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ABSTRACT 

Why do we sometimes opt for actions or items that we do not value the most? Under 

current neurocomputational theories, such preference reversals are typically 

interpreted in terms of errors that arise from the unreliable signaling of value to brain 

decision systems. But, an alternative explanation is that people may change their mind 

because they are reassessing the value of alternative options while pondering the 

decision. So, why do we carefully ponder some decisions, but not others? In this work, 

we derive a computational model of the metacognitive control of decisions or MCD. In 

brief, we assume that the amount of cognitive resources that is deployed during a 

decision is controlled by an effort-confidence tradeoff. Importantly, the anticipated 

benefit of allocating resources varies in a decision-by-decision manner according to 

decision difficulty and importance. The ensuing MCD model predicts choices, decision 

time, subjective feeling of effort, choice confidence, and choice-induced preference 

change. As we will see, these predictions are critically different from accumulation-to-

bound models of value-based decisions. We compare and test these predictions in a 

systematic manner, using a dedicated behavioral paradigm. Our results provides a 

mechanistic link between mental effort, choice confidence, and preference reversals, 

which suggests alternative interpretations of existing related neuroimaging findings.   
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INTRODUCTION 

Why do we carefully ponder some decisions, but not others? Decisions permeate every 

aspect of our lives—what to eat, where to live, whom to date, etc.—but the amount of 

effort that we put into different decisions varies tremendously. Rather than processing 

all decision-relevant information, we often rely on fast habitual and/or intuitive decision 

policies, which can lead to irrational biases and errors (Kahneman et al., 1982). For 

example, snap judgments about others are prone to unconscious stereotyping, which 

often has enduring and detrimental consequences (Greenwald and Banaji, 1995). Yet 

we don't always follow the fast but negligent lead of habits or intuitions. So, what 

determines how much time and effort we invest when making decisions? 

Biased and/or inaccurate decisions can be triggered by psychobiological determinants 

such as stress (Porcelli and Delgado, 2009; Porcelli et al., 2012), emotions (Harlé and 

Sanfey, 2007; Martino et al., 2006; Sokol-Hessner et al., 2013), or fatigue (Blain et al., 

2016). But, in fact, they also arise in the absence of such contextual factors. This is 

why they are sometimes viewed as the outcome of inherent neurocognitive constraints 

on the brain's decision processes, e.g., limited attentional and/or mnemonic capacity 

(Giguère and Love, 2013; Lim et al., 2011; Marois and Ivanoff, 2005) or unreliable 

neural representations of decision-relevant information (Drugowitsch et al., 2016; 

Wang and Busemeyer, 2016; Wyart and Koechlin, 2016). However, an alternative 

perspective is that the brain has a preference for efficiency over accuracy (Thorngate, 

1980). For example, when making perceptual or motor decisions, people frequently 

trade accuracy for speed, even when time constraints are not tight (Heitz, 2014; Palmer 

et al., 2005). Related neural and behavioral data are best explained by "accumulation-

to-bound" process models, in which a decision is emitted when the accumulated 

perceptual evidence reaches a bound (Gold and Shadlen, 2007; O’Connell et al., 2012; 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 11, 2019. ; https://doi.org/10.1101/837054doi: bioRxiv preprint 

https://doi.org/10.1101/837054


Ratcliff and McKoon, 2008; Ratcliff et al., 2016). Further computational work 

demonstrated that some variants of these models actually implement an optimal 

solution to speed-accuracy tradeoff problems (Ditterich, 2006; Drugowitsch et al., 

2012). From a theoretical standpoint, this implies that accumulation-to-bound policies 

can be viewed as an evolutionary adaptation, in response to selective pressure that 

favors efficiency (Pirrone et al., 2014).  

This line of reasoning, however, is not trivial to generalize to value-based decision 

making, for which objective accuracy remains an elusive notion (Dutilh and Rieskamp, 

2016; Rangel et al., 2008). This is because, in contrast to evidence-based (e.g., 

perceptual) decisions, there are no right or wrong value-based decisions. 

Nevertheless, people still make choices that deviate from subjective reports of value, 

with a rate that decreases with value contrast. From the perspective of accumulation-

to-bound models, these preference reversals count as errors and arise from the 

unreliable signaling of value to decision systems in the brain (Lim et al., 2013). That 

value-based variants of accumulation-to-bound models proved able to capture the 

neural and behavioral effects of, e.g., overt attention (Krajbich et al., 2010; Lim et al., 

2011), external time pressure (Milosavljevic et al., 2010), confidence (De Martino et al., 

2012) or default preferences (Lopez-Persem et al., 2016), lent empirical support to this 

type of interpretation. Further credit also came from theoretical studies showing that 

these process models, under some simplifying assumptions, optimally solve the 

problem of efficient value comparison (Tajima et al., 2016, 2019). However, despite 

the widespread use of these models in decision neuroscience, no evidence of a trial-

by-trial accumulation signal has ever been observed in neural recordings in brain 

systems supporting value-based decisions. In fact, contradictory empirical evidence 

has even been recently reported in the context of perceptual decisions (Latimer et al., 
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2015, 2017). In addition, accumulation-to-bound models neglect the possibility that 

people may reassess the value of alternative options during decisions (Slovic, 1995; 

Tversky and Thaler, 1990; Warren et al., 2011). For example, contemplating competing 

possibilities during a choice may highlight features of alternative options that may not 

have been considered thoroughly before (Sharot et al., 2010). Under this view, 

apparent preference reversals are not errors: they are deliberate changes of mind. 

Lastly, accumulation-to-bound models may make nonsensical predictions, in particular 

with respect to confidence (Lebreton et al., 2015). As we will show below, existing 

variants of these models that care about choice confidence (De Martino et al., 2013; 

Tajima et al., 2016) predict that choice confidence should decrease when the reliability 

of value signals increases! Here, we propose an alternative computational model of 

value-based decision-making that resolves most of these concerns. 

We start with the premise that people are reluctant to make a choice that they are not 

confident about (De Martino et al., 2013). Thus, when faced with a difficult decision, 

people reassess option values until they reach a satisfactory level of confidence about 

their preference. Such effortful mental deliberation engages neurocognitive resources, 

such as attention and memory, in order to process value-relevant information. In line 

with recent proposals regarding the strategic deployment of cognitive control (Musslick 

et al., 2015; Shenhav et al., 2013), we assume that the amount of allocated resources 

optimizes a tradeoff between expected effort cost and confidence gain. Critically, we 

show how the system can anticipate the expected benefit of allocating resources before 

having processed value-relevant information. The ensuing metacognitive control of 

decisions or MCD thus adjusts mental effort on a decision-by-decision basis, according 

to prior decision difficulty and importance. As we will see, the MCD model makes clear 

quantitative predictions that differ from accumulation-to-bound models. We test these 
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predictions by asking participants to choose between pairs of food items, both before 

and after having reported their judgment about each item's value and their subjective 

certainty about value judgements. Note that we also measure choice confidence, 

decision time, and subjective effort for each decision (cf. Figure 1 below).  

 

 

Figure 1. Experimental design. Left: pre-choice item rating session: participants are asked to rate 

how much they like each food item and how certain they are about it (value certainty rating). Center: 

choice session: participants are asked to choose between two food items, to rate how confident they 

are about their choice, and to report the feeling of effort associated with the decision. Right: post-

choice item rating session (same as pre-choice item rating session). 

 

The MCD model predicts choice, decision time, subjective effort, choice confidence, 

probability of changing one's mind, and choice-induced preference change on a 

decision-by-decision basis, out of two properties of pre-choice value representations, 

namely: value ratings and value certainty ratings. Relevant details regarding the model 

derivations, as well as the decision-making paradigm we designed to evaluate those 

predictions, can be found in the Model and Methods sections below. In what follows, 

we present our main dual computational/behavioral results.  
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RESULTS 

First, we compare the MCD model to two established models of value-based decision 

making, namely: an optimal drift-diffusion model with collapsing bounds (Tajima et al., 

2016) and a modified race model (De Martino et al., 2013). These two models use 

variants of the accumulation-to-bound principle, and they can make quantitative 

predictions regarding the impact of pre-choice value and value certainty ratings (cf. 

Supplementary Materials). Second, we test a few specific novel predictions that the 

MCD model makes and that have no analog under alternative frameworks. We note 

that basic descriptive statistics of our data, including measures of test-retest reliability 

and replications of previously reported effects on confidence in value-based choices 

(De Martino et al., 2013), are appended in the Supplementary Materials. 

 

 Comparing models of decision time and choice confidence 

In what follows, we compare existing computational models of the relationship between 

choice, value, confidence, and decision time. At this point, suffice it to say that, under 

accumulation-to-bound models, value uncertainty ratings proxy the magnitude of the 

stochastic noise in the evidence accumulation process. In contrast, under the MCD 

model, they simply capture the precision of subjective value representations before the 

choice. As we will see, all models make rather similar predictions regarding the impact 

of value ratings. However, they disagree about the impact of value certainty ratings. 

We will now inspect the three-way relationships between pre-choice value and value 

certainty ratings and each choice feature (namely: prediction accuracy, decision time, 

and confidence). Unless stated otherwise, we will focus on both the absolute difference 

between pre-choice value ratings (hereafter: |ΔVR0|) and the mean pre-choice value 
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certainty rating across paired choice items (hereafter: VCR0). In each case, we will 

summarize the empirical data and the corresponding model prediction.  

First, we checked how choice prediction accuracy relates to |ΔVR0| and VCR0. Here, 

we measure choice accuracy in terms of the rate of choices that are congruent with 

preferences derived from pre-choice value ratings ΔVR0. Under accumulation-to-

bound models, choice accuracy should increase with |ΔVR0|, and decrease with VCR0. 

This is because the relative impact of stochastic noise on the decision decreases with 

choice ease, and its magnitude decreases with value certainty ratings. The MCD model 

makes the same prediction, but for a different reason. In brief, increasing |ΔVR0| and/or 

VCR0 will decrease the demand for effort, which implies that the probability of changing 

one's mind will be smaller. Figure 2 below shows all quantitative model predictions and 

summarizes the corresponding empirical data. 

One can see that the data seem to conform to the models' predictions. To confirm this, 

we ran, for each participant, a multiple logistic regression of choice accuracy against 

|ΔVR0| and VCR0. A random effect analysis shows that both have a significant positive 

effect at the group level (|ΔVR0|: mean GLM beta=0.17, s.e.m.=0.02, p<0.001; VCR0: 

mean GLM beta=0.07, s.e.m.=0.03, p=0.004). Note that people make "inaccurate" 

choices either because they make mistakes or because they change their mind during 

the decision. In principle, we can discriminate between these two explanations 

because we can check whether "inaccurate" choices are congruent with post-choice 

value ratings (change of mind) or not (error). This is important, because accumulation-

to-bound models do not allow for the possibility that value representations change 

during decisions (hence all "inaccurate" choices would be deemed "errors"). It turns 

out that, among "inaccurate" choices, mind changes are more frequent than errors 

(mean rate difference=2.3%, s.e.m.=0.01, p=0.032). Note that analyses of mind 
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changes yield qualitatively identical results as choice accuracy (we refer the interested 

reader to Supplementary Material). 

 

 

Figure 2. Three-way relationship between choice accuracy, value, and value certainty. 

Upper-left panel: prediction of the DDM model: choice accuracy (color code) is shown as a 

function of |ΔVR0| (x-axis) and CR0 (y-axis). Upper-right panel: prediction of the race model: 

same format. Lower-left panel: prediction of the MCD model: same format. Lower-right panel: 

empirical data: same format. 

 

Second, we checked how decision time relates to first- and second-order pre-choice 

ratings. Under accumulation-to-bound models, decisions are triggered whenever the 

stochastic evidence accumulation process reaches a predefined threshold. Now, 

increasing ΔVR0 effectively increases the drift rate, eventually decreasing the expected 

decision time. In addition, expected decision time increases with VCR0, because the 
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probability of an early bound hit decreases when the noise magnitude decreases. 

Under the MCD model, decision time can be thought of as a proxy for effort duration. 

Here, increasing |ΔVR0| and/or VCR0 will decrease the demand for effort, which will 

result in smaller expected decision time. In other words, the MCD model differs from 

accumulation-to-bound models with respect to the impact of VCR0 on decision time. 

Figure 3 below shows all quantitative model predictions and summarizes the 

corresponding empirical data. 

 

 

Figure 3. Three-way relationship between decision time, value, and value certainty. 

Upper-left panel: prediction of the DDM model: decision time (color code) is shown as a 

function of |ΔVR0| (x-axis) and CR0 (y-axis). Upper-right panel: prediction of the race model: 

same format. Lower-left panel: prediction of the MCD model: same format. Lower-right panel: 

empirical data: same format. 
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One can see that the decision time data behave as predicted by the MCD model. Here, 

we also ran, for each participant, a multiple logistic regression of decision times against 

|ΔVR0| and VCR0. A random effect analysis shows that both have a significant and 

negative effect at the group level (|ΔVR0|: mean GLM beta=-0.13, s.e.m.=0.02, 

p<0.001; CR0: mean GLM beta=-0.06, s.e.m.=0.02, p=0.005). 

Third, we checked how choice confidence relates to |ΔVR0| and VCR0. Under the DDM 

model, choice confidence is defined as the height of the optimal collapsing bound when 

it is hit. Because bounds are collapsing with decision time, confidence increases with 

|ΔVR0| and decreases with VCR0. Under the race model, confidence is defined as the 

gap between the two value accumulators when the bound is hit. As with the DDM 

model, increasing |ΔVR0| trivially increases confidence. In addition, increasing VCR0 

decreases the expected gap between the best and the worst value accumulators 

(Lebreton et al., 2015). Under the MCD model, confidence reflects the discriminability 

of value representations after optimal resource allocation. Critically, although more 

resources are allocated to the decision when either |ΔVR0| or VCR0 decrease, this does 

not overcompensate for decision difficulty, and thus choice confidence decreases. As 

before, Figure 4 below shows all quantitative model predictions and summarizes the 

corresponding empirical data. 
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Figure 4. Three-way relationship between choice confidence, value, and value certainty. 

Upper-left panel: prediction of the DDM model: choice confidence (color code) is shown as a 

function of |ΔVR0| (x-axis) and CR0 (y-axis). Upper-right panel: prediction of the race model: 

same format. Lower-left panel: prediction of the MCD model: same format. Lower-right panel: 

empirical data: same format. 

 

One can see that the choice confidence follows the MCD model predictions. Again, we 

ran, for each participant, a multiple logistic regression of confidence against |ΔVR0| and 

VCR0. A random effect analysis shows that both have a significant and positive effect 

at the group level (|ΔVR0|: mean GLM beta=0.23, s.e.m.=0.02, p<0.001; VCR0: mean 

GLM beta=0.15, s.e.m.=0.03, p<0.001). Note that this is unlikely to be a trivial 

consequence of peoples' decision time readout, since confidence is only mildly 

correlated with decision time (mean correlation=-0.32, s.e.m.=0.03, p<0.001).  
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 Subjective feeling of effort, choice-induced preference change, decision 

importance, and cost of time 

 

So far, we have provided evidence that choice confidence and decision time are better 

explained with the MCD model than with accumulation-to-bound models. In what 

follows, we will evaluate some additional quantitative predictions that are specific to 

the MCD model. The derivation of each of these predictions is detailed in the Model 

section below. 

First, recall that MCD really is about the allocation of costly cognitive resources, i.e. 

mental effort, into the decision process. One may thus ask whether the subjective 

feeling of effort per se follows the MCD predictions. Recall that increasing |ΔVR0| 

and/or VCR0 will decrease the demand for mental resources, which will result in the 

decision being associated with a lower feeling of effort. To check this, we thus 

performed a multiple linear regression of subjective effort ratings against |ΔVR0| and 

VCR0. A random effect analysis shows that both have a significant and negative effect 

at the group level (|ΔVR0|: mean GLM beta=-0.20, s.e.m.=0.03, p<0.001; CR0: mean 

GLM beta=-0.05, s.e.m.=0.02, p=0.025). A graphical summary of the data can be seen 

in the Supplementary Material. 

Second, the MCD model predicts how value representations will be modified during 

the decision process. In particular, choice-induced preference change should globally 

follow the optimal effort allocation. More precisely, the reported value of alternative 

options should spread apart, and the expected spreading of alternatives should be 

decreasing with |ΔVR0| and VCR0. Figure 5 below shows the model predictions and 

summarizes the corresponding empirical data. 
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Figure 5. Three-way relationship between choice-induced preference change, value, 

and value certainty. Left panel: prediction of the MCD model: the spreading of alternatives 

(color code) is shown as a function of |ΔVR0| (x-axis) and VCR0 (y-axis). Right panel: empirical 

data: same format. 

 

One can see that the spreading of alternatives follows the MCD model predictions. A 

random effect analysis confirms this, showing that both |ΔVR0| and CR0 have a 

significant negative effect at the group level (|ΔVR0|: mean GLM beta=-0.09, 

s.e.m.=0.03, p<0.001; CR0: mean GLM beta=-0.04, s.e.m.=0.02, p=0.027). Note that 

this replicates our previous findings on choice-induced preference change (Lee and 

Daunizeau, 2019). In addition to expected changes in value ratings, the MCD model 

predicts that the precision of value representations should increase after the decision 

has been made (cf. "β-effect" in the Supplementary Material). Indeed, post-choice 

value certainty ratings are significantly higher than pre-choice value certainty ratings 

(mean difference=1.34, s.e.m.=0.51, p=0.006). Importantly, under the MCD model, 

post-choice ratings are simply reports of modified value representations at the time 

when the choice is triggered. Therefore, choice and its associated confidence level 

should be better predicted with post-choice ratings than with pre-choice ratings. 

Indeed, we found that the predictive power of post-choice ratings is significantly higher 
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than that of pre-choice ratings, both for choice (mean prediction accuracy 

difference=7%, s.e.m.=0.01, p<0.001) and choice confidence (mean prediction 

accuracy difference=3%, s.e.m.=0.01, p=0.004). Details regarding this analysis can be 

found in the Supplementary Material. 

Third, the MCD model predicts that, all else being equal, effort increases with decision 

importance and decreases with costs. We checked the former prediction by asking 

participants to make a few decisions where they knew that the choice would be real, 

i.e. they would actually have to eat the chosen food item. We refer to these trials as 

"consequential" decisions. To check the latter prediction, we imposed a financial 

penalty that increases with decision time. These experimental manipulations are 

described in the Methods section. Figure 6 below shows subjective effort ratings and 

decision times for "neutral", "consequential" and "penalized" decisions, when 

controlling for |ΔVR0| and VCR0 (see the Supplementary Material for more details). 

 

 

Figure 6. Comparison of "neutral", "consequential", and "penalized" decisions. Left: Mean (+/- 

s.e.m.) effort ratings are shown for "neutral" (blue), "consequential" (red) and "penalized" (yellow) 

decisions. Right: Mean (+/- s.e.m.) decision time (same format). Both datasets were corrected for 

|ΔVR0| and VCR0. 
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One can see that subjective effort reports and decision times follow the MCD model 

predictions. More precisely, both subjective effort reports and decision times were 

significantly higher for "consequential" decisions than for "neutral" decisions (mean 

effort difference=0.39, s.e.m.=0.12, p=0.001; mean decision time difference=0.43, 

s.e.m.=0.19, p=0.017). In addition, decision times are significantly faster for "penalized" 

than for "neutral" decisions (mean decision time difference=-0.51, s.e.m.=0.08, 

p<0.001). Note that although the difference in reported effort between "neutral" and 

"penalized" decisions does not reach statistical significance (mean effort difference=-

0.13, s.e.m.=0.12, p=0.147), it goes in the right direction. 

 

METHODS 

Participants for our study were recruited from the RISC (Relais d’Information sur les 

Sciences de la Cognition) subject pool through the ICM (Institut du Cerveau et de la 

Moelle épinière). All participants were native French speakers. All participants were 

from the non-patient population with no reported history of psychiatric or neurological 

illness. 

Written instructions provided detailed information about the sequence of tasks within 

the experiment, the mechanics of how participants would perform the tasks, and 

images illustrating what a typical screen within each task section would look like. The 

experiment was developed using Matlab and PsychToolbox. The experiment was 

conducted entirely in French. 

Eye gaze position and pupil size were continuously recorded throughout the duration 

of the experiment using The Eye Tribe eye tracking devices. Participants’ head 
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positions were fixed using stationary chinrests. In case of incidental movements, we 

corrected the pupil size data for distance to screen, separately for each eye.  

 Participants 

A total of 41 people (28 female; age: mean=28, stdev=5, min=20, max=40) participated 

in this study. The experiment lasted approximately 2 hours, and each participant was 

paid a flat rate of 20€ as compensation for his time plus an average of 4€ as a bonus. 

One group of 11 participants was excluded from the cross-condition analysis only (see 

below), due to technical issues.  

 Materials 

The stimuli for this experiment were 148 digital images, each representing a distinct 

food item (50 fruits, 50 vegetables, 48 various snack items including nuts, meats, and 

cheeses). Food items were selected such that most items would be well known to most 

participants.  

 Procedure 

Prior to commencing the testing session of the experiment, participants underwent a 

brief training session. The training tasks were identical to the experimental tasks, 

although different stimuli were used (beverages). The experiment itself began with an 

initial section where all individual items were displayed in a random sequence for 1.5 

seconds each, in order to familiarize the participants with the set of options they would 

later be considering and form an impression of the range of subjective value for the 

set. The main experiment was divided into three sections, following the classic Free-

Choice Paradigm protocol (Chen and Risen, 2010; Izuma and Murayama, 2013): pre-

choice item ratings, choice, and post-choice item ratings (see Figure 1 above). There 
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was no time limit for the overall experiment, nor for the different sections, nor for the 

individual trials. Item raging and choice sessions are described below. 

Item rating (same for pre-choice and post-choice sessions): Participants were asked 

to rate the entire set of items in terms of how much they liked each item. The items 

were presented one at a time in a random sequence (pseudo-randomized across 

participants). At the onset of each trial, a fixation cross appeared at the center of the 

screen for 750ms. Next, a solitary image of a food item appeared at the center of the 

screen. Participants had to respond to the question, “How much do you like this item?” 

using a horizontal slider scale (from “I hate it!” to “I love it!”) to indicate their value rating 

for the item. The middle of the scale was the point of neutrality (“I don’t care about it.”). 

Hereafter, we refer to the reported value as the "pre-choice value rating". Participants 

then had to respond to the question, “How certain are you about the item's value?” by 

expanding a solid bar symmetrically around the cursor of the value slider scale to 

indicate the range of possible value ratings that would be compatible with their 

subjective feeling. We measured participants' certainty about value rating in terms of 

the percentage of the value scale that is not occupied by the reported range of 

compatible value ratings. We refer to this as the "pre-choice value certainty rating". At 

that time, the next trial began. 

Choice: Participants were asked to choose between pairs of items in terms of which 

item they preferred. The entire set of items was presented one pair at a time in a 

random sequence. Each item appeared in only one pair. At the onset of each trial, a 

fixation cross appeared at the center of the screen for 750ms. Next, two images of 

snack items appeared on the screen: one towards the left and one towards the right. 

Participants had to respond to the question, “Which do you prefer?” using the left or 

right arrow key. We measured decision time in terms of the delay between the stimulus 
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onset and the response. Participants then had to respond to the question, “Are you 

sure about your choice?” using a vertical slider scale (from “Not at all!” to “Absolutely!”). 

We refer to this as the report of choice confidence. Finally, participants had to respond 

to the question, “To what extent did you think about this choice?” using a horizontal 

slider scale (from “Not at all!” to “Really a lot!”). We refer to this as the report of 

subjective effort. At that time, the next trial began. 

Note: In the Results section, we refer to ΔVR0 as the difference between pre-choice 

value ratings of items composing a choice set. Similarly, CVR0 is the average pre-

choice value certainty ratings across items composing a choice set.  

 Conditions 

The choice section of the experiment included trials of three different conditions: 

"neutral" (60 trials), "consequential" (7 trials), and "penalized" (7 trials), which were 

randomly intermixed. Immediately prior to each "consequential" trial, participants were 

instructed that they would be required to eat, at the end of the experiment, a portion of 

the item that they were about to choose. Immediately prior to each "penalized" trial, 

participants were instructed that they would lose 0.20€ for each second that they would 

take to make their choice. 

 

MODEL 

In what follows, we derive a computational model of the metacognitive control of 

decisions or MCD. In brief, we assume that the amount of cognitive resources that is 

deployed during a decision is controlled by an effort-confidence tradeoff. Critically, this 

tradeoff relies on a proactive anticipation of how these resources will perturb the 

internal representations of subjective values. As we will see, the computational 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 11, 2019. ; https://doi.org/10.1101/837054doi: bioRxiv preprint 

https://doi.org/10.1101/837054


properties of the MCD model are critically different from accumulation-to-bound models 

of value-based decision-making, which we briefly describe in the Supplementary 

Material. 

 

 Deriving the expected value of decision control 

Let z  be the amount of cognitive (e.g., executive, mnemonic, or attentional) 

resources that serve to process value-relevant information. Allocating these 

resources will be associated with both a benefit  B z , and a cost  C z . As we will 

see, both are increasing functions of z :  B z  derives from the refinement of internal 

representations of subjective values of alternative options or actions that compose 

the choice set, and  C z  quantifies how aversive engaging cognitive resources is 

(mental effort). In line with the framework of expected value of control or EVC 

(Musslick et al., 2015; Shenhav et al., 2013), we assume that the brain chooses to 

allocate the amount of resources ẑ  that optimizes the following cost-benefit trade-

off: 

   ˆ arg max
z

z E B z C z   
         (1) 

where the expectation accounts for predictable stochastic influences that ensue from 

allocating resources (this will be more clear below). Note that the benefit term  B z  is 

the (weighted) choice confidence  cP z : 

   cB z R P z 
          (2) 
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where the weight R  is analogous to a reward and quantifies the importance of making 

a confident decision (see below). As will be made more clear below,  cP z  plays a 

pivotal role in the model, in that it captures the efficacy of allocating resources for 

processing value-relevant information. So, how do we define choice confidence? 

We assume that the decision maker may be unsure about how much he likes/wants 

the alternative options that compose the choice set. In other words, the internal 

representations of values 
iV  of alternative options are probabilistic. Such a probabilistic 

representation of value can be understood in terms of, for example, an uncertain 

prediction regarding the to-be-experienced value of a given option. Without loss of 

generality, the probabilistic representation of option values take the form of Gaussian 

probability density functions, as follows: 

   ,i i ip V N  
          (3) 

where i  and i  are the mode and the variance of the probabilistic value 

representations, respectively (and i  indexes alternative options in the choice set). 

This allows us to define choice confidence cP  as the probability that the (predicted) 

experienced value of the (to be) chosen item is higher than that of the (to be) unchosen 

item: 

 

 

 

 

 

1 2

2 1

1 2

2 1

1 2

  if item #1 is chosen

  if item #2 is chosen

  if 0

  if 0

3

c

P V V
P

P V V

P V V

P V V

s





 

 


 



  
 

  

 
 
  

       (4) 
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where the second line derives from assuming that the choice follows the sign of the 

preference 1 2     , and the last line derives from a moment-matching 

approximation to the Gaussian cumulative density function (Daunizeau, 2017). 

Now, how does the system anticipate the benefit of allocating resources to the decision 

process? Recall that the purpose of allocating resources is to process (yet unavailable) 

value-relevant information. The critical issue is thus to predict how both the uncertainty 

i  and the modes i  of value representations will change, before having allocated the 

resources (i.e., without having processed the information). In brief, allocating resources 

essentially has two impacts: (i) it decreases the uncertainty i , and (ii) it perturbs the 

modes i  in a stochastic manner. 

The former impact derives from assuming that the amount of information that will be 

processed increases with the amount of allocated resources. Under simple Bayesian 

belief update rules, this reduces to stating that the variance of a given probabilistic 

value representation decreases in proportion to the amount of allocated effort, i.e.: 

 

0

1

1i i

i

z

z

 








         (5) 

where 0

i  is the prior variance of the representation (before any effort has been 

allocated), and   controls the efficacy with which resources increase the precision of 

value representations. Formally speaking, Equation 5 has the form of a Bayesian 

update of the belief variance in a Gaussian-likelihood model, where the precision of 

the likelihood term is z . More precisely,   is the precision increase that follows from 

allocating a unitary amount of resources z . In what follows, we will refer to   as the 

"type #1 effort efficacy". 
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The latter impact follows from acknowledging the fact that the system cannot know how 

processing more value-relevant information will affect its preference before having 

allocated the corresponding resources. Let  i z  be the change in the position of the 

mode of the i th value representation, having allocated allocating an amount z  of 

resources. The direction of the mode's perturbation  i z  cannot be predicted because 

it is tied to the information that would be processed. However, a tenable assumption is 

to consider that the magnitude of the perturbation increases with the amount of 

information that will be processed. This reduces to stating that the variance of  i z  

increases in proportion to z , i.e.: 

 

 

0

0,

i i i

i

z

N z

  

 

 
          (6) 

where 0

i  is the mode of the value representation before any effort has been allocated, 

and   controls the relationship between the amount of allocated resources and the 

variance of the perturbation term  . The higher  , the greater the expected 

perturbation of the mode for a given amount of allocated resources. In what follows, 

we will refer to   as the "type #2 effort efficacy". 

Taken together, Equations 5 and 6 imply that predicting the net effect of allocating 

resources onto choice confidence is not trivial. On the one hand, allocating effort will 

increase the precision of value representations (cf. Equation 5), which mechanically 

increases choice confidence, all other things being equal. On the other hand, allocating 

effort can either increase or decrease the absolute difference  z  between the 

modes. This, in fact, depends upon the sign of the perturbation terms  , which are not 

known in advance. Having said this, it is possible to derive the expected absolute 
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difference between the modes that would follow from allocating an amount z  of 

resources: 

2
0 0

02 exp 2 1
4 6

z
E z s

z z

  
 

  

                        

    (7) 

where we have used the expression for the first-order moment of the so-called "folded 

normal distribution", and the second term in the right-hand side of Equation 7 derives 

from the same moment-matching approximation to the Gaussian cumulative density 

function as above. The expected absolute means' difference E z    depends upon 

both the absolute prior mean difference 0  and the amount of allocated resources 

z . This is depicted on Figure 7 below. 

 

 

Figure 7. The expected impact of allocated resources onto value representations. Left: 

the expected absolute mean difference E z    (y-axis) is plotted as a function of the 

absolute prior mean difference 
0  (x-axis) for different amounts z  of allocated resources 

(color code), having set type #2 effort efficacy to unity (i.e. 1  ). Right: Variance V z    

of the absolute mean difference ; same format. 
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One can see that 0E z       is always greater than 0 and increases with z  (and 

if 0z  , then 0E z      ). In other words, allocating resources is expected to 

increase the value difference, despite the fact that the impact of the perturbation term 

can go either way. In addition, the expected gain in value difference afforded by 

allocating resources decreases with the absolute prior means' difference. 

Similarly, the variance V z    of the absolute means' difference is derived from the 

expression of the second-order moment of the corresponding folded normal 

distribution: 

22
02V z z E z                      (8) 

One can see on Figure 7 that V z    increases with the amount z  of allocated 

resources (but if 0z  , then 0V z    ). 

Knowing the moments of the distribution of   now enables us to derive the expected 

confidence level  cP z  that would result from allocating the amount of resource z : 

 

 

  1
2

6

6

c cP z E P z

E s z
z

E z
s

z V z

 



 

 

  

  
  
  
  

 
     

     

       (9) 

where we have assumed, for the sake of conciseness, that both prior value 

representations are similarly uncertain (i.e., 0 0 0

1 2   ). It turns out that the expected 

choice confidence  cP z  always increase with z , irrespective of the efficacy 
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parameters   and  . These, however, control the magnitude of the confidence gain 

that can be expected from allocating an amount z  of resources. Equation 9 is 

important, because it quantifies the expected benefit of resource allocation, before 

having processed the ensuing value-relevant information. More details regarding the 

accuracy of Equation 9 can be found in the Supplementary Material. 

To complete the cost-benefit model, and without loss of generality, we will assume that 

the cost of allocating resources to the decision process linearly scales with the amount 

of resources, i.e.: 

 C z z            (10) 

where   determines the effort cost of allocating a unitary amount of resources z . In 

what follows, we will refer to   as the "effort unitary cost". We refer to   as the "effort 

unitary cost". 

In brief, the MCD-optimal resource allocation  ˆ ˆ , ,z z     is simply given by: 

 ˆ arg max c
z

z R P z z    
         (11) 

which does not have any closed-form analytic solution. Nevertheless, it can easily be 

identified numerically, having replaced Equations 7-9 into Equation 11. We refer the 

readers interested in the impact of model parameters  , ,    on the MCD-optimal 

control to the Supplementary Material. 

Note: at this point, the MCD model is agnostic about what the allocated resource is. 

Empirically, we relate ẑ  to two different measures, namely: decision time and the 

subjective feeling of effort. The former makes sense if one thinks of decision time in 

terms of effort duration, which increases the cumulative engagement of 
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neurocognitive resources. The latter relies on the subjective cost incurred when 

deploying neurocognitive resources, which would be signaled by experiencing mental 

effort. We will comment on this in the Discussion section. Also, implicit in the above 

model derivation is the assumption that the allocation of resources is similar for both 

alternative options in the choice set (i.e. 1 2z z z ). This simplifying assumption is 

justified by eye-tracking data (cf. Supplementary Material). Finally, we investigate the 

effect of decision importance by comparing effort and decision time in “neutral” versus 

“consequential” decisions (cf. Methods section).  

 

 Corollary predictions of the MCD model  

In the previous section, we derived the MCD-optimal resource allocation, which 

effectively best balances the expected choice confidence with the expected effort 

costs, given the predictable impact of stochastic perturbations that arise from 

processing value-relevant information. This quantitative prediction is effectively shown 

on Figure 3 (and/or Figure S4 of the Supplementary Material), as a function of 

(empirical proxies for) the prior absolute difference between modes 0  and the prior 

certainty 01   of value representations. But, this mechanism has a few interesting 

corollary implications. 

To begin with, note that knowing  ẑ  enables us to predict what confidence level the 

system should reach. In fact, one can define the MCD-optimal confidence level as the 

expected confidence evaluated at the MCD-optimal amount of allocated resources, i.e., 

 ˆcP z . This is important, because it implies that the model can predict both the effort 
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the system invests and its associated confidence, on a decision-by-decision basis. This 

quantitative prediction is shown on Figure 4. 

Similarly, one can predict the MCD-optimal probability of changing one's mind. Recall 

that the probability  Q z  of changing one's mind depends on the amount of allocated 

resources z , i.e.: 

      
 
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0    if 0

6

Q z P sign sign z

P z

P z

s
z

 

 

 

 



  

    
 

   

 
  
 
 

        (12) 

One can see that the MCD-optimal probability of changing one's mind  ˆQ z  is a simple 

monotonic function of the allocated effort ẑ . Note that, by definition, choice accuracy 

(i.e., congruence of choice and prior preference 0 ) is but  1 Q z , which is shown 

on Figure 2. 

Lastly, we can predict choice-induced preference change, i.e., how value 

representations are supposed to spread apart during the decision. Such an effect is 

typically measured in terms of the so-called "spreading of alternatives" or SoA, which 

is defined as follows: 
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     (13) 
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where    0,2z N z   is the cumulative perturbation term of the modes' difference. 

Taking the expectation of the right-hand term of Equation 13 under the distribution of 

 z  and evaluating it at ˆz z  now yields the MCD-optimal spreading of alternatives 

 ˆSOA z : 
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     (14) 

where the last line derives from the expression of the first-order moment of the 

truncated Gaussian distribution. Note that the expected preference change also 

increases monotonically with the allocated effort ẑ . 

In summary, the MCD model predicts, given the prior absolute difference between 

modes 0  and the prior certainty 01   of value representations, choice accuracy, 

choice confidence, choice-induced preference change, decision time and/or subjective 

feelings of effort. Note that, when testing the decision-by-decision predictions of the 

MCD model, we use ΔVR0 and CVR0 as empirical proxies for 0  and 01  , 

respectively. 

 

DISCUSSION 

In this work, we have presented a novel computational model of decision-making which 

explains the intricate relationships between choice accuracy, decision time, subjective 

effort, choice confidence, and choice-induced preference change. This model assumes 
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that deciding between alternative options whose values are uncertain induces a 

demand for allocating cognitive resources to processing value-relevant information. 

Cognitive resource allocation then optimally trades effort for confidence, given the 

discriminability of prior value representations. Such metacognitive control of decisions 

or MCD makes novel predictions that differ from standard accumulation-to-bound 

models of decision-making, including a drift-diffusion model that was proposed as an 

optimal policy for value-based decision making (Tajima et al., 2016). But, how can 

these two frameworks both be optimal? The answer lies in the distinct computational 

problems that they solve. The MCD solves the problem of finding the optimal amount 

of effort to invest under the possibility that yet-unprocessed value-relevant information 

might change the decider's mind. In fact, this resource allocation problem would be 

vacuous, would it not be possible to reassess preferences during the decision process. 

In contrast, the DDM provides an optimal solution to the problem of efficiently 

comparing option values, which may be unreliably signaled, but remain stationary 

nonetheless. This why the DDM cannot predict choice-induced preference changes. 

This critical distinction extends to other types of accumulation-to-bound models, 

including race models ( De Martino et al, 2013; Tajima et al, 2019). 

Now, let us highlight that the MCD model offers a plausible alternative interpretation 

for the two main reported neuroimaging findings regarding confidence in value-based 

choices (De Martino et al., 2013). First, the ventromedial prefrontal cortex or vmPFC 

was found to respond positively to both value difference (i.e., ΔVR0) and choice 

confidence. Second, the right rostrolateral prefrontal cortex or rRLPFC was more active 

during low-confidence versus high-confidence choices. These findings were originally 

interpreted through the framework of the race model that we compared to the MCD 

model. In brief, rRLPFC was thought to perform a readout of choice confidence (for the 
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purpose of subjective metacognitive report) from the racing value accumulators hosted 

in the vmPFC. Under the MCD framework, the contribution of the vmPFC to value-

based choices might rather be to anticipate and monitor the benefit of effort investment 

(i.e., confidence). This would be consistent with recent fMRI studies suggesting that 

vmPFC confidence computations signal the attainment of task goals (Hebscher and 

Gilboa, 2016; Lebreton et al., 2015). Now, recall that the MCD model predicts that 

confidence and effort should be anti-correlated. Thus, the puzzling negative correlation 

between choice confidence and rRLPFC activity could be simply explained under the 

assumption that rRLPFC provides the neurocognitive resources that are instrumental 

for processing value-relevant information during decisions. This resonates with the 

known involvement of rRLPFC in reasoning (Desrochers et al., 2015; Dumontheil, 

2014) or memory retrieval (Benoit et al., 2012; Westphal et al., 2019). 

At this point, we would like to discuss a few features of the MCD model. First, we did 

not specify what determines the reward component, which quantifies decision 

importance and acts as an effective weight for confidence against effort costs (cf. R in 

Equation 2 of the Model section). We know, from the comparison of “consequential” 

and “neutral” choices that increasing decision importance eventually increases effort, 

as predicted by the MCD model. However, decision importance may have many 

determinants, such as, for example, the commitment time of the decision (cf. partner 

choices), the breadth of its repercussions (cf. political decisions), or its instrumentality 

with respect to the achievement of superordinate goals (cf. moral decisions). How 

these determinants are combined and/or moderated by the decision context is virtually 

unknown (Locke and Latham, 2002, 2006). In addition, decision importance might also 

be influenced by the prior (intuitive/emotional/habitual) appraisal of option values. For 

example, we found that, all else equal, people spent much more time and effort 
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deciding between two disliked items than between two liked items (results not shown). 

This reproduces recent results regarding the evaluation of choice sets (Shenhav and 

Karmarkar, 2019). Probing this type of influence will be the focus of forthcoming 

publications. 

Second, our current version of the MCD model relies upon a simple variant of resource 

costs. We note that rendering the cost term nonlinear (e.g., quadratic) does not change 

the qualitative nature of the MCD model predictions. More problematic, perhaps, is the 

fact that we did not consider distinct types of effort, which could, in principle, be 

associated with different costs. For example, the cost of allocating attention to a given 

option may depend upon whether this option would be a priori chosen or not. This might 

eventually explain systematic decision biases and differences in decision times 

between default and non-default choices (Lopez-Persem et al., 2016). Another 

possibility is that effort might be optimized along two canonical dimensions, namely: 

duration and intensity. The former dimension essentially justifies the fact that we used 

decision time as a proxy for cognitive effort. In fact, as is evident from the comparison 

between “penalized” and “neutral” choices, imposing an external penalty cost on 

decision time reduces, as expected, the ensuing subjective effort. More generally, 

however, the dual optimization of effort dimensions might render the relationship 

between effort and decision time more complex. For example, beyond memory span 

or attentional load, effort intensity could be related to processing speed. This would 

explain why, although "penalized" choices are made much faster than "neutral" 

choices, the associated feeling of effort is not strongly impacted (cf. Figure 6). In any 

case, the relationship between effort and decision time might depend upon the relative 

costs of effort duration and intensity, which might itself be partially driven by external 

availability constraints (cf. time pressure or multitasking). We note that the essential 
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nature of the cost of mental effort in cognitive tasks (e.g., neurophysiological cost, 

interferences cost, opportunity cost) is still a matter of intense debate (Kurzban et al., 

2013; Musslick et al., 2015; Ozcimder et al., 2017). Progress towards addressing this 

issue will be highly relevant for future extensions of the MCD model.  

Third, we did not consider the issue of identifying plausible neuro-computational 

implementations of MCD. This issue is tightly linked to the previous one, in that distinct 

cost types would likely impose different constraints on candidate neural network 

architectures (Feng et al., 2014; Petri et al., 2017). For example, underlying brain 

circuits are likely to operate MCD in a more dynamic manner, eventually adjusting 

resource allocation from the continuous monitoring of relevant decision variables (e.g., 

experienced costs and benefits). Such a reactive process contrasts with our current, 

proactive-only, variant of MCD, which sets resource allocation based on anticipated 

costs and benefits. We already checked that simple reactive scenarios, where the 

decision is triggered whenever the online monitoring of effort or confidence reaches 

the optimal threshold, make predictions qualitatively similar to those we have 

presented here. We tend to think however, that such reactive processes should be 

based upon a dynamic programming perspective on MCD, as was already done for the 

problem of optimal efficient value comparison (Tajima et al., 2016, 2019). We will 

pursue this and related neuro-computational issues in subsequent publications. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 11, 2019. ; https://doi.org/10.1101/837054doi: bioRxiv preprint 

https://doi.org/10.1101/837054


REFERENCES 

Benoit, R.G., Gilbert, S.J., Frith, C.D., and Burgess, P.W. (2012). Rostral Prefrontal Cortex 

and the Focus of Attention in Prospective Memory. Cereb. Cortex 22, 1876–1886. 

Blain, B., Hollard, G., and Pessiglione, M. (2016). Neural mechanisms underlying the impact 

of daylong cognitive work on economic decisions. Proc. Natl. Acad. Sci. 113, 6967–

6972. 

Chen, K.M., and Risen, J.L. (2010). How choice affects and reflects preferences: Revisiting 

the free-choice paradigm. J. Pers. Soc. Psychol. 99, 573–594. 

Daunizeau, J. (2017). Semi-analytical approximations to statistical moments of sigmoid and 

softmax mappings of normal variables. ArXiv170300091 Q-Bio Stat. 

De Martino, B., Fleming, S.M., Garrett, N., and Dolan, R.J. (2013). Confidence in value-

based choice. Nat. Neurosci. 16, 105–110. 

Desrochers, T.M., Chatham, C.H., and Badre, D. (2015). The necessity of rostrolateral 

prefrontal cortex for higher-level sequential behavior. Neuron 87, 1357–1368. 

Ditterich, J. (2006). Evidence for time-variant decision making. Eur. J. Neurosci. 24, 3628–

3641. 

Drugowitsch, J., Moreno-Bote, R., Churchland, A.K., Shadlen, M.N., and Pouget, A. (2012). 

The Cost of Accumulating Evidence in Perceptual Decision Making. J. Neurosci. 32, 

3612–3628. 

Drugowitsch, J., Wyart, V., Devauchelle, A.-D., and Koechlin, E. (2016). Computational 

Precision of Mental Inference as Critical Source of Human Choice Suboptimality. 

Neuron 92, 1398–1411. 

Dumontheil, I. (2014). Development of abstract thinking during childhood and adolescence: 

The role of rostrolateral prefrontal cortex. Dev. Cogn. Neurosci. 10, 57–76. 

Dutilh, G., and Rieskamp, J. (2016). Comparing perceptual and preferential decision making. 

Psychon. Bull. Rev. 23, 723–737. 

Feng, S.F., Schwemmer, M., Gershman, S.J., and Cohen, J.D. (2014). Multitasking versus 

multiplexing: Toward a normative account of limitations in the simultaneous execution 

of control-demanding behaviors. Cogn. Affect. Behav. Neurosci. 14, 129–146. 

Giguère, G., and Love, B.C. (2013). Limits in decision making arise from limits in memory 

retrieval. Proc. Natl. Acad. Sci. 110, 7613–7618. 

Gold, J.I., and Shadlen, M.N. (2007). The neural basis of decision making. Annu. Rev. 

Neurosci. 30, 535–574. 

Greenwald, A.G., and Banaji, M.R. (1995). Implicit social cognition: attitudes, self-esteem, 

and stereotypes. Psychol. Rev. 102, 4–27. 

Harlé, K.M., and Sanfey, A.G. (2007). Incidental sadness biases social economic decisions in 

the Ultimatum Game. Emot. Wash. DC 7, 876–881. 

Hebscher, M., and Gilboa, A. (2016). A boost of confidence: The role of the ventromedial 

prefrontal cortex in memory, decision-making, and schemas. Neuropsychologia 90, 

46–58. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 11, 2019. ; https://doi.org/10.1101/837054doi: bioRxiv preprint 

https://doi.org/10.1101/837054


Heitz, R.P. (2014). The speed-accuracy tradeoff: history, physiology, methodology, and 

behavior. Front. Neurosci. 8. 

Izuma, K., and Murayama, K. (2013). Choice-Induced Preference Change in the Free-Choice 

Paradigm: A Critical Methodological Review. Front. Psychol. 4. 

Kahneman, D., Slovic, P., and Tversky, A. (1982). Judgment Under Uncertainty: Heuristics 

and Biases (Cambridge University Press). 

Krajbich, I., Armel, C., and Rangel, A. (2010). Visual fixations and the computation and 

comparison of value in simple choice. Nat. Neurosci. 13, 1292–1298. 

Kurzban, R., Duckworth, A., Kable, J.W., and Myers, J. (2013). An opportunity cost model of 

subjective effort and task performance. Behav. Brain Sci. 36, 661–679. 

Latimer, K.W., Yates, J.L., Meister, M.L.R., Huk, A.C., and Pillow, J.W. (2015). Single-trial 

Spike Trains in Parietal Cortex Reveal Discrete Steps During Decision-making. 

Science 349, 184–187. 

Latimer, K.W., Huk, A.C., and Pillow, J.W. (2017). No cause for pause: new analyses of 

ramping and stepping dynamics in LIP (Rebuttal to Response to Reply to Comment 

on Latimer et al 2015). BioRxiv 160994. 

Lebreton, M., Abitbol, R., Daunizeau, J., and Pessiglione, M. (2015). Automatic integration of 

confidence in the brain valuation signal. Nat. Neurosci. 18, 1159–1167. 

Lee, D., and Daunizeau, J. (2019). Choosing what we like vs liking what we choose: How 

choice-induced preference change might actually be instrumental to decision-making. 

BioRxiv 661116. 

Lim, S.-L., O’Doherty, J.P., and Rangel, A. (2011). The Decision Value Computations in the 

vmPFC and Striatum Use a Relative Value Code That is Guided by Visual Attention. 

J. Neurosci. 31, 13214–13223. 

Lim, S.-L., O’Doherty, J.P., and Rangel, A. (2013). Stimulus Value Signals in Ventromedial 

PFC Reflect the Integration of Attribute Value Signals Computed in Fusiform Gyrus 

and Posterior Superior Temporal Gyrus. J. Neurosci. 33, 8729–8741. 

Locke, E.A., and Latham, G.P. (2002). Building a practically useful theory of goal setting and 

task motivation. A 35-year odyssey. Am. Psychol. 57, 705–717. 

Locke, E.A., and Latham, G.P. (2006). New Directions in Goal-Setting Theory. Curr. Dir. 

Psychol. Sci. 15, 265–268. 

Lopez-Persem, A., Domenech, P., and Pessiglione, M. (2016). How prior preferences 

determine decision-making frames and biases in the human brain. ELife 5, e20317. 

Marois, R., and Ivanoff, J. (2005). Capacity limits of information processing in the brain. 

Trends Cogn. Sci. 9, 296–305. 

Martino, B.D., Kumaran, D., Seymour, B., and Dolan, R.J. (2006). Frames, Biases, and 

Rational Decision-Making in the Human Brain. Science 313, 684–687. 

Milosavljevic, M., Malmaud, J., Huth, A., Koch, C., and Rangel, A. (2010). The drift diffusion 

model can account for value-based choice response times under high and low time 

pressure. Judgm. Decis. Mak. 5, 437–449. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 11, 2019. ; https://doi.org/10.1101/837054doi: bioRxiv preprint 

https://doi.org/10.1101/837054


Musslick, S., Shenhav, A., Botvinick, M., and D Cohen, J. (2015). A Computational Model of 

Control Allocation based on the Expected Value of Control. p. 

O’Connell, R.G., Dockree, P.M., and Kelly, S.P. (2012). A supramodal accumulation-to-

bound signal that determines perceptual decisions in humans. Nat. Neurosci. 15, 

1729–1735. 

Ozcimder, K., Dey, B., Musslick, S., Petri, G., Ahmed, N.K., Willke, T.L., and Cohen, J.D. 

(2017). A Formal Approach to Modeling the Cost of Cognitive Control. 

ArXiv170600085 Q-Bio. 

Palmer, J., Huk, A.C., and Shadlen, M.N. (2005). The effect of stimulus strength on the 

speed and accuracy of a perceptual decision. J. Vis. 5, 376–404. 

Petri, G., Musslick, S., Dey, B., Ozcimder, K., Ahmed, N.K., Willke, T., and Cohen, J.D. 

(2017). Universal limits to parallel processing capability of network architectures. 

ArXiv170803263 Q-Bio. 

Pirrone, A., Stafford, T., and Marshall, J.A.R. (2014). When natural selection should optimize 

speed-accuracy trade-offs. Front. Neurosci. 8. 

Porcelli, A.J., and Delgado, M.R. (2009). Acute stress modulates risk taking in financial 

decision making. Psychol. Sci. 20, 278–283. 

Porcelli, A.J., Lewis, A.H., and Delgado, M.R. (2012). Acute Stress Influences Neural Circuits 

of Reward Processing. Front. Neurosci. 6. 

Rangel, A., Camerer, C., and Montague, P.R. (2008). A framework for studying the 

neurobiology of value-based decision making. Nat. Rev. Neurosci. 9, 545–556. 

Ratcliff, R., and McKoon, G. (2008). The Diffusion Decision Model: Theory and Data for Two-

Choice Decision Tasks. Neural Comput. 20, 873–922. 

Ratcliff, R., Smith, P.L., Brown, S.D., and McKoon, G. (2016). Diffusion Decision Model: 

Current Issues and History. Trends Cogn. Sci. 20, 260–281. 

Sharot, T., Velasquez, C.M., and Dolan, R.J. (2010). Do Decisions Shape Preference? 

Evidence From Blind Choice. Psychol. Sci. 21, 1231–1235. 

Shenhav, A., & Karmarkar, U. R. (2019). Dissociable components of the reward circuit are 

involved in appraisal versus choice. Scientific reports, 9(1), 1958. 

Shenhav, A., Botvinick, M.M., and Cohen, J.D. (2013). The Expected Value of Control: An 

Integrative Theory of Anterior Cingulate Cortex Function. Neuron 79, 217–240. 

Slovic, P. (1995). The construction of preference. Am. Psychol. 50, 364–371. 

Sokol-Hessner, P., Camerer, C.F., and Phelps, E.A. (2013). Emotion regulation reduces loss 

aversion and decreases amygdala responses to losses. Soc. Cogn. Affect. Neurosci. 

8, 341–350. 

Tajima, S., Drugowitsch, J., and Pouget, A. (2016). Optimal policy for value-based decision-

making. Nat. Commun. 7, 12400. 

Tajima, S., Drugowitsch, J., Patel, N., and Pouget, A. (2019). Optimal policy for multi-

alternative decisions. Nat. Neurosci. 22, 1503–1511. 

Thorngate, W. (1980). Efficient decision heuristics. Behav. Sci. 25, 219–225. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 11, 2019. ; https://doi.org/10.1101/837054doi: bioRxiv preprint 

https://doi.org/10.1101/837054


Tversky, A., and Thaler, R.H. (1990). Anomalies: Preference Reversals. J. Econ. Perspect. 4, 

201–211. 

Wang, Z., and Busemeyer, J.R. (2016). Interference effects of categorization on decision 

making. Cognition 150, 133–149. 

Warren, C., McGraw, A.P., and Van Boven, L. (2011). Values and preferences: defining 

preference construction. Wiley Interdiscip. Rev. Cogn. Sci. 2, 193–205. 

Westphal, A.J., Chow, T.E., Ngoy, C., Zuo, X., Liao, V., Storozuk, L.A., Peters, M.A.K., Wu, 

A.D., and Rissman, J. (2019). Anodal Transcranial Direct Current Stimulation to the 

Left Rostrolateral Prefrontal Cortex Selectively Improves Source Memory Retrieval. J. 

Cogn. Neurosci. 31, 1380–1391. 

Wyart, V., and Koechlin, E. (2016). Choice variability and suboptimality in uncertain 

environments. Curr. Opin. Behav. Sci. 11, 109–115. 

 

 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 11, 2019. ; https://doi.org/10.1101/837054doi: bioRxiv preprint 

https://doi.org/10.1101/837054


 

Trading Mental Effort for Confidence: Supplementary Material 

 

1. Data descriptive statistics and sanity checks 

Recall that we collect value ratings and value certainty ratings both before and after 

the choice session. We did this for the purpose of validating specific predictions of the 

MCD model (in particular: choice-induced preference changes: see Figure 5 of the 

main text). It turns out this also enables us to assess the test-retest reliability of both 

value and value certainty ratings. We found that both ratings were significantly 

reproducible (value: mean correlation=0.88, s.e.m.=0.01, p <0.001, value certainty: 

mean correlation=0.37, s.e.m.=0.04, p <0.001). 

We also checked whether choices were consistent with pre-choice ratings. For each 

participant, we thus preformed a logistic regression of choices against the difference 

in value ratings. We found that the balanced prediction accuracy was beyond chance 

level (mean accuracy=0.68, s.e.m.=0.01, p<0.001).  

 

2. Does choice confidence moderate the relationship between choice and 

pre-choice value ratings? 

Previous studies regarding confidence in value-base choices showed that choice 

confidence moderates choice prediction accuracy (De Martino et al., 2013). We thus 

splat our logistic regression of choices into high- and low-confidence trials, and tested 

whether higher confidence was consistently associated with increased choice 

accuracy. A random effect analysis showed that the regression slopes were 

significantly higher for high- than for low-confidence trials (mean slope difference=0.14, 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 11, 2019. ; https://doi.org/10.1101/837054doi: bioRxiv preprint 

https://doi.org/10.1101/837054


s.e.m.=0.03, p<0.001). For the sake of completeness, the impact of choice confidence 

on the slope of the logistic regression (of choice onto the difference in pre-choice value 

ratings) is shown on Figure S1 below. 

 

Figure S1. Relationship between choices, pre-choice value ratings and choice confidence. Left: 

the probability of choosing the item on the right (y-axis) is shown as a function of the pre-choice value 

difference (x-axis), for high- (blue) versus low- (red) confidence trials. The plain lines show the logistic 

prediction that would follow from group-averages of the corresponding slope estimates. Right: the 

corresponding logistic regression slope (y-axis) is shown for both high- (blue) and low- (red) 

confidence trials (group means +/- s.e.m.). 

 

These results clearly replicate the findings of De Martino and colleagues (2013), which 

were interpreted with a race model variant of the accumulation-to-bound principle. We 

note, however, that this effect is also predicted by the MCD model. Here, variations in 

both (i) the prediction accuracy of choice from pre-choice value ratings, and (ii) choice 

confidence, are driven by variations in resource allocation. In brief, the expected 

magnitude of the perturbation of value representations increases with the amount of 

allocated resources. This eventually degrades the prediction accuracy of choice from 

pre-choice value ratings (which have been changed during the decision process). 

However, although more resources are allocated to the decision, this does not 

overcompensate for decision difficulty, and thus choice confidence decreases. Thus, 

low-confidence choices will be those choices that cannot be well predicted with pre-
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choice value ratings. We note that the anti-correlation between choice confidence and 

choice accuracy can be seen by comparing Figures 2 and 4 of the main text. 

 

3. How do choice confidence, difference in pre-choice value ratings, and 

decision time relate to each other? 

In the main text, we show that trial-by-trial variation in choice confidence is concurrently 

explained by both pre-choice value and value certainty ratings. Here, we reproduce 

previous findings relating choice confidence to both absolute value difference ΔVR0 

and decision time (De Martino et al., 2013).  First, we regressed, for each participant, 

decision time concurrently against both |ΔVR0| and choice confidence. A random effect 

showed that both have a significant main effect on decision time (ΔVR0: mean GLM 

beta=-0.016, s.em.=0.003, p<0.001; choice confidence: mean GLM beta=-0.014, 

s.em.=0.002; p<0.001), without any two-way interaction (p=0.133).  This analysis is 

summarized in Figure S2 below, together with the full three-way relationship between 

|ΔVR0|, confidence and decision time. 

In brief, confidence increases with the absolute value difference and decreases with 

decision time. This effect is also predicted by the MCD model, for reasons identical to 

the explanation of the relationship between confidence and choice accuracy (see 

above). Recall that, overall, an increase in choice difficulty is expected to yield an 

increase in decision time and a decrease in choice confidence. This would produce the 

same data pattern as Figure S2, although the causal relationships implicit in this data 

representation is partially incongruent with the computational mechanisms underlying 

MCD. 
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Figure S2. Relationship between pre-choice value ratings, choice confidence, and decision 

time. Left: decision time (y-axis) is plotted as a function of low- and high- |ΔVR0| (x-axis) for both low- 

(red) and high- (blue) confidence trials. Error bars represent s.e.m. Right: A heatmap of mean z-scored 

confidence is shown as a function of both decision time (x-axis) and |ΔVR0| (y-axis). 

 

4. Analysis of changes of mind 

In the main manuscript, we show that choice accuracy increases with pre-choice value 

difference ΔVR0 and pre-choice value certainty VCR0. Recall that choice accuracy was 

defined in terms of the rate of choices that are congruent with preferences derived from 

pre-choice value ratings. Now, people make "inaccurate" choices either because they 

make mistakes or because they change their mind during the decision. In principle, we 

can discriminate between these two explanations because we can check whether 

"inaccurate" choices are congruent with post-choice value ratings (change of mind) or 

not (error). This is important, because accumulation-to-bound models do not allow for 

the possibility that value representations change during decisions. Hence all 

"inaccurate" choices would be deemed "errors", which are driven by stochastic noise 

in the evidence accumulation process. It turns out that most choices are "accurate" 

(mean choice accuracy =73.3%, s.e.m.=1%), and less than half of the "inaccurate" 

choices are classified as "errors" (mean error rate=12%, s.e.m.=0.01), which is 

significantly less than "mind changes" (mean rate difference=2%, s.e.m.=0.01, 
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p=0.032). In addition, choice confidence and (post- versus pre-choice) value certainty 

gain were significantly higher for "changes of mind" than for "errors" (choice 

confidence: mean difference=13.7, s.e.m.=2.1, p<0.001; value certainty gain: mean 

difference=2.6, s.e.m.=1.4, p=0.035).  

Thus, one may wonder what would be the impacts of both pre-choice value difference 

ΔVR0 and pre-choice value certainty VCR0 on choice accuracy, if one were to remove 

"errors" from "inaccurate" choices. Figure S3 below shows both the predicted and 

measured three-way relationship between the probability of changing one's mind, 

ΔVR0 and VCR0. 

 

 

Figure S3. Relationship between the probability of changing one's mind, value ratings, and 

certainty ratings. Left: Prediction under the MCD model: a heatmap of the probability of changing 

one's mind is shown as a function of both |ΔVR0| (x-axis) and VCR0 (y-axis). Right: Empirical data: 

same format. 

 

Recall that, under the MCD model, the probability of changing one's mind increases 

with the resource demand, which decreases when either |ΔVR0| or VCR0 increase. One 

can see that the data seem to conform to this prediction. To check this, we ran, for 

each participant, a multiple logistic regression of change of mind against |ΔVR0|  and 
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VCR0. A random effect analysis shows that both have a significant and negative effect 

at the group level (ΔVR0: mean GLM beta=-0.16, s.e.m.=-0.02, p<0.001; VCR0: mean 

GLM beta=-0.08, s.e.m.=0.02, p<0.001). These results are qualitatively similar to the 

analysis of choice accuracy (cf. Figure 2 in the main text). 

 

5. Analysis of the subjective feeling of effort 

In the main manuscript, we show that decision time decreases with pre-choice value 

difference ΔVR0 and pre-choice value certainty VCR0. The focus on decision time was 

motivated by the fact that all models could make quantitative—and thus comparable—

predictions. In brief, we found that the effect of VCR0 on decision time was consistent 

with the MCD model, but not with accumulation-to-bound models. Now, under the MCD 

model, decision time is but a proxy for effort duration. Here, we ask whether the 

subjective feeling of effort per se follows the MCD model predictions. This is possible 

because we asked participants to rate how effortful each decision felt. Figure S4 below 

shows both the predicted and the measured three-way relationship between effort, 

|ΔVR0| and VCR0. 

One can see that the reported subjective feeling of effort closely matches model 

predictions. One may ask whether people's effort reports may be trivial post-choice 

read-outs of decision time and/or choice confidence. This, however, is unlikely, given 

that people's subjective effort is reducible neither to decision time (mean 

correlation=0.39, s.e.m.=0.04), nor to choice confidence (mean correlation=-0.48, 

s.e.m.=, p=0.05).  
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Figure S4. Relationship between subjective effort, value ratings, and certainty ratings. Left: 

Prediction under the MCD model: a heatmap of the MCD-optimal effort allocation is shown as a 

function of |ΔVR0| (x-axis) and VCR0 (y-axis). Note: this prediction is identical to Figure 3 in the main 

text (MCD model). Right: Empirical data: same format. 

 

6. Do post-choice ratings better predict choice and choice confidence than 

pre-choice ratings? 

The MCD model assumes that value representations are modified during the decision 

process, until the MCD-optimal amount of resources is met. This eventually triggers 

the decision, whose properties (i.e., which alternative option is eventually preferred, 

and with which confidence level) then reflects the modified value representations. If 

post-choice ratings are reports of modified value representations at the time when the 

choice is triggered, then choice and its associated confidence level should be better 

predicted with post-choice ratings than with pre-choice ratings. In what follows, we test 

this prediction. 

In the first section of this Supplementary Material, we report the result of a logistic 

regression of choice against pre-choice value ratings (see also Figure S1). We 

performed the same regression analysis, but this time against post-choice value 

ratings. Figure S5 below shows the ensuing predictive power (here, in terms of 
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balanced accuracy or BA) for both pre-choice and post-choice ratings. The main text 

also features the result of a multiple linear regression of choice confidence ratings onto 

|ΔVR0| and VCR0 (cf. Figure 4). Again, we performed the same regression, this time 

against post-choice ratings. Figure S5 below shows the ensuing predictive power 

(here, in terms of percentage of explained variance or R2) for both pre-choice and post-

choice ratings. 

A simple random effect analysis shows that the predictive power of post-choice ratings 

is significantly higher than that of pre-choice ratings, both for choice (mean difference 

in BA=7%, s.e.m.=0.01, p<0.001) and choice confidence (mean difference in R2=3%, 

s.e.m.=0.01, p=0.004). 

 

 

Figure S5. Comparison of the predictive power of pre-choice versus post-choice ratings. Left: 

Mean (+/- s.e.m.) BA of logistic regressions of choice against pre-choice (left) and post-choice (right) 

value ratings. Right: Mean (+/- s.e.m.) R2 of multiple linear regressions of choice confidence against 

pre-choice (left) and post-choice (right) ratings. 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 11, 2019. ; https://doi.org/10.1101/837054doi: bioRxiv preprint 

https://doi.org/10.1101/837054


7. Cross-condition analysis: decision importance and cost of decision time 

As featured in the main manuscript, we intermixed "neutral" trials with two specific sets 

of trials, in which we either manipulated decision importance (cf. "consequential" 

decisions) or the cost of decision time (cf. "penalized" decisions). Figure S6 below 

shows the mean subjective effort ratings and decision times for "neutral", 

"consequential" and "penalized" decisions. 

 

 

Figure S5. Comparison of "neutral", "consequential", and "penalized" decisions. Left: Mean (+/- 

s.e.m.) effort rating are shown for "neutral" (blue), "consequential" (red) and "penalized" (yellow) 

decisions. Right: Mean (+/- s.e.m.) decision time (same format). 

 

Overall, the data partially follows the model predictions. In particular, subjective effort 

and decision time are both significantly higher for "consequential" than for "neutral" 

decisions (effort: mean difference=9.0, s.e.m.=2.2, p<0.001; DT: mean 

difference=0.56, s.e.m.=0.32, p=0.043). In addition, decision time is significantly lower 

for "penalized" than for "neutral" decision (mean DT difference=-0.46, s.e.m.=0.08, 

p<0.001). However, there is no noticeable difference between reported efforts in 

"neutral" and "penalized" decisions (mean effort difference=0.6, s.e.m.=2.1, p=0.604). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 11, 2019. ; https://doi.org/10.1101/837054doi: bioRxiv preprint 

https://doi.org/10.1101/837054


This comparison, however, may be confounded by between-condition differences in 

ΔVR0 or VCR0. For each participant, we thus performed a multiple linear regression of 

effort and DT onto |ΔVR0| and VCR0, including all types of trials. Corrected effort and 

DT can now be compared, after having removed the effects of |ΔVR0| and VCR0. This 

is what Figure 6 of the main text shows. As one can see, the overall pattern is similar 

to Figure S5. As before, subjective effort and decision time are both significantly higher 

for "consequential" than for "neutral" decisions (effort: mean GLM beta 

difference=0.39, s.e.m.=0.12, p=0.001; DT: mean GLM beta difference=0.43, 

s.e.m.=0.19, p=0.017), and decision time is significantly lower for "penalized" than for 

"neutral" decisions (mean DT GLM beta difference=-0.51, s.e.m.=0.08, p<0.001). 

Finally, the difference between reported efforts in "neutral" and "penalized" decisions 

is now almost significant (mean effort GLM beta difference=-0.13, s.e.m.=0.12, 

p=0.147). 

 

8. Analysis of eye-tracking data 

We first checked whether pupil dilation positively correlates with participants' reports 

of subjective effort. We epoched the pupil size data into trial-by-trial time series, and 

temporally co-registered the epochs either at stimulus onset (starting 1.5 seconds 

before the stimulus onset and lasting 5 seconds) or at choice response (starting 3.5 

seconds before the choice response and lasting 5 seconds). Data was baseline-

corrected at stimulus onset. For each participant, we then regressed, at each time point 

during the decision, pupil size onto effort ratings (across trials). Time series of 

regression coefficients were then reported at the group level, and tested for statistical 

significance (correction for multiple comparison was performed using random field 
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theory 1D-RFT). Figure S6 below summarizes this analysis, in terms of the baseline-

corrected time series of regression coefficients. 

 

 

Figure S6. Correlation between pupil size and reports of subjective effort during decision time. 

Left: Mean (+/- s.e.m.) correlation between pupil size and subjective effort (y-axis) is plotted as a 

function of peristimulus time (x-axis). Here, epochs are co-registered w.r.t. stimulus onset (the green 

line indicates stimulus onset and the red dotted line indicates the average choice response). Right: 

Same, but for epochs co-registered w.r.t. choice response (the green line indicates choice response 

and the red dotted line indicates the average stimulus onset). 

 

We found that the correlation between effort and pupil dilation was becoming significant 

from 500ms after stimulus onset onwards. Note that, using the same approach, we 

found a negative correlation between pupil dilation and pre-choice absolute value 

difference |ΔVR0|. However, this relationship disappeared when we entered both 

|ΔVR0| and effort into the same regression model. 

Our eye-tracking data also allowed us to ascertain which item was being gazed at for 

each point in peristimulus time (during decisions). Using the choice responses, we 

classified each time point as a gaze at the (to be) chosen item or at the (to be) rejected 

item. We then derived, for each decision, the ratio of time spent gazing at 

chosen/unchosen items versus the total duration of the decision (between stimulus 
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onset and choice response). The difference between these two gaze ratios measures 

the overt attentional bias towards the chosen item. We refer to this as the gaze bias. 

Consistent with previous studies, we found that chosen items were gazed at more than 

rejected items (mean gaze bias=0.02, s.e.m.=0.01, p=0.067).  However, we also found 

that this effect was in fact limited to low effort choices. Figure S7 below shows the gaze 

bias for low and high effort trials, based upon a median-split of subjective effort.  

 

 

Figure S7. Gaze bias for low and high effort trials. Mean (+/- s.e.m.) gaze bias is plotted for both 

low (left) and high (right) effort trials. 

 

We found that there was a significant gaze bias for low effort choices (mean gaze ratio 

difference=0.033, s.e.m.=0.013, p=0.009), but not for high effort choices (mean gaze 

ratio difference=0.002, s.e.m.=0.014, p=0.453). A potential trivial explanation for the 

fact that the gaze bias is large for low effort trials is that these are the trials where 

participants immediately recognize their favorite option, which attracts their attention. 

More interesting is the fact that the gaze bias is null for high effort trials. This may be 
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taken as evidence for the fact that, on average, people allocate the same amount of 

(attentional) resources on both items. This is important, because we use this simplifying 

assumption in our MCD model derivations.  

 

9. On the accuracy of the predicted confidence gain 

The MCD model relies on the system's ability to anticipate the benefit of allocating 

resources to the decision process. Given the mathematical expression of choice 

confidence (cf. Equation 4 in the main text), this reduces to finding an analytical 

approximation to the following expression: 

 P E s x             

 (S1) 

where   1 1 e xx s x    is the sigmoid mapping,   is an arbitrary constant, and the 

expectation is taken under the Gaussian distribution of  2,x N   , whose mean and 

variance are   and 2 , respectively. 

Note that the absolute value mapping x x  follows a folded normal distribution, 

whose first two moments E x   and V x    have known expressions: 
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where the first line relies on a moment-matching approximation to the cumulative 

normal distribution function (Daunizeau, 2017). This allows us to derive the following 

analytical approximation to Equation S1: 

2

1

E x
P s

aV x


 
    
 

    
 

        (S3) 

where setting 
23a   makes this approximation tight (Daunizeau, 2017). 

 

Figure S8: Quality of the analytical approximation to P . Upper left panel: the Monte-Carlo 

estimate of P  (colour-coded) is shown as a function of both the mean  4,4   (y-axis) and the 

variance  2 0,4   (x-axis) of the parent process  2,x N   . Upper right panel: analytic 

approximation to P  as given by Equation S3 (same format). Lower left panel: the error, i.e. the 

difference between the Mon-Carlo and the analytic approximation (same format). Lower right panel: 

the analytic approximation (y-axis) is plotted as a function of the Monte-Carlo estimate (x-axis) for 

each pair of moments  2,   of the parent distribution. 
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The quality of this approximation can be evaluated by drawing samples of  2,x N  

, and comparing the Monte-Carlo average of  s x  with the expression given in 

Equation S3. This is summarized in Figure S8 above, where the range of variation for 

the moments of x  were set as follows:  4,4   and  2 0,4  . 

One can see that the error rarely exceeds 5%, across the whole range of moments 

 2,   of the parent distribution. This is how tight the semi-analytic approximation of 

the expected confidence gain (Equation 9 in the main text) is. 

 

10. On the impact of model parameters for the MCD model 

First, note that the properties of the metacognitive control of decisions (in terms of 

effort allocation and/or confidence) actually depends upon the demand for 

resources, which is itself determined by prior value representations. Now the way 

the MCD-optimal control responds to the resource demand (which is fully specified 

by the prior uncertainty 0  and the absolute means' difference 0 ) is determined 

by effort efficacy and unitary cost parameters.  

Let us first ask what would be the MCD-optimal effort ẑ  and confidence  ˆcP z  when 

0  , i.e. if the only effect of allocating resources is to increase the precision of 

value representations. We call this the "β-effect". It is depicted on Figure S9 below. 
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Figure S9. The β-effect: MCD-optimal effort and confidence when effort has no impact on the 

value difference. MCD-optimal effort (left) and confidence (right) are shown as a function of the 

absolute prior mean difference 
0  (x-axis) and prior variance 

0  (y-axis). 

 

One can see that, overall, increasing the prior variance 0  increases the resource 

demand, which eventually increases the MCD-optimal allocated effort ẑ . This, 

however, does not overcompensate for the loss of confidence incurred when 

increasing the prior variance. This is why the MCD-optimal confidence  ˆcP z  always 

decreases with the prior variance 0 . Note that, for the same reason, the MCD-optimal 

confidence always increases with the absolute prior means' difference 0 . Now the 

impact of the absolute prior means' difference 0  on ẑ  is less trivial. In brief, when 

0  is high, the MCD-optimal allocated effort ẑ  decreases with 0 . This is due to 

the fact that the resource demand decreases with 0 . However, if 0  decreases 

even more, it eventually reaches a critical point, below which the MCD-optimal 

allocated effort ẑ  increases with 0 . This is because, although the resource 

demand still decreases with 0 , the cost of allocating resources overcompensates 

the gain in confidence. For such difficult decisions, the system does not follow the 
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demand anymore, and progressively de-motivates the allocation of resources as 0  

continues to decrease. In brief, the amount ẑ  of allocated resources decreases away 

from a "sweet spot", which is the absolute prior means' difference that yields the 

maximal confidence gain per effort unit. Critically, the position of this sweet spot 

decreases with   and increases with  . This is because the confidence gain 

increases, by definition, with effort efficacy, whereas it becomes more costly when

  increases. 

Let us now ask what would be the MCD-optimal effort ẑ  and confidence  ˆcP z  when 

0  , i.e. if the only effect of allocating resources is to perturb the value difference. 

The ensuing "γ -effect" is depicted on Figure S10 below. 

 

Figure S10. The γ-effect: MCD-optimal effort and confidence when effort has no impact on 

value precision. Same format as Fig S9. 

 

In brief, the overall picture is reversed, with a few minor differences. One can see that 

increasing the absolute prior means' difference 0  decreases the resource demand, 

which eventually decreases the MCD-optimal allocated effort ẑ . This does decrease 

confidence, because the γ-effect  of allocated effort overcompensates the effect of 
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variations in 0 . When no effort is allocated however, confidence is driven by 0

, i.e. it becomes an increasing function of 0 . In contrast, variations in the prior 

variance 0  always overcompensate the ensuing changes in effort, which is why 

confidence always decreases with 0 . In addition, the amount ẑ  of allocated resources 

decreases away from a sweet prior variance spot, which is the prior variance 0  that 

yields the maximal confidence gain per effort unit. Critically, the position of this sweet 

spot increases with   and decreases with  , for reasons similar to the β-effect. 

Now one can ask what happens in the presence of both the β-effect and the γ-effect. 

If the effort unitary cost   is high enough, the MCD-optimal effort allocation is 

essentially the superposition of both effects. This means that there are two "sweet 

spots": one around some value of 0  at high 0  (β-effect) and one around some 

value of 0  at high 0  (γ-effect). If the effort unitary cost   decreases, then the 

position of the β-sweet spot increases and that of the β-sweet spot decreases, until 

they effectively merge together. This is exemplified on Figure S11 below. 

 

Figure S11. MCD-optimal effort and confidence when both types of effort efficacy are operant. 

Same format as Fig S9. 
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One can see that, somewhat paradoxically, the effort response is now much simpler. 

In brief, the MCD-optimal effort allocation ẑ  increases with the prior variance 0  and 

decreases with the absolute prior means' difference 0 . The landscape of the 

ensuing MCD-optimal confidence level  ˆcP z  is slightly less trivial, but globally, it can 

be thought of as increasing with 0  and decreasing with 0 . Here again, this is 

because variations in 0  and/or 0  almost always overcompensate the ensuing 

changes in allocated effort. 

 

11. Accumulation-to-bound process models 

In the main text, we compare the MCD model to two variants of accumulation-to-bound 

process models, namely: an optimal DDM with collapsing bounds (Tajima et al., 2016) 

and a modified race model (De Martino et al., 2013). We focus on these two models 

because both can make quantitative predictions regarding choice, value, decision time, 

and choice confidence. 

Recall that DDMs essentially solve the problem of comparing uncertain values to make 

accurate choices as quickly as possible. Tajima and colleagues assume that, at the 

beginning of each trial, the two options have true but unknown values 1V  and 2V , which 

the decision maker only indirectly accesses through some instantaneous noisy 

evidence 
t t

j j jx V   , where t  indexes time. Here,  0,t

j N   is some Gaussian 

random noise with variance  , which partially masks the true values. The noise 

variance   thus effectively controls the (un)reliability of the evidence signal 
t

jx . The 

decision maker then progressively updates his/her posterior estimate ˆ t

jV  by 
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accumulating past evidence signals. When neglecting, for the sake of simplicity, the 

decision maker's prior belief about jV , the decision maker's value estimate is given by: 

' '

' 1 ' 1

1 1ˆ
t t

t t t

j j j j

t t

V x V
t t


 

    . As one can see, ˆ t

jV  fluctuates along with the noise, and 

behaves as a random walk that eventually converges towards jV . Now the model also 

assumes that the decision maker pays a cost c  per second of evidence accumulation. 

Optimal decision making then amounts to finding a policy that maximizes the expected 

discounted value 1 2, ,..., T

j j j jV x x x c T . It turns out that the optimal policy is to wait 

until the estimated value difference 1 2
ˆ ˆ ˆt t tV V V    eventually hits any of two (upper or 

lower) collapsing bounds, at which point the decision maker commits to the 

corresponding choice. Setting these optimal collapsing bounds is done by numerically 

solving the so-called Bellman equation. In this work, we simply use the code written by 

Tajima and colleagues to perform their simulations. Let us now make two remarks on 

this model. First, the height of the bound at the time when it is hit measures choice 

confidence. This is essentially because choice confidence increases with V̂ .  

The race model of De Martino and colleagues was specifically proposed to predict 

choice confidence in the context of value-based decisions. Here, separate decision 

variables 1
ˆ tV  and 2

ˆ tV  accumulate evidence for each option, with the decision being 

determined by which accumulator reaches the threshold first. At each time step, a new 

evidence sample  ,tx N V   is drawn from a Gaussian distribution, which is a noisy 

measure of the value difference between the two options. The model then assumes 

that only the decision variable that benefits from the evidence sample is updated. For 

example, if 0tx  , then 
1

1 1
ˆ ˆt t tV V x    and 

1

2 2
ˆ ˆt tV V  . This ensures that decision variables 
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can only increase with accumulation time. Here, confidence is defined as the gap ˆ tV  

between the two variables when the bound is hit. 

Critically, both models can make predictions about choice accuracy, decision time, and 

choice confidence from value ratings... and value certainty ratings (although this was 

never exploited before). This is because, under both models, the more uncertain 

people are about option values, the less reliable evidence signals will be, i.e. the higher 

the noise variance   should be. As we see when simulating the model, increasing   

increases the probability of an early bound hit. For the DDM model, this implies that 

increasing   increases choice confidence (because optimal bounds are collapsing 

over decision time). In addition, under the race model, increasing   increases the 

average gap between the two accumulators, eventually yielding the same prediction.  

Lastly, let us highlight that one of the core assumption of both these models is that 

option values do not change during the decision. This is because the models focus on 

comparing option values, not on constructing them (option values are considered as 

inputs to the value comparison system). This effectively prevents them from being able 

to explain choice-induced preference change. 
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