two of the blood biochemistry assays 
(Oestradiol and Rheumatoid Factor) and one urine assay (Microalbumin in Urine) were excluded 
because they had a large fraction of levels below the reported range, as described in 
(Sinnott-Armstrong et al., n.d.). 

Statin identification and LDL adjustment 
Statin adjustment was performed as reported in (Sinnott-Armstrong et al., n.d.). 

Testosterone-related medications 
From our analysis of testosterone levels, we removed individuals taking the following 
testosterone-related drugs: methyltestosterone (1140857656), finasteride (1140868550), 
dutasteride (1141192000), testosterone (1140868532), mesterolone (1140868526), and 
cyproterone (1140876638;1140884634;1141192344).  

Covariate correction 
For biomarker traits, raw UK Biobank measurements for all reported individuals (excluding out 
of range and QC failed measurements) were filtered for White British individuals, separated by 
sex, and fit with linear regression against 123 covariates. These included demographics (age, 
age2), population structure (the top 40 principal components and indicators for each of the 
assessment centers in the UK Biobank), temporal variation (indicators for each month of 
participation, with the exception that all of 2006 and August through October of 2010 were 
assigned a single indicator), socioeconomic status indicators (Townsend deprivation indices and 
interactions with age), BMI, WHR, the genotyping array used, and technical confounders (blood 
draw time and its square and interactions with age; urine sample time and its square and 
interactions with age; sample dilution factor; fasting time, its square, and interactions with age; 
and interactions of blood draw and urine sample time with dilution factor). The residual from this 
regression was inverse normal transformed using the Blom transform and then used as the tested 
outcome.  
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Phenotype definition for menopause 
We used a stringent definition for dividing individuals into pre- vs post-menopause menopause 
categories. We relied on self-reported outcomes stating whether they had reached menopause 
(field ID: 2724) and their age at menopause (ID:3581).  

● Pre-menopause: stated they have not reached menopause and are less than 60 years old 
● Post-menopause: >2 years post menopause and had menopause after age 40 

We also excluded anyone who had missing information or stated they were not sure whether they 
had menopause, and individuals who may have gone through surgical menopause (stated having 
had an oophorectomy ID:2834 or hysterectomy in ID:3591 or 2724). From the White British 
population, this resulted in 35,999 pre-menopausal women and 91,462 post-menopausal women 
(53,573 women excluded).  

Outcome traits in Mendelian Randomization analysis 
For Mendelian Randomization analysis, we used 10 outcome traits from MRBase (Hemani et al. 
2018) ; a full list of these traits with their MR Base IDs is provided in Supplemental Table 10. 
For each trait, we used both summary statistics from the UK Biobank and from an additional 
consortia. We constructed this setup to both maximize the sample size (in many cases, UK 
Biobank had the largest population for that trait) and also to reduce the effect of winner’s curse 
to give false-positive results in the UK Biobank population because the testosterone variants 
were identified in that group. We selected four anthropometric traits and six disease traits. All 
UK Biobank traits were from Elsworth et al. Non-UK Biobank Consortia are as follows: GIANT 
for Body Mass Index, Height, Hip Circumference, and Waist Circumference (Randall et al. 
2013) ; CARDIoGRAMplusC4D for Heart Disease (Nikpay et al. 2015); 
DIAGRAMplusMetaboChip for Type 2 Diabetes (Morris et al. 2012); ISGC for stroke (Malik et 
al. 2018); and ReproGen for Age at Menarche and Age at Menopause (Day et al. 2017).   

Summary statistic generation 
Genome-wide association summary statistics were generated separately for males and females 
using PLINK v2.00aLM (2 April 2019). Age, genotyping array used, and the first four principal 
components were included as covariates. Univariate association analyses for single variants were 
applied to the phenotypes independently. For the 33 biomarker traits, the raw phenotypes were 
adjusted for the 123 covariates, and the analyses were performed on the residuals. Following 
summary statistic generation, alleles were flipped so that the effect size was always reported with 
respect to the alternate allele. Variants with missing standard errors or standard errors > 0.2 in 
either sex were also removed. 
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Two Component SEMM – Estimating variance-covariance 
matrix for sex divided data 
 
We specify a two-component mixture model consisting of a point mass centered at zero and a 
multivariate normal distribution. The components are described below: 
 

 

 
 
The model priors were set as follows: 

 
 

 
 

 
The likelihood across all variants is then formulated as: 

 

where i  is the i th SNP. 

We estimate  the proportion in each component, and , the genetic variance-covarianceπ Σg  
matrix for the non-null component.  provides the genetic correlation. 
 
A Beta distribution centered at (1,1), was used for  in order to not favor assignment to eitherπ  
component. Priors were chosen for based on suggestions from the STAN Manual (McElreath Σg  
2018) . A half-Cauchy distribution with a small scale was chosen for  to be a weaklyτ  
informative scaling prior. The LKJ correlation distribution was chosen as a prior for . ThisΩ  
distribution is the identity correlation matrix (no correlation) at v= 1, and as v  increases for v > 1 
the distribution shows less correlation between components and increasingly concentrates around 
the unit correlation matrix. 
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Four Component SEMM - Identifying Sex-specific Genetic 
Variants 

We formulated a mixture model with four components: (0) no effect, (1) female-specific effect, 
(2) male-specific effect, and (3) effects in both sexes. 
 
This is described as follows, where k refers to the component. Here : 

           No effect 
     Female-specific effect 

       Male-specific effect 
      Effects in both sexes 

 
For each component , we have the following: 
 

 
where: 

, , ,  
 
 
The priors are provided below: 

 
 
 

 
 
Here, we estimate , the proportion in each component, and theπ , σ , σ , σ ,σ2

2,f  2
3,m  2

4,f  2
4,m   

non-zero variances for each component.  
 
A Dirichlet prior centered at (1,1,1,1) was chosen for  in order to not favor any component atπ  
the start. InverseGamma(1,1) priors were used to cover a range of values expected for the 
nonzero variances .σ2  

Assignment of Variants to Components 
STAN does not assign samples to components in mixture models. In order to get this assignment, 
estimated parameters were used to assign variants to components. The probability of variant i in 
component k (i.e. ) was modeled as a multinomial distribution with probability  whereγi = k pi  

 is the probability of a variant withpi,k   
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 ,  
 being in component k based on the model and estimated parameters6. This is formulated below: 
 

 
 

 
Variants were assigned to a non-null component if they had a posterior probability  > 0.8 ofpi,k  
being in that component; otherwise, they were assigned to the null component. 

False Discovery Rate (FDR) Calculation 
To estimate the False Discovery Rate for the variants in a non-null component being associated 
with a trait, we first assigned the variants to components based on a posterior cutoff, as described 
above. For components with more than five assigned variants, we averaged the null posterior 
probabilities across all variants assigned to that component. We calculated the FDR for a range 
of posterior probability cutoffs (0.5-0.9) and used a cutoff of 0.8 in all subsequent analyses (see 
Supplement Tables 2b and 7b for the FDR estimates). 

Computation of genetic correlation and heritability 
Genetic correlations were estimated by  from the fit, the 95% highest posterior density interval 
(HPD) was given from the STAN fit of the parameter. Estimates for  and  are also extracted 
using the median value (50%) of the STAN fit for those parameters. 
 
For each trait, the sex-specific heritability in males or females (x=m or  f) was calculated by first 
assigning variants to components based on their posterior probability. Then using all variants 
assigned to the non-null component, heritability was estimated by the following equation, where 

 is the number of variants in the non-null component and  is the fraction in the non-null 
component. 

 
 

To create a 95% HPD interval, the posterior probability for each variant and the overall 
heritability was calculated as described above using the  and  estimates from each of the 
post-warmup draws. These estimates were then ordered, and the 2.5 and 97.5 percentile are 
reported as the 95% HPD interval.  

Validation in Non-British White Cohort 
We sought to assess the replicability of identifying sex-specific variants using the 
four-component model. In order to do so, we separately ran GWAS on only the sex-specific 
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variants in the Non-British White population (n=10546 males and 14269 females). We focused 
on the anthropometric traits (WHR, leg-fat-ratio, arm-fat-ratio, trunk-fat-ratio) and testosterone 
because these traits have high numbers of sex-specific variants. We compared the variant effect 
size estimates in each sex between the discovery (British White) and validation (Non-British 
White) cohorts by calculating the R2 for using a linear model with the discovery as the 
independent variable and validation as the dependent variable for each set of sex-specific 
variants, using the male and female-specific effect estimates separately. Plots are shown for 
female- and male-specific variants in testosterone and female-specific variants in WHR in 
Supplemental Figure 3a-c. The R2 values for all five traits are included in Supplemental Table 
9. 

Computing Environment 
Models were built and parameters estimated using STAN version 2.17.2 (Carpenter et al. 2017). 
Each STAN model was run with 4 chains, 200 warm-up iterations, and 800 total iterations. All 
models were checked for convergence as indicated by an Rhat value close to one. All other code 
for data processing and analysis was written in R (version 3.4.1).  

Code Availability 
The code to run SEMM is made publicly available as an R package on GitHub at 
https://github.com/rivas-lab/semm.  

Tissue-Specific Enrichment Analysis 
We used the Tissue-Specific Expression Analysis tool to perform tissue enrichment analysis (the 
cell type version of this tool is described in (Xu et al. 2014). TSEA uses published RNA-seq data 
GTEx data (pilot data 2013-01-31), and calculates the enrichment of of a list of genes in the 
genes specific to each of twenty-five tissues. Briefly, the authors grouped data from 45 tissues 
(including sub-tissues) into 25 “whole-tissue” types by averaging the gene level read counts. 
They used their specificity index statistic (Dougherty et al. 2010), (Xu et al. 2014) to identify 
enriched transcripts for each of these tissues at three different thresholds (0.0001, 0.001, 0.01), 
where transcripts at the 0.0001 level are more specific to that tissue, and those at 0.01 are more 
general. A Fisher’s Exact test is then used to calculate a p-value for the enrichment of a set of 
genes in that set; this is Benjamini-Hochberg corrected to account for multiple tests. We used the 
genes proximal to sex-specific testosterone variants as input, and examined the tissue enrichment 
in males and females separately.  

Sex-specific multivariate polygenic prediction 
To construct sex-stratified polygenic risk models using multivariate penalized regression, we 
applied batch screening iterative lasso (BASIL) implemented in the R snpnet package (Qian et 
al. 2019). We created a random split dataset of White British individuals in UK Biobank into 
70% training (n = 236,005), 10% validation (n = 33,716), and 20% test (n = 67,430) sets, and 
used both training and validation sets for the analysis. The validation set was used to select the 
optimal lambda value that controls the sparsity. Focusing on individuals with non-missing 
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phenotype values, we first took the log10-transformation of the testosterone value and defined 
covariate-adjusted phenotypes using sex-independent covariates (for male- and female-specific 
models) using a linear regression model. Similarly, a combination of the sex-independent 
covariates and an indicator variable “sex” (for combined model) was used to define the 
covariate-adjusted phenotype for the combined cohort of males and females after the 
log10-transformation. The list of covariates used in the polygenic prediction and their 
corresponding BETA for covariate correction is provided in Supplemental Table 12 and 
covariate adjustment was performed independently for male-only, female-only, and the 
combined cohort. We used a combined genotype dataset consists of array-genotyped variants, 
copy number variants, and HLA allelotypes. Focusing on males (training n = 100,913; validation 
n = 14,594) and females (training n = 99,564; validation n = 14,049) in unrelated White British 
individuals, we independently trained sex-specific PRS models. As a baseline for comparison, 
we additionally trained the combined model using a cohort consists of both sexes (training n = 
200,477; validation n = 28,643). We extracted non-zero regression coefficients (BETAs) from 
the selected optimal model and computed sex-specific polygenic risk scores using --score 
function implemented in plink version 2.00a2LM (26 Aug 2019). 
 
To evaluate the performance of sex-specific PRS or the “combined” PRS, we stratified 
individuals in the test set (males n = 28,601; females n = 28,640; combined n = 57,241) based on 
the PRS bins and computed the mean value and standard error for each bin. The standard error 
was computed by dividing the sample standard deviation by the square root of the sample size in 
the bin. 
 
To compare and evaluate the consistency of sex-specific PRS and the combined PRS, we plot the 
two PRSs and quantified their similarity using Spearman’s rank correlation (⍴) ( Supplemental 
Figure 6). The PRSs in the plots are centered and scaled so that each has zero mean and unit 
variance. 

Mendelian Randomization 
We used MR-Base to test for evidence for causal associations between testosterone and 10 
outcomes of interest using the sets of female- and male-specific testosterone variants as 
instrumental variables (Hemani et al. 2018). We used clumping to prune variants for LD and 
performed the analysis with three methods: MR Egger, Inverse Variance Weighted, and Inverse 
Variance Weighted with fixed effects. For each of the outcomes, we used summary statistics 
from both a UK Biobank and non-UK Biobank source, we also used sex-divided outcomes for 
the four anthropometric traits for which they were available. The traits include: waist 
circumference (Shungin et al. 2015), hip circumference (Shungin et al. 2015), height (Wood et 
al. 2014; Randall et al. 2013), body mass index (Locke et al. 2015) , age at menarche (Perry et al. 
2014) , age at menopause (Day et al. 2015), prostate cancer (Schumacher et al. 2018), heart 
disease (CARDIoGRAMplusC4D Consortium et al. 2013), type 2 diabetes (Morris et al. 2012), 
and stroke (Malik et al. 2016) . See Supplemental Table 10  for more information about these 
traits and their MR-Base ids. We used a Bonferroni correction to account for multiple tests 
(p-value threshold = 0.05/168=2.98x10-4).  
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Figures 
 

 
Figure 1. Schematic overview of Sex-Effect Mixture Model.  We prepared a dataset of 33 serum and urine 
biomarkers from 358,072 individuals in UK Biobank. We calculated GWAS summary statistics from males and 

females separately, so that for every trait, we had an effect estimate (  and ) and standard error for each variant 
in each sex. We use a two-component Bayesian Sex-Effect Mixture Model (SEMM), with no effect and non-zero 
effect components, to estimate SNP-based heritability and genetic correlation between males and females for each 
biomarker. A four-component extension of the SEMM contains two additional components for separate male and 
female effects. This model allows us to distinguish between four cases: genetic variants that have no effect 
(illustrated as M0), genetic variants that have a stronger association with the trait in females or males (M1 and M2), 
and genetic variants that have similar effects in females and males (M3). 
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Figure 2. Heritability and genetic correlation of biomarkers between females and males. A) SNP-based 
heritability estimates of 33 biomarkers for females (red) and males (cyan). B)  Correlation of genetic effects between 
males and females for 33 biomarkers. Error bars in both panels indicate the 95% highest posterior density. 
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Figure 3. Genetic correlation and menopausal status. We examined whether the genetic correlation was affected 
by menopausal status. The genetic correlation within women (pre- vs. post-menopausal, in purple) was higher or 
equal to than either that between both post-menopausal women and men (green) and pre-menopausal women and 
men (orange). Error bars indicate the 95% highest posterior density. 
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Figure 4. Identification of genetic variants with sex-specific effects on testosterone levels. Estimated effect sizes 
for genetic variants with non-zero effects on testosterone are shown (x-axis, estimated effect size in females; y-axis, 
estimated effect size in males). Blue dots correspond to variants that belong to the “Male-specific” effect 
component; red corresponds to the “Female-specific” effect component; and gray dots correspond to genetic variants 
that belong to the “Shared” effect component of SEMM.  
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Figure 5. Results of Mendelian Randomization tests with sex-specific testosterone variants as instruments on 
all analyzed outcomes.  This plot shows the Mendelian Randomization results for all traits, each trait is shown 
separately. Effect sizes (betas) are estimated using either the female or male-specific variants as instrumental 
variables for testosterone exposure. 95% confidence intervals are shown for each estimate. Points are colored by the 
sex of the outcome population (blue for males, red for females, and gray for combined), with size indicating the 
-log10 p-value, and shape showing the source of the GWAS statistics for the trait (triangles for UKBB = UK 
Biobank, circles for all others). *The list of Non-UK Biobank consortia traits are shown in Methods  and 
Supplemental Table 10. 
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Figure 6. Sex-specific polygenic prediction. The mean testosterone values are shown (y-axis) across stratified risk 
bins (x-axis) based on sex-specific PRS (blue for male PRS and red for female PRS) or the combined PRS (gray) for 
(A) male and (B) female individuals. Mean values and PRS scores are calculated on a held-out test data set of 
unrelated White British individuals and the testosterone are shown as log10-transformed values of residuals after the 
covariate adjustment (Methods ). The error bars represent standard errors. The PRSs are computed with 8236, 7169, 
and 7320 genetic variants for male-specific, female-specific, and the combined model, respectively. 
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