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Abstract 
Motivation: Large-scale untargeted metabolomics experiments lead to detection of thousands of novel 
metabolic features as well as false positive artifacts. With the incorporation of pooled QC samples and 
corresponding bioinformatics algorithms, those measurement artifacts can be well quality controlled. 
However, it is impracticable for all the studies to apply such experimental design.  
Results: We introduce a post-alignment quality control method called genuMet, which is solely based 
on injection order of biological samples to identify potential false metabolic features. In terms of the 
missing pattern of metabolic signals, genuMet can reach over 95% true negative rate and 85% true 
positive rate with suitable parameters, compared with the algorithm utilizing pooled QC samples. genu-
Met makes it possible for studies without pooled QC samples to reduce false metabolic signals and 
perform robust statistical analysis. 
Availability and implementation: genuMet is implemented in a R package and available on 
https://github.com/liucaomics/genuMet under GPL-v2 license. 
Contact: Liming Liang: lliang@hsph.harvard.edu 
Supplementary information: Supplementary data are available at …. 

 
 

1 Introduction  
Metabolomics consists of methods and techniques measuring the metabo-
lite profile of biofluids (Alonso, et al., 2015). It has been successfully ap-
plied to both biomarker discovery and molecular mechanism inference 
(Johnson, et al., 2016). Untargeted metabolomics experiments give a ho-
listic profiling of metabolites, including both known metabolites and 
structurally novel metabolites (Vinayavekhin and Saghatelian, 2010). 
However, due to technical variations like drift in chromatographic and 
mass spectrometric performance overtime (Dunn, et al., 2012) and miscal-
ibration, false signals may be detected as untargeted metabolic features, 
which could reduce the power of subsequent statistical analysis and lead 
to unreliable biological causality inference. 
  
Special experimental designs and innovative informatics tools can help 
eliminate measurement artifacts. Quality control (QC) samples like pooled 

QC samples and commercial standard biofluids are routinely included in 
large-scale metabolic studies mainly for three reasons: equilibrate analyt-
ical platforms after maintenance, calculate technical precision for quality 
assurance and integrate data from different analytical batches (Dunn, et 
al., 2011). Recently, a post alignment QC algorithm based on intermittent 
pooled QC samples called MetProc (Chaffin, et al., 2019), is developed to 
identify potential measurement artifacts.  
 
However, pooled QC samples are not always available. In large-scale 
studies, sample collection may not be completed before sample prepara-
tion and analysis. In studies with limited sample availability, like bile, 
tears and interstitial fluid metabolic profiling, pooled sample preparation 
is very difficult as well (Dunn, et al., 2011). As it is impossible for com-
mercial or synthetic biofluid to cover all the untargeted metabolites, they 
are not good surrogate for pooled QC samples. Therefore, new QC tools 
for detecting measurement artifacts that not relies on QC samples are in 
great need. Here, we present a R package genuMet which is solely based 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2019. ; https://doi.org/10.1101/837260doi: bioRxiv preprint 

https://doi.org/10.1101/837260
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cao L. et al. 

on the missing pattern of metabolic features along the injection order to 
separate genuine untargeted metabolic features from potential measure-
ment artifacts without any QC samples. We compare its performance with 
MetProc using metabolic data from the PREDIMED (PREvención con DI-
eta MEDiterránea) study (www.predimed.es).  

2 Description 
We focus on the missing rate pattern of metabolic signal along the injec-
tion order instead of the absolute signal intensity. A sliding window 
method is employed in genuMet. The main framework is illustrated in 
Figure 1. For each metabolic feature, a window will slide across the injec-
tion order, missing rate is calculated within each window, and each me-
tabolite will end up with a series of missing rates. As we assume that the 
injection order of all the samples has been randomized, any metabolic fea-
ture with structured missing rate pattern tend to be measurement artifacts. 
Four metrics are employed to characterize the missing pattern: variance of 
missing rates, number of switches, the length of longest block and mean 
missing rate (see supplement information for details). 
 
Figure 1. (A) The raw metabolic signal matrix. The columns are biological samples in 

injection order and rows are metabolic features. A window of window size 100 slides across 

the injection order with slide step 50. (B) Missing rate matrix. (C) Summary statistics ma-

trix. 

 
The four metrics are then combined to decide whether a metabolic feature 
is a potential measurement artifact or not. One possible criterion is that 
metabolic features with large missing rate variance (default >= 0.03) or 
high mean missing rate (default >=0.95) are classified as measurement ar-
tifact, and for those with small variance, if they have large number of 
switches (default >=1) and short longest block (default<=35), it should be 
classified as measurement artifact as well. 

3 Results and discussion 
We take the predicted result of MetProc as gold standard and assess the 
performance of genuMet with lipid metabolites generated for the 
PREDIMED study (Guasch-Ferre, et al., 2016; Martinez-Gonzalez, et al., 
2012). This data set consists of 1,989 biological samples and 6,359 meta-
bolic features. Suppl Fig. 1 and Suppl Fig. 2 indicate the individual pre-
diction ability of the four metrics. With default parameters, our method 
identifies 1279 artifacts, reaching over 95% true negative rate and 85% 
true positive rate. Moreover, in some special scenarios, genuMet could 
even detect artifacts that are neglected by MetProc (Suppl Fig. 3A & 3B). 
However, without the information of pool QC sample, genuMet lacks the 

ability to characterize the local missing trends and detect rare metabolic 
features (Suppl Fig. 3C & 3D). The heatmaps (Suppl Fig. 4) suggests that 
genuMet does successfully separate true signals with random missing data 
and potential artifacts with structured missing pattern.  
 
The comparison of genuMet with MetProc on PREDIMED metabolomics 
data demonstrates its ability to separate metabolic feature with structured 
missing pattern, which should be removed from downstream analysis. 
With suitable parameters, genuMet can give acceptable accuracy for iden-
tifying measurement artifact after metabolic feature detection and align-
ment. However, due to the lack of pooled QC samples, it is difficult to 
determine whether the local variation of missing rate should be attributed 
to technical effect or biological signal variation. The default parameters 
for separating metabolites were selected based on PREDIMED study, 
genuMet package provides flexible functions that can be adjusted to cater 
for the user’s need. Our method also provides a variety of graphical tools 
for quality control and visualization of the missing rate pattern. In sum-
mary, genuMet is the first post-alignment tool that allows large scale un-
targeted metabolomics studies without QC samples to distinguish poten-
tial genuine metabolic features from artifacts, which is of great signifi-
cance for reproducibility and robust biological causality inference. 
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