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Abstract

Temporally spaced genetic data allow for more accurate inference of population genetic param-

eters and hypothesis testing on the recent action of natural selection. In this work, we develop

a novel likelihood-based method for jointly estimating selection coefficient and allele age from

time series data of allele frequencies. Our approach is based on a hidden Markov model where

the underlying process is a Wright-Fisher diffusion conditioned to survive until the time of the

most recent sample. This formulation circumvents the assumption required in existing methods

that the allele is created by mutation at a certain low frequency. We calculate the likelihood

by numerically solving the resulting Kolmogorov backward equation backwards in time while

re-weighting the solution with the emission probabilities of the observation at each sampling

time point. This procedure reduces the two-dimensional numerical search for the maximum of

the likelihood surface for both the selection coefficient and the allele age to a one-dimensional

search over the selection coefficient only. We illustrate through extensive simulations that our

method can produce accurate estimates of the selection coefficient and the allele age under both

constant and non-constant demographic histories. We apply our approach to re-analyse ancient

DNA data associated with horse base coat colours. We find that ignoring demographic histories

or grouping raw samples can significantly bias the inference results.
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1. Introduction1

Recent advances in ancient DNA (aDNA) preparation and sequencing techniques have made2

available an increasing amount of high-quality time serial samples of segregating alleles in an-3

cestral populations, e.g., for humans (Sverrisdóttir et al., 2014; Mathieson et al., 2015), chickens4

(Flink et al., 2014; Loog et al., 2017) and horses (Ludwig et al., 2009; Pruvost et al., 2011).5

Such time series genetic data provide valuable information about allele frequency trajectories6

through time and allow for a better understanding of the evolutionary history of populations7

(see Leonardi et al., 2017, for a detailed review of the most recent findings in aDNA). One of8

the most important applications of aDNA is to study natural selection since it enables us to di-9

rectly track the change in allele frequencies over time, which is the characteristic of the action of10

natural selection. A number of studies over the last decade have been published capitalising on11

the temporal aspect of aDNA data to characterise the process of natural selection. For example,12

Mathieson et al. (2015) used aDNA data to identify candidate loci under natural selection in13

European humans.14

This line of work was initiated by Bollback et al. (2008), which proposed a likelihood-based15

approach to estimate selection coefficient from time series data of allele frequencies, assuming16

a Wright-Fisher model introduced by Fisher (1922) and Wright (1931). The allele frequency of17

the underlying population was modelled as a latent variable in a hidden Markov model (HMM),18

where the allele frequency of the sample drawn from the underlying population at each given19

time point was treated as a noisy observation of the latent population allele frequency. Since20

there is no tractable analytical form for the transition probabilities of the Wright-Fisher model21

and its numerical evaluation is computationally prohibitive for large population sizes and evo-22

lutionary timescales, the Wright-Fisher model in their likelihood calculations was approximated23

with its standard diffusion limit, termed the Wright-Fisher diffusion. The transition probabili-24

ties of the allele frequencies were calculated by numerically solving the Kolmogorov backward25

equation (KBE) resulting from the Wright-Fisher diffusion. Using the method of Bollback et al.26

(2008), Ludwig et al. (2009) analysed the aDNA data associated with horse coat colouration and27

found that natural selection acted strongly on the gene encoding the Agouti signalling peptide28

(ASIP) and the gene encoding the melanocortin 1 receptor (MC1R).29

Malaspinas et al. (2012) extended the HMM framework of Bollback et al. (2008) to jointly30
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estimate selection coefficient, population size and allele age based on time series data of allele31

frequencies. Allele age is the elapsed time since the allele was created by mutation. Along with32

the selection coefficient, allele age plays an important role in determining the sojourn time of a33

beneficial mutation (see Slatkin & Rannala, 2000, for a review). The joint estimation of allele34

age circumvents the assumption required in Bollback et al. (2008) that the allele frequency35

of the underlying population at the initial sampling time point was taken to be the observed36

allele frequency of the sample or was assumed to be uniformly distributed. In Malaspinas et al.37

(2012), the transition probabilities of the allele frequencies were calculated by approximating38

the Wright-Fisher diffusion with a one-step Markov process on a grid. Steinrücken et al. (2014)39

presented an extension of the HMM framework of Bollback et al. (2008) by capitalising on a40

spectral representation of the Wright-Fisher diffusion introduced by Song & Steinrücken (2012),41

which allows for a more general diploid model of natural selection such as the case of under- or42

overdominance. Ferrer-Admetlla et al. (2016) extended the HMM framework of Bollback et al.43

(2008) by approximating the Wright-Fisher diffusion with a coarse-grained Markov model that44

preserves the long-term behaviour of the Wright-Fisher diffusion. Their method can additionally45

estimate mutation rate. However, the methods of Steinrücken et al. (2014) and Ferrer-Admetlla46

et al. (2016) are unable to infer allele age as recurrent mutations were allowed in their model.47

Malaspinas (2016) provided an excellent review of existing approaches for studying natural48

selection with aDNA samples.49

More recently, Schraiber et al. (2016) developed a Bayesian method under the HMM frame-50

work of Bollback et al. (2008) for the joint inference of natural selection and allele age from51

temporally spaced samples. Their key innovation was to apply a high-frequency path augmen-52

tation approach to circumvent the difficulty inherent in calculating the transition probabilities53

of the allele frequencies under the Wright-Fisher diffusion. Markov chain Monte Carlo (MCMC)54

techniques were employed to integrate over all possible allele frequency trajectories of the un-55

derlying population consistent with the observations. The computational advantage of the path56

augmentation method allows for general diploid models of natural selection and non-constant57

population sizes. However, to update the sample paths of the Wright-Fisher diffusion bridge,58

they used Bessel bridges of order four, which is somewhat challenging from both a mathematical59

and a programming perspective.60
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In the present work, we propose a novel likelihood-based approach for jointly estimating61

selection coefficient and allele age from time serial samples of segregating alleles. Our method62

is also an extension of Bollback et al. (2008) but differs from most existing approaches in two63

respects. Firstly, we incorporate a non-constant population size into the Wright-Fisher diffusion.64

Secondly, we condition the Wright-Fisher diffusion, which is taken to be the underlying process65

in our HMM framework, to survive until the time of the most recent sample. Our conditioned66

Wright-Fisher diffusion allows us to take different demographic histories into account and avoid67

the somewhat arbitrary initial condition that the allele was created by mutation at a certain low68

frequency, e.g., as used in Malaspinas et al. (2012) and Schraiber et al. (2016). Our likelihood69

computation is carried out by numerically solving the KBE associated with the conditioned70

Wright-Fisher diffusion backwards in time and re-weighting the solution with the emission71

probabilities of the observation at each given time point. The values of the re-weighted solution72

at frequency 0 give the likelihood of the selection coefficient and the allele age. For each fixed73

selection coefficient, the likelihood for all values of the allele age can be obtained by numerically74

solving the KBE only once. This advance enables a reduction of the two-dimensional numerical75

search for the maximum of the likelihood surface for both the selection coefficient and the allele76

age, e.g., as used in Malaspinas et al. (2012), to a one-dimensional numerical search over the77

selection coefficient only.78

We evaluate the performance of our method with extensive simulations and show that our79

method allows for efficient and accurate estimation of natural selection and allele age from allele80

frequency time series data under both constant and non-constant demographic histories, even81

if the samples are sparsely distributed in time with small uneven sizes. Our simulation studies82

illustrate that ignoring demographic history does not affect the inference of natural selection but83

bias the estimation of allele age. We also use our approach to re-analyse the time serial samples84

of segregating alleles associated with horse base coat colours from earlier studies of Ludwig et al.85

(2009), Pruvost et al. (2011) and Wutke et al. (2016). We choose this aDNA dataset, despite86

being the focus of previous analyses (Ludwig et al., 2009; Malaspinas et al., 2012; Steinrücken87

et al., 2014; Schraiber et al., 2016), because it allows an instructive comparison with existing88

methods. Unlike these previous studies, our analysis is performed on the raw samples (drawn at89

62 sampling time points) rather than the grouped samples (drawn at 9 sampling time points).90

4

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 28, 2020. ; https://doi.org/10.1101/837310doi: bioRxiv preprint 

https://doi.org/10.1101/837310
http://creativecommons.org/licenses/by/4.0/


Our results suggest that horse base coat colour variation could be associated with adaptation91

to the climate change caused by the transition from a glacial period to an interglacial period.92

Finally, we perform an empirical study demonstrating that grouping aDNA samples can alter93

the results of the inference of natural selection and allele age.94

2. Materials and Methods95

In this section, we begin with a brief review of the Wright-Fisher diffusion for a single locus96

evolving subject to natural selection and then derive the Wright-Fisher diffusion conditioned to97

survive until a given time point. We also describe our likelihood-based method for co-estimating98

selection coefficient and allele age from time series data of allele frequencies, e.g., how to set up99

the HMM framework incorporating the conditioned Wright-Fisher diffusion and how to calculate100

the likelihood for the population genetic quantities of interest.101

2.1. Wright-Fisher diffusion102

We consider a population of N randomly mating diploid individuals at a single locus A103

evolving subject to natural selection according to the Wright-Fisher model (see, e.g., Durrett,104

2008, for more details). We assume discrete time, non-overlapping generations and non-constant105

population size. Suppose that there are two possible allele types at locus A, labelled A1 and A2,106

respectively. The symbol A1 is attached to the mutant allele, which is assumed to arise only once107

at time t0 within the population and be favoured by natural selection once it exists. The symbol108

A2 is attached to the ancestral allele, which is assumed to originally exist in the population.109

Suppose that natural selection takes the form of viability selection, where viability is fixed from110

the time when the mutant allele arose in the population. We take relative viabilities of the three111

possible genotypes A1A1, A1A2 and A2A2 at locus A to be 1, 1 − hs and 1 − s, respectively,112

where s ∈ [0, 1] is the selection coefficient and h ∈ [0, 1] is the dominance parameter.113

2.1.1. Wright-Fisher diffusion with selection114

Let us now consider the standard diffusion limit of the Wright-Fisher model with selection.115

We measure time in units of 2N0 generations, denoted by t, where N0 is an arbitrary constant116

reference population size. We assume that the population size changes deterministically, with117

N(t) denoting the number of diploid individuals in the population at time t. In the diffusion118
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limit of the Wright-Fisher model with selection, as the reference population size N0 approaches119

infinity, the scaled selection coefficient α = 2N0s is kept constant and the ratio of the population120

size to the reference population size N(t)/N0 converges to a function ρ(t). By an argument in121

Durrett (2008), the allele frequency trajectory through time converges to the diffusion limit of122

the Wright-Fisher model if we measure time in units of 2N0 generations and let the reference123

population size N0 go to infinity. We refer to this diffusion limit, denoted by X, as the Wright-124

Fisher diffusion with selection.125

According to Durrett (2008), the Wright-Fisher diffusion X has the infinitesimal generator126

Gt = a(t, x)
∂

∂x
+

1

2
b(t, x)

∂2

∂x2
,

with drift term127

a(t, x) = αx(1− x)((1− h)− (1− 2h)x),

and diffusion term128

b(t, x) =
x(1− x)

ρ(t)
.

The transition probability density function of the Wright-Fisher diffusion X, defined by129

p(t, x, t′, x′) = lim
∆x→0

1

∆x
P
(
X(t′) ∈

(
x′ − ∆x

2
, x′ +

∆x

2

)
| X(t) = x

)

for t0 ≤ t < t′, can then be expressed as the solution u(t, x) of the corresponding KBE130

∂

∂t
u(t, x) + Gtu(t, x) = 0 (1)

with terminal condition u(t′, ·) = δ(· − x′), where δ is a Dirac delta function.131

2.1.2. Conditioned Wright-Fisher diffusion with selection132

As discussed in Valleriani (2016), it is desirable to take conditioning into account in most133

aDNA analyses since a single trajectory of allele frequencies through time available in aDNA134

results in the very limited coverage of the fitness landscape. Valleriani (2016) conditioned both135

the initial and the final values of the Wright-Fisher model to be fixed, assuming a finite popula-136

tion with perfect sampling, which is not completely realistic. In the present work, we condition137
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the Wright-Fisher diffusion X to have survived until the time of the most recent sample, i.e.,138

the mutant allele frequency of the underlying population at the most recent sampling time point139

is strictly positive.140

We let X∗ denote the Wright-Fisher diffusion X conditioned to survive, i.e., the frequency141

of the mutant allele stays in the interval (0, 1], until at least time τ after the mutant allele was142

created in the population at time t0. We define the transition probability density function of143

the conditioned Wright-Fisher diffusion X∗ as144

qτ (t, x, t′, x′) = lim
∆x→0

1

∆x
P
(
X∗(t′) ∈

(
x′ − ∆x

2
, x′ +

∆x

2

)
| X∗(t) = x

)
(2)

for t0 ≤ t < t′ < τ . To obtain the expression of the infinitesimal generator of X∗, we need to145

specify the drift term, denoted by a∗(t, x), and the diffusion term, denoted by b∗(t, x), which146

are the first and second infinitesimal moments of the conditioned Wright-Fisher diffusion X∗,147

respectively, i.e.,148

a∗(t, x) = lim
t′→t

1

t′ − t

∫ 1

0
(x′ − x)qτ (t, x, t′, x′) dx′ (3)

b∗(t, x) = lim
t′→t

1

t′ − t

∫ 1

0
(x′ − x)2qτ (t, x, t′, x′) dx′. (4)

From Eq. (2), we can formulate the transition probability density function of the conditioned149

Wright-Fisher diffusion X∗ in terms of the transition probability density function of the Wright-150

Fisher diffusion X as151

qτ (t, x, t′, x′) = p(t, x, t′, x′)
Pτ (t′, x′)

Pτ (t, x)
, (5)

where152

Pτ (t, x) = P (X(τ) > 0 | X(t) = x) (6)

is the probability that the Wright-Fisher diffusion X, starting from x at time t, survives until153

at least time τ . The probability of survival, Pτ (t, x), for t0 ≤ t < τ can be expressed as the154

solution to the KBE in Eq. (1) with terminal condition Pτ (τ, xτ ) = 1{xτ>0}, where 1A is the155

indicator function that equals to 1 if condition A holds and 0 otherwise.156
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Substituting Eq. (5) into Eqs. (3) and (4), we have157

a∗(t, x) = lim
t′→t

1

t′ − t

∫ 1

0

Pτ (t′, x′)

Pτ (t, x)
(x′ − x)p(t, x, t′, x′) dx′

b∗(t, x) = lim
t′→t

1

t′ − t

∫ 1

0

Pτ (t′, x′)

Pτ (t, x)
(x′ − x)2p(t, x, t′, x′) dx′.

Taylor expansion yields158

Pτ (t′, x′)

Pτ (t, x)
= 1 +

(
∂

∂x
logPτ (t, x)

)
(x′ − x) +O(|t′ − t|) +O(|x′ − x|2),

which results in159

a∗(t, x) = lim
t′→t

1

t′ − t

∫ 1

0
(x′ − x)p(t, x, t′, x′) +

(
∂

∂x
logPτ (t, x)

)
(x′ − x)2p(t, x, t′, x′) dx′

b∗(t, x) = lim
t′→t

1

t′ − t

∫ 1

0
(x′ − x)2p(t, x, t′, x′) +

(
∂

∂x
logPτ (t, x)

)
(x′ − x)3p(t, x, t′, x′) dx′.

As shown in Durrett (2008), the transition probability density function of the Wright-Fisher160

diffusion X satisfies161

lim
t′→t

1

t′ − t

∫ 1

0
(x′ − x)p(t, x, t′, x′) dx′ = a(t, x)

lim
t′→t

1

t′ − t

∫ 1

0
(x′ − x)2p(t, x, t′, x′) dx′ = b(t, x)

lim
t′→t

1

t′ − t

∫ 1

0
(x′ − x)kp(t, x, t′, x′) dx′ = 0, for k ≥ 3,

which gives rise to162

a∗(t, x) = a(t, x) + b(t, x)
∂

∂x
logPτ (t, x)

b∗(t, x) =
x(1− x)

ρ(t)
.

Therefore, the infinitesimal generator of the conditioned Wright-Fisher diffusion X∗ can be163

written as164

G∗t,τ = a∗(t, x)
∂

∂x
+

1

2
b∗(t, x)

∂2

∂x2
,
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with drift term165

a∗(t, x) = αx(1− x)((1− h)− (1− 2h)x) +
x(1− x)

ρ(t)

∂

∂x
logPτ (t, x), (7)

and diffusion term166

b∗(t, x) =
x(1− x)

ρ(t)
. (8)

The transition probability density function of the conditioned Wright-Fisher diffusion X∗ can167

then be expressed as the solution u(t, x) of the corresponding KBE168

∂

∂t
u(t, x) + G∗t,τu(t, x) = 0 (9)

with terminal condition u(t′, ·) = δ(· − x′).169

2.2. Maximum likelihood estimation170

Suppose that the available data are always sampled from the underlying population at a171

finite number of distinct time points, say t1 < t2 < . . . < tK , where the time is measured in172

units of 2N0 generations to be consistent with the time scale of the Wright-Fisher diffusion. At173

the sampling time point tk, let ck represent the number of mutant alleles observed in a sample174

of nk chromosomes drawn from the underlying population. In this work, the population genetic175

quantities of interest are the scaled selection coefficient α, the dominance parameter h and the176

allele age t0.177

2.2.1. Hidden Markov model178

To our knowledge, Malaspinas et al. (2012) and Schraiber et al. (2016) are the only existing179

works that seek to jointly infer natural selection and allele age from time series data of allele180

frequencies. These two approaches were both based on the HMM framework of Bollback et al.181

(2008) incorporating the Wright-Fisher diffusion with selection. To jointly estimate allele age,182

initial conditions for the Wright-Fisher diffusion X at time t0 must be specified. Schraiber et al.183

(2016) took the mutant allele frequency X(t0) to be some small but arbitrary value, which was184

found to be feasible in their approach but is slightly unsatisfying. Malaspinas et al. (2012) took185

the mutant allele frequency X(t0) to be 1/(2N(t0)), which corresponds to the case that the186

positively selected allele was created as a de novo mutation. This can be slightly problematic187
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in that the Wright-Fisher diffusion X may hit frequency 1/(2N(t0)) again after the mutation188

arose, so the time t when X(t) = 1/(2N(t0)) may not be the same as the allele age.189

Similar to Bollback et al. (2008), our approach is also built on an HMM framework except190

that the underlying population evolves according to the conditioned Wright-Fisher diffusion X∗191

rather than the Wright-Fisher diffusion X. Given the mutant allele frequency trajectory of the192

underlying population, the observations are modelled as independent binomial samples drawn193

from the underlying population at every sampling time point (see Figure 1 for the graphical194

representation of our HMM framework). The conditioning enables us to attach an initial con-195

dition X∗(t0) = 0 with 0 forming an entrance boundary (see Supplemental Material, File S1),196

i.e., the conditioned Wright-Fisher diffusion X∗ will reach the interval (0, 1] starting from the197

initial mutant allele frequency X∗(t0) = 0. Our setup allows us to avoid specifying any arbitrary198

starting mutant allele frequency of the underlying population at time t0.199

X∗(t1) X∗(t2) · · · X∗(tK)

C(t1) C(t2) C(tK)

Figure 1: Graphical representation of the HMM framework for time series data of allele frequencies.

More specifically, our HMM framework can be fully captured by a bivariate Markov process200

{(X∗(t), C(t)) : t ∈ [t1, tK ]} with initial condition X∗(t0) = 0, where the unobserved process201

X∗(t) for t ∈ [t1, tK ] is the Wright-Fisher diffusion conditioned to survive until the most recent202

sampling time point tK , and the observed process C(t) for t ∈ {t1, t2, . . . , tK} is a sequence203

of conditionally independent binomial random variables given the unobserved process X∗(t) at204

each sampling time point. The transition probabilities for our HMM between two consecutive205

sampling time points tk−1 and tk are206

P (X∗(tk) ∈ dxk | X∗(tk−1) = xk−1;α, h) = qτ (tk−1, xk−1, tk, xk | α, h) dxk

for k = 2, 3, . . . ,K, where qτ (tk−1, xk−1, tk, xk | α, h) is the transition probability density func-207

tion of the conditioned Wright-Fisher diffusion X∗ that satisfies the KBE in Eq. (9) with ter-208

minal condition qτ (tk, ·) = δ(· − xk). The emission probabilities for our HMM at the sampling209
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time point tk are210

P (C(tk) = ck | X∗(tk) = xk;α, h) = b(ck;nk, xk) (10)

for k = 1, 2, . . . ,K, where211

b(ck;nk, xk) =
nk!

ck!(nk − ck)!
xckk (1− xk)nk−ck .

2.2.2. Likelihood computation212

To calculate the likelihood for the population genetic parameters of interest, defined by213

L(α, h, t0 | c1:K) = P (C(t1) = c1, . . . , C(tK) = cK | α, h, t0) ,

we let T0 = (−∞, t1) and Tk−1 = [tk−1, tk) for k = 2, 3, . . . ,K, and decompose the likelihood to214

a sum of terms according to which time interval Tk−1 the allele age t0 falls in,215

L(α, h, t0 | c1:K) = g0(α, h, t0 | c1:K)1{t0∈T0}

+
K∑
k=2

fk−1(α, h, t0 | c1:k−1)gk−1(α, h, t0 | ck:K)1{t0∈Tk−1}. (11)

Note that in the decomposition of Eq. (11), only one term will be nonzero since the allele age216

t0 can only be in one of the time intervals Tk−1 for k = 1, 2, . . . ,K. In Eq. (11), if the allele age217

t0 ∈ Tk−1, then218

fk−1(α, h, t0 | c1:k−1) = P (C(t1) = c1, . . . , C(tk−1) = ck−1 | α, h, t0)

is the probability of the observations sampled before the time t0 that the mutant allele arose in219

the underlying population, and220

gk−1(α, h, t0 | ck:K) = P (C(tk) = ck, . . . , C(tK) = cK | α, h, t0)

is the probability of the observations sampled after the time t0 that the mutant allele was created221

in the underlying population. Given that the conditioned Wright-Fisher diffusion X∗(t) = 0 for222
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t ∈ (−∞, t0], we have223

fk−1(α, h, t0 | c1:k−1) =
k−1∏
i=1

b(ci;ni, 0) =
k−1∏
i=1

1{ci=0}. (12)

Under our HMM framework, we have224

gk−1(α, h, t0 | ck:K) =

∫ 1

0
· · ·
∫ 1

0
qτ (t0, 0, tk, xk | α, h)b(ck;nk, xk)

·
K∏

i=k+1

qτ (ti−1, xi−1, ti, xi | α, h)b(ci;ni, xi) dxk · · · dxK .

We define225

βk−1(t, x | α, h) = P (C(tk) = ck, . . . , C(tK) = cK | X(t) = x;α, h) (13)

to be the probability of the observations sampled after the time t ∈ Tk−1 given initial condition226

X∗(t) = x, which can be calculated recursively by227

βk−1(t, x | α, h) =

∫ 1

0
qτ (t, x, tk, xk | α, h)b(ck;nk, xk)βk(tk, xk | α, h) dxk (14)

for k = K,K − 1, . . . , 1, given terminal condition228

βK(tK , xK | α, h) = 1{xK>0}. (15)

The recursive formula in Eq. (14) implies that the probability βk−1(t, x | α, h) for t ∈ Tk−1 can229

be expressed as the solution to the KBE in Eq. (9) with terminal condition230

βk−1(tk, xk | α, h) = b(ck;nk, xk)βk(tk, xk | α, h). (16)

From Eq. (13), we have231

gk−1(α, h, t0 | ck:K) = βk−1(t0, 0 | α, h) (17)

for k = 1, 2, . . . ,K. Substituting Eqs. (12) and (17) into Eq. (11), we can formulate the likelihood232
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for the population genetic parameters of interest as233

L(α, h, t0 | c1:K) = β0(t0, 0 | α, h)1{t0∈T0} +
k′∑
k=2

βk−1(t0, 0 | α, h)1{t0∈Tk−1}, (18)

where234

k′ = min{k ∈ {1, 2, . . . ,K} : ck > 0}.

From the calculation leading to Eq. (18), the likelihood for all possible values of the allele age235

t0 with fixed values of the scaled selection coefficient α and the dominance parameter h can be236

obtained by recursively calculating the probabilities βk−1(t, x | α, h) for t ∈ Tk−1 and x ∈ [0, 1]237

for k = K,K−1, . . . , 1 with Eq. (14). However, the KBE in Eq. (9) for the conditioned Wright-238

Fisher diffusion X∗ cannot be solved analytically. We resort to a finite difference approach like239

the Crank-Nicolson scheme proposed by Crank & Nicolson (1947) to get the numerical solution240

of the KBE in Eq. (9), which requires us to compute the survival probability Pτ (t, x) in Eq. (6)241

for t ∈ (−∞, tK ] and x ∈ [0, 1]. For this, we numerically solve the KBE in Eq. (1) for the Wright-242

Fisher diffusion X. We then use the values of the survival probability Pτ (t, x) to numerically243

solve the KBE in Eq. (9). Note that we take the drift term a∗(t, 0) = limx↓0 x
∂
∂x logPτ (t, x) to244

be 1, which is justified in Supplemental Material, File S1.245

For clarity, we write down the procedure we follow to obtain the likelihood L(α, h, t0 | c1:K)246

for all possible values of the allele age t0 ∈ (−∞, tK ] with fixed values of the scaled selection247

coefficient α and the dominance parameter h:248

Step 1: Calculate Pτ (t, x) for t ∈ (−∞, tK) and x ∈ [0, 1] by numerically solving the KBE in249

Eq. (1) backwards in time with terminal condition Pτ (tK , xK) = 1{xK>0} for xK ∈ [0, 1]250

and boundary conditions Pτ (t, 0) = 0 and Pτ (t, 1) = 1 for t ∈ (−∞, tK).251

Step 2: Calculate ∂
∂x logPτ (t, x) for t ∈ (−∞, tK) and x ∈ [0, 1] by numerically differentiating252

logPτ (t, x).253

Step 3: Initialise βK(t, x | α, h) with Eq. (15).254

Step 4: Set k = K and repeat until k = 2:255

Step 4a: Update the terminal condition βk−1(tk, xk | α, h) with Eq. (16).256

Step 4b: Calculate βk−1(t, x | α, h) for t ∈ Tk−1 and x ∈ [0, 1] by numerically solving the257

KBE in Eq. (9) backwards in time with terminal condition βk−1(tk, xk | α, h) for258
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xk ∈ [0, 1].259

Step 4c: Set k = k − 1.260

Step 5: Update the terminal condition β0(t1, x1 | α, h) with Eq. (16).261

Step 6: Calculate β0(t, x | α, h) for t ∈ T0 and x ∈ [0, 1] by numerically solving the KBE in262

Eq. (9) backwards in time with terminal condition β0(t1, x1 | α, h) for x1 ∈ [0, 1] until263 ∫ 1
0 β0(t, x | α, h) dx is sufficiently small.264

Step 7: Combine βk−1(t0, 0 | α, h) for k = 1, 2, . . . , k′ using Eq. (18) to obtain L(α, h, t0 | c1:K).265

To obtain the maximum of the likelihood for the population genetic quantities of interest,266

we perform a section search over the scaled selection coefficient and the dominance parame-267

ter. We start with a fixed region for all possible values of the scaled selection coefficient and268

the dominance parameter. For each pair of the m equally spaced scaled selection coefficients,269

α1, α2, . . . , αm, and the n equally spaced dominance parameters, h1, h2, . . . , hn, within the re-270

gion, we perform the procedure laid out above to obtain the likelihood for all possible values of271

the allele age. We record the maximum value of the likelihood as well as the allele age where272

this maximum is attained. Suppose that the scaled selection coefficient αi′ and the dominance273

parameter hj′ yield the highest likelihood amongst the combinations of the scaled selection co-274

efficient αi for i = 1, 2, . . .m and the dominance parameter hj for j = 1, 2, . . . n. If the highest275

likelihood is achieved at an interior point, in the next step, we narrow our search region to276

[αi′−1, αi′+1]× [hj′−1, hj′+1]. Otherwise, i.e., if the highest likelihood is achieved at a boundary277

point, we shift the search grid to centre at the parameters values where the likelihood achieves278

its maximum from the previous step. We continue this procedure until the area of the search279

region is sufficiently small.280

2.3. Data availability281

Supplemental material available at FigShare. Source code for the method described in this282

work is available at https://github.com/zhangyi-he/WFM-1L-DiffusApprox-KBE.283

3. Results284

In this section, we first evaluate the performance of our method through a number of simu-285

lated datasets with given population genetic parameter values. We then employ our approach to286
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analyse aDNA time series data of allele frequencies associated with horse coat colouration from287

previous studies of Ludwig et al. (2009), Pruvost et al. (2011) and Wutke et al. (2016), where288

eight coat colour genes from ancient horse samples ranging from a pre- to a post-domestication289

period were sequenced.290

3.1. Analysis of simulated data291

To assess the performance of our approach, we simulate sets of data with different population292

genetic parameter values. For each simulated dataset, we specify the demographic history N(k)293

and fix the selection coefficient s, the dominance parameter h and the allele age k0, where k294

and k0 are measured in generations. We simulate mutant allele frequency trajectories of the295

underlying population using the Wright-Fisher model with selection (see, e.g., Durrett, 2008)296

with initial frequency 1/(2N(k0)). Given the realisation of the mutant allele frequency trajectory297

of the underlying population, we generate the mutant allele count of the sample independently298

at each sampling time point according to the binomial distribution in Eq. (10). We only keep299

simulated datasets where the mutant allele survives in the underlying population until the time300

of the most recent sample.301

As in Malaspinas et al. (2012), we consider two different sampling schemes in our empirical302

studies to quantify whether it is better to sample more chromosomes at fewer time points or303

the opposite within a given sampling period. In sampling scheme A, we draw 20 chromosomes304

at K = 60 evenly spaced sampling time points from the underlying population, whereas in305

sampling scheme B, we draw 120 chromosomes at K = 10 evenly spaced sampling time points.306

For each sampling scheme, we choose four basic demographic histories: the constant model, the307

bottleneck model, the growth model and the decline model, and fix the selection coefficient and308

the dominance parameter to several potential values: s ∈ {0, 0.0025, 0.005, 0.01, 0.015, 0.02} and309

h ∈ {0, 0.5, 1}.310

Due to the vastly different values of selection coefficient and dominance parameter, it is not311

possible to use a single set of fixed sampling times for all simulated datasets. Instead, for each312

pair of given values of the selection coefficient and the dominance parameter, we perform the313

following steps to determine the sampling time points:314

Step 1: Generate 100 realisations of the mutant allele frequency trajectory of the underlying315

population through the Wright-Fisher model with selection.316
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Step 2: Take the mean of the 100 realisations of the mutant allele frequency trajectory of the317

underlying population.318

Step 3: Set the time when the mean mutant allele frequency trajectory of the underlying pop-319

ulation first hits frequency 0.1 and 0.9 to be the first and last sampling time points,320

labelled k1 and kK , respectively.321

Step 4: Set the rest of the sampling time points k2, k3 . . . , kK−1 to be evenly spaced between322

the first and last sampling time points k1 and kK .323

Under this scheme, a significant number of the realisations of the mutant allele frequency trajec-324

tory of the underlying population will capture a significant proportion of the selective sweep. See325

Figures 2 and 3 for the simulated datasets under constant and bottleneck demographic histories326

for each sampling scheme with their corresponding likelihood surfaces produced through our327

approach as representative examples. Note that in what follows we set the reference population328

size N0 = 16000 unless otherwise noted329

3.1.1. Power to infer natural selection and allele age330

We first test the accuracy of our approach across different parameter values and sampling331

schemes under a constant demographic history, where N(k) = 16000 for k ∈ Z. We present the332

boxplot results for the resulting estimates for these simulated datasets across different parameter333

values and sampling schemes in Figure 4. The tips of the whiskers represent the 2.5%-quantile334

and the 97.5%-quantile, and the boxes denote the first and third quartiles with the median in335

the middle. We summarise the bias and the root mean square error (RMSE) of the resulting336

estimates in Supplemental Material, Tables S1-S3.337

As can be observed from Figure 4, our estimates for the selection coefficient and the allele338

age both show little bias across different parameter values and sampling schemes, although339

one can discern a slight positive bias for the estimates of the allele age. Given that there is no340

requirement for the maximum likelihood estimator to be unbiased in general, some degree of bias341

is not unexpected. An additional cause of the bias arises from the finite grid size (i.e., the state342

space [0, 1] is divided into 270 subintervals) used when we numerically solve the KBE in Eq. (9)343

through the Crank-Nicolson approach. Numerically solving the KBE with a finer grid results344

in a smaller bias, although the numerical solution takes much longer to run. With the increase345

of the selection coefficient, the uncertainty of the estimate for the selection coefficient increases346
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Figure 2: Representative examples of the datasets simulated under a constant demographic history for every
sampling scheme with their resulting likelihood surfaces. We take the selection coefficient to be s = 0.01 and the
dominance parameter to be h = 0.5. We set the population size to N(k) = 16000 for k ∈ {−1915,−1914, . . . , 0}.
The mutant allele is created at frequency x0 = 3.125 × 10−5 in the underlying population at time k0 = −1915
(black filled circle), and the mutant allele frequency trajectory of the underlying population is simulated through
the Wright-Fisher model with selection (black line). (a) Sampling scheme A: 20 chromosomes drawn from the
underlying population every 20 generations (red filled triangle) from generation -1188 to 0. (b) Sampling scheme
B: 120 chromosomes drawn from the underlying population every 132 generations (red filled triangle) from
generation -1188 to 0.

whereas the uncertainty of the estimate for the allele age decreases. This can be explained by347

the relatively smaller noise with larger selection coefficients, yielding more information about348

the mutant allele frequency trajectory of the underlying population prior to the first sample349

time point. Moreover, the 2.5%-quantiles of the empirical distributions of the estimates for the350

selection coefficient s > 0 are all larger than the 97.5%-quantile of the empirical distribution351

of the estimates for the selection coefficient s = 0 (i.e., selective neutrality, see Supplemental352

Material, Figure S1), which implies that our method has a strong power to reject neutrality.353

Comparing boxplot results for different selection schemes, we find that there are many more354

outliers found in the case of recessive selection (h = 1, Figure 4c) than in the cases of dominant355

and genic selection (h = 0 and h = 0.5, Figures 4a and 4b). To understand this effect, we plot in356
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Figure 3: Representative examples of the datasets simulated under a bottleneck demographic history for every
sampling scheme with their resulting likelihood surfaces. We simulate the mutant allele frequency trajectory
of the underlying population according to the Wright-Fisher model with selection, where the population size is
taken to be N(k) = 8000 for k ∈ {−1436,−1435, . . . ,−957} and N(k) = 16000 otherwise, and the rest of the
parameters are the same as those in Figure 2.

Figure 5 realisations of mutant allele frequency trajectories of the underlying population for all357

simulated datasets. To capture information on selection coefficient and allele age, the underlying358

mutant allele frequency trajectory should ideally grow from a lower frequency around 0 to a359

high frequency around 1 within the sampling period. However, as can be seen in Figure 5, there360

are a number of simulated mutant allele frequency trajectories of the underlying population361

where the mutant allele frequencies at all sampling time points are all close to the absorbing362

boundaries, 0 or 1. This effect is especially pronounced for the case of recessive selection (h = 1).363

Such mutant allele frequency trajectories of the underlying population contain little information364

about the underlying selection coefficient and allele age, therefore more outliers when we try to365

estimate these parameters.366

Comparing boxplot results under different sampling schemes, we can observe similar results367

for estimates of the selection coefficient and the allele age, which suggests that within a given368
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Figure 4: Empirical distributions of estimates for 100 datasets simulated under a constant demographic history
with population size N(k) = 16000 for k ∈ {k0, k0 + 1, . . . , 0}. Grey boxplots represent the estimates produced
for sampling scheme A, and yellow boxplots represent the estimates produced for sampling scheme B. Boxplots
of the estimates for (a) dominant selection (h = 0) (b) genic selection (h = 0.5) (c) recessive selection (h = 1).

sampling period, sampling more chromosomes at fewer time points or the opposite has little369

effect on the inference of natural selection and allele age. We also present the empirical distribu-370

tions of the estimates for the selection coefficient and the allele age obtained from the samples371

sparsely distributed in time with small uneven sizes in Supplemental Material Figure S2, with372

their bias and RMSE summarised in Supplemental Material Table S4. These results further373

establish the ability of our method to handle data generated under any sampling schemes even374

if samples are sparsely distributed in time with small uneven sizes.375
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Figure 5: Mutant allele frequency trajectories of the underlying population for the datasets simulated under
a constant demographic history with population size N(k) = 16000 for k ∈ {k0, k0 + 1, . . . , 0}, and dominant
parameter (a) h = 0 (dominant selection) (b) h = 0.5 (genic selection) (c) h = 1 (recessive selection).

We now assess the performance of our method across different parameter values and sampling376

schemes under non-constant demographic histories and compare the results of the inference with377

and without taking demographic history into account. The resulting boxplots of the empirical378

studies under a bottleneck demographic history are illustrated in Figure 6 (the grey boxes),379

where the population size is taken to be N(k) = 8000 for k ∈ {[k0/2], [k0/2] + 1, . . . , [3k0/4]}380
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and N(k) = 16000 otherwise. The bias and RMSE of the resulting estimates are summarised in381

Supplemental Material, Table S5. In order to investigate the effect of the demographic history382

on the inference results, we also present the boxplot results produced without incorporating the383

true demographic history in Figure 6 (the yellow boxes), where we fix the population size to be384

the bottleneck population size N(k) = 8000 for k ∈ {k0, k0 + 1, . . . , 0}, with all other settings385

being identical to the empirical studies for the bottleneck demographic history. The bias and386

the RMSE of the resulting estimates are summarised in Supplemental Material, Table S6.387

Figure 6: Empirical distributions of estimates for 100 datasets simulated under a bottleneck demographic history
with population size N(k) = 8000 for k ∈ {[k0/2], [k0/2] + 1, . . . , [3k0/4]} and N(k) = 16000 otherwise, and
dominance parameter h = 0.5. Grey boxplots represent the estimates assuming the true demographic history,
and yellow boxplots assuming a constant demographic history with the bottleneck population size N(k) = 8000
for k ∈ {k0, k0 + 1, . . . , 0}. Boxplots of the estimates for (a) sampling scheme A (b) sampling scheme B.

As illustrated in Figure 6, we find that our estimates for the selection coefficient and the388

allele age under the bottleneck demographic history are both reasonably accurate across differ-389

ent parameter values and sampling schemes when we incorporate the true demographic history.390

They are very similar to the estimates in the empirical studies under the constant demographic391

history shown in Figure 4. Comparing the boxplot results produced with and without consider-392

ing demographic histories, we observe that incorporating true demographic histories has little393
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effect on the estimation of natural selection. This is consistent with the findings of Jewett et al.394

(2016) that accurate estimates of the selection coefficient could often be obtained by assuming395

that alleles evolve without genetic drift in a population of infinite size.396

As can be seen in Figure 6, however, ignoring true demographic histories can cause significant397

biases in estimating the allele age. We will give an intuitive explanation for why this bias occurs.398

In this simulation study, the earliest true population size is 16000, but the inference results399

ignoring demographic history takes the population size to be always 8000, half as large as the400

true value for early times. If we take the reference population size to be N0 = 16000 under both401

scenarios, the drift term a∗(t, x) in Eq. (7) under the assumption of the constant population402

size of 8000 will have ρ(t) = 1/2 for early times, larger than the drift term a∗(t, x) if ρ(t) = 1403

under the true population size of 16000. This extra upward drift causes X∗, the conditioned404

frequency of the mutant allele, to increase more rapidly than what actually happens under405

true demographic history. Therefore, the resulting estimates of the allele age are smaller than406

the true allele age. A similar conclusion can be reached from other non-constant demographic407

histories. See the empirical distributions of the estimates under growth and decline demographic408

histories in Supplemental Material Figures S3 and S4, with their bias and RMSE summarised in409

Supplemental Material, Tables S7-S10, where we take the population size to be N(k) = 16000410

for k ∈ {k0, k0 + 1, . . . , [k0/2]} and N(k) = 32000 otherwise for the growth demographic history411

and the population size to be N(k) = 100000 for k ∈ {k0, k0 + 1, . . . , [k0/2]} and N(k) = 16000412

otherwise for the decline demographic history. The boxplots of the resulting estimates for the413

case of selective neutrality (s = 0) under non-constant demographic histories can be found in414

Supplemental Material, Figure S5.415

In summary, our approach can deliver accurate joint estimates of the selection coefficient416

and the allele age from time series data of allele frequencies across different parameter values,417

demographic histories and sampling schemes, even if the samples are sparsely distributed in time418

with small uneven sizes. Our empirical studies show that ignoring true demographic histories419

has minimal impact on the inference of natural selection but significantly alters the estimation420

of allele age. We also find that within any given sampling period, drawing more chromosomes421

at fewer time points or the opposite has little effect on the estimation of the selection coefficient422

and the allele age. In all these empirical studies above, the dominance parameter is treated as423
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known. We also present the results where the dominance parameter is estimated along with the424

selection coefficient and the allele age (see Supplemental Material, Table S11).425

3.1.2. Comparison with existing methods426

We compare the performance of our method with the approach of Schraiber et al. (2016). To427

our knowledge, Schraiber et al. (2016) is the only existing method that allows for the joint infer-428

ence of natural selection and allele age from time series data of allele frequencies while different429

demographic histories can be explicitly incorporated. We apply their approach to re-analyse the430

datasets generated under different demographic histories in Section 3.1.1. Following Schraiber431

et al. (2016), we run their MCMC method with 1000000 iterations for each simulated dataset,432

sampling every 1000 iterations to get 1000 MCMC samples and then discard the first 500 sam-433

ples as burn-in period. We show the results of both approaches under the constant demographic434

history in Figure 7 and leave the results under non-demographic histories in Supplemental Ma-435

terial, Figures S6-S8. The bias and RMSE of the estimates are summarised in Supplemental436

Material, Tables S12-S15. The empirical distributions of estimates in the case of the selection437

coefficient s = 0 under different demographic histories are illustrated in Supplemental Material,438

Figure S9.439

As shown in Figure 7, the method of Schraiber et al. (2016) performs well for the estimation440

of the selection coefficient under the constant demographic history when the selection coefficient441

is small. However, their method shows an increasing trend of underestimation when the selec-442

tion coefficient is large. Similar results can be found in the performance studies presented in443

Schraiber et al. (2016). For the allele age, the approach of Schraiber et al. (2016) overestimates444

its absolute value under the constant demographic history.445

In comparison, for all positive selection coefficients, our method performs significantly better446

in estimating both selection coefficient and allele age under the constant demographic history.447

Our approach produces reasonably accurate estimates with smaller bias and RMSE across dif-448

ferent parameter values and sampling schemes. Non-constant demographic histories cause some449

deterioration in the performance of our procedure, i.e., larger bias and RMSE in comparison to450

those under the constant demographic history, but not as much as with the method of Schraiber451

et al. (2016) (see Supplemental Material, Figures S6-S8 and Tables S12-S15). Indeed, the worst452

performance of our approach occurs in the case of selective neutrality (s = 0) (see Supplemental453
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Figure 7: Empirical distributions of estimates for 100 datasets simulated under a constant demographic history
with population size N(k) = 16000 for k ∈ {k0, k0 + 1, . . . , 0} and dominance parameter h = 0.5. Grey boxplots
represent the estimates produced with our method, and yellow boxplots using the approach of Schraiber et al.
(2016). Boxplots of the estimates for (a) sampling scheme A (b) sampling scheme B.

Material, Figure S9). This can be explained by the following: all else being equal, mutant allele454

frequency trajectories of the underlying population with larger selection coefficients have less455

noise and hence more information than smaller selection coefficients.456

In summary, for positive selection coefficients, our approach is significantly more accurate457

across different parameter values, demographic histories and sampling schemes, when compared458

to the approach of Schraiber et al. (2016). The performance of the method of Schraiber et al.459

(2016) is also heavily influenced by the demographic history and the sampling scheme.460

3.2. Analysis of real data461

We show the utility of our approach on real data by re-analysing the aDNA data associated462

with horse coat colouration. Ludwig et al. (2009) sequenced 89 ancient horse samples at eight463

genes encoding coat colouration, which were obtained from Siberia, Middle and Eastern Europe,464

China and the Iberian Peninsula, ranging from a pre- to a post-domestication period. Ludwig465

et al. (2009) applied the method of Bollback et al. (2008) and found two of these genes, ASIP466
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and MC1R, which showed strong fluctuations in the mutant allele frequencies of the sample,467

to be likely selectively advantageous. Malaspinas et al. (2012), Steinrücken et al. (2014) and468

Schraiber et al. (2016) then re-analysed the same aDNA data for ASIP and MC1R with their469

approaches incorporating more complex evolutionary scenarios.470

We re-analyse the aDNA data for ASIP and MC1R from Wutke et al. (2016), which contains471

107 ancient horse samples sequenced at eight genes encoding coat colouration by them along472

with 94 sequenced ancient horse samples from the previous studies of Ludwig et al. (2009)473

and Pruvost et al. (2011). From Der Sarkissian et al. (2015), we take the average length of a474

generation of the horse to be eight years and show the changes in the mutant allele frequencies475

of the sample for ASIP and MC1R through successive generations in Figures 8a and b. As in476

Schraiber et al. (2016), we apply our method to infer natural selection and allele age for ASIP477

and MC1R by explicitly incorporating the horse demographic history of Der Sarkissian et al.478

(2015), as illustrated in Figure 8c, with the most recent population size N0 = 16000 being the479

reference population size. In addition, we set the dominance parameter to h = 1 in our analysis480

as the mutant alleles at the ASIP and MC1R loci are both recessive (Rieder et al., 2001).481

Figure 8: Ancient horse samples sequenced at ASIP and MC1R from Wutke et al. (2016). Temporal changes
in the mutant allele frequencies of the sample for (a) ASIP and (b) MC1R. (c) Horse demographic history of
Der Sarkissian et al. (2015).

We illustrate the resulting likelihood surface for the ASIP gene in Figure 9a and find that the482

likelihood surface attains its maximum at 0.0013 for the selection coefficient and −42982 for the483

allele age, i.e., 42982 years before present (BP). Our results suggest that the mutation in ASIP484

was favoured by natural selection and was created in the Pleistocene, which lasted from about485
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2580000 to 11700 years BP (Cohen et al., 2013). To establish the significance of our findings, we486

compute the corresponding 95% confidence intervals (CI’s) with a bootstrap procedure called487

case resampling (Efron & Tibshirani, 1994), where we resample with replacement from the 62488

time stamped samples in the ASIP dataset to form the bootstrap samples. More specifically,489

we sample with replacement from the 62 sampling time points, which generates exactly 62490

time points that may have duplicates. If a certain time point with the observation (nk, ck) is491

duplicated m times in the resampled time points, the bootstrap observation associated with492

this time point is (mnk,mck). The 95% CI is [0.0004, 0.0022] for the selection coefficient and493

[−175272,−18749] for the allele age, respectively, where the 95% CI’s are constructed as the494

interval between 2.5th and 97.5th percentiles of the estimates for the 1000 bootstrap replicates.495

This presents further evidence that the mutation in ASIP was positively selected and arose in496

the Middle Pleistocene (lasted from about 773000 to 126000 years BP) or Upper Pleistocene497

(lasted from about 126000 to 11700 years BP).498

Figure 9: Likelihood surfaces produced under the non-constant demographic history of Der Sarkissian et al.
(2015) for (a) ASIP and (b) MC1R.

The resulting likelihood surface for the MC1R gene is illustrated in Figure 9b. Our estimate499

of the selection coefficient is 0.0126 with the 95% CI [0.0091, 0.0176], which indicates that the500

mutation in MC1R was selectively advantageous. Our estimate of the allele age is −13645 with501

the 95% CI [−15430,−12866], which suggests that the mutation in MC1R was created in the502

Upper Pleistocene.503

It should be noted that one uncertainty our bootstrap procedure does not take into account504
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is that of the underlying demographic history. The demographic history of Der Sarkissian et al.505

(2015) is an estimate, but we take this to be fixed in our bootstrap procedure. Therefore, the506

confidence intervals we state above are likely to be narrower than if we have taken into account507

the further uncertainty in the underlying demographic history.508

In summary, our findings suggest that ASIP and MC1R mutations arose in the Pleistocene509

and have both been favoured by natural selection. The climate of the Pleistocene saw dramatic510

changes and included the Last Glacial Maximum (LGM), the coldest phase of the Last Glacial511

Period (LGP), which lasted from approximately 26500 years BP to 19000 to 20000 years BP512

(Clark et al., 2009). Our results are weak evidence supporting ASIP mutations being created513

before the LGM (but with probability 0.8), and strong evidence supporting MC1R mutations514

being created after the LGM.515

We also present the results under two different constant demographic histories: the first with516

constant population size 16000, the most recent population size, and the second with constant517

population size 2500, the bottleneck population size. These results are illustrated in Figures 10518

and 11, respectively, with their maximum likelihood estimates and 95% CIs summarised in519

Supplemental Material, Tables S16. With constant population sizes of both 16000 and 2500, we520

find strong evidence to support that ASIP and MC1R mutations are both positively selected.521

The estimates of the selection coefficient are similar to those produced under the demographic522

history of Der Sarkissian et al. (2015), but the estimates of the allele age display large variability523

under different demographic histories. We find that ASIP mutations were created during the524

LGM with constant population size 2500, and MC1R mutations were created during the LGM525

with constant population size 16000, which are in conflict with earlier results obtained under526

the demographic history of Der Sarkissian et al. (2015). This again demonstrates that changing527

the underlying demographic history can significantly alter estimates of the allele age.528

3.3. Computational issues529

We apply the Crank-Nicolson scheme proposed by Crank & Nicolson (1947) to numerically530

solve the KBE’s in Eqs. (1) and (9). To achieve higher computational accuracy of the numerical531

solution, it is desirable to increase the number of grid points in the Crank-Nicolson approach,532

which however becomes burdensome computationally. We adopt a grid that is logarithmically533

divided close to 0 and 1, and such a partition increases the number of grid points at the two534
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Figure 10: Likelihood surfaces for ASIP produced under the constant demographic history with (a) the most
recent population size of 16000 and (b) the bottleneck population size of 2500.

Figure 11: Likelihood surfaces for MC1R produced under the constant demographic history with (a) the most
recent population size of 16000 and (b) the bottleneck population size of 2500.

ends of the state space [0, 1]. More specifically, in our analysis we use the grid for the state space535

[0, 1] that is uniformly divided in [0.03, 0.97] with 30 subintervals and logarithmically divided536

in [0, 0.03] and [0.97, 1] with 120 subintervals each. To achieve the maximum of the likelihood537

surface for the selection coefficient and the allele age, we start the section search on the selection538

coefficient with 7 equally spaced selection coefficients within a fixed interval [−0.02, 0.04].539

In our analysis of ASIP and MC1R, a single run for a fixed value of the selection coefficient540

takes about 54 seconds for MC1R on a single core of an Intel Core i7 processor at 3.5 GHz,541

whereas the same run takes approximately 84 seconds for ASIP. The entire maximum likelihood542
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estimation procedure for MC1R takes 905 seconds, whereas this procedure for ASIP takes 1728543

seconds. All of our code in this work is written in R.544

4. Discussion545

In this work, we developed a novel likelihood-based method for co-estimating selection co-546

efficient and allele age from time series data of allele frequencies under different demographic547

histories in this work. To our knowledge, Malaspinas et al. (2012) and Schraiber et al. (2016) are548

the only existing methods that can jointly infer natural selection and allele age from time series549

data of allele frequencies. Our key innovation is that we take the Wright-Fisher diffusion condi-550

tioned to survive until at least the time of the most recent sample to be the underlying process551

in the HMM framework and calculate the likelihood by numerically solving the KBE resulting552

from the conditioned Wright-Fisher diffusion backwards in time. For every fixed value of the553

selection coefficient, we need to numerically solve the KBE only once to obtain the likelihood554

for all possible values of the allele age. Our backwards-in-time likelihood recursion reduces the555

two-dimensional numerical search for the maximum of the likelihood surface for the selection556

coefficient and the allele age, e.g., as used in Malaspinas et al. (2012), to a one-dimensional nu-557

merical search over the selection coefficient. Thus, our method can achieve the joint estimates558

of the selection coefficient and the allele age relatively quickly, e.g., about 1728 and 905 seconds559

for ASIP and MC1R from ancient horse samples, respectively. Furthermore, the conditioned560

Wright-Fisher diffusion incorporated into our HMM framework allows us to avoid the somewhat561

arbitrary initial condition that the allele is created by mutation at a certain low frequency, e.g.,562

as used in Malaspinas et al. (2012) and Schraiber et al. (2016).563

We demonstrated through simulated data that our estimates for both the selection coefficient564

and the allele age were accurate under a given demographic history while the likelihood surfaces565

were smooth with a shape that coincided with our intuitive understanding of our approach. Even566

though the samples are sparsely distributed in time with small uneven sizes, our method still567

performed well, which is an important feature for aDNA. Our simulation studies also illustrated568

that ignoring demographic histories had minimal impact on the inference of natural selection569

but significantly biased the estimation of allele age. In addition, we investigated the impact of570

the sampling scheme on the inference of natural selection and allele age, showing that within571

any given sampling period, drawing more chromosomes at fewer time points or the opposite had572
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little effect on the estimation of selection coefficient and allele age. Compared to the method of573

Schraiber et al. (2016), our approach is superior for the estimation of selection coefficient and574

allele age in accuracy across different parameter values, demographic histories and sampling575

schemes.576

We re-analysed the genes that have been well studied in previous studies of Ludwig et al.577

(2009), Malaspinas et al. (2012), Steinrücken et al. (2014) and Schraiber et al. (2016), ASIP and578

MC1R, with the expanded aDNA dataset from Wutke et al. (2016). We found strong evidence579

for weak positive selection acting on the ASIP gene and strong positive selection acting on the580

MC1R gene, which was similar to those reported by Ludwig et al. (2009), Steinrücken et al.581

(2014) and Schraiber et al. (2016). In contrast, Malaspinas et al. (2012) did not have sufficient582

resolution to distinguish positive selection from negative selection for ASIP with their approach583

from the same aDNA data as analysed in Ludwig et al. (2009). Also, the findings of Malaspinas584

et al. (2012) suggested that the allele age of ASIP mutations ranged from 20000 to 13100 years585

BP, which was significantly different from our estimate. Such a discrepancy could be caused by586

different demographic histories, insufficient amounts of data, or improperly grouped samples.587

Steinrücken et al. (2014) and Schraiber et al. (2016) also inferred the model of natural selection,588

which we take to be fixed in our analysis with mutant allele homozygotes at both ASIP and589

MC1R being recessive. However, thanks to the computational advantages of our approach, it590

can be readily applied to infer parameters in a model of general diploid natural selection: for591

example, by running a two-dimensional numerical search over the selection coefficient and the592

dominance parameter to find the maximum of the likelihood. Our method can also be extended593

for fluctuating selection coefficients by combining the KBE’s for different population genetic594

parameters at the change time points suitably. Even though we have only illustrated the utility595

of our method on aDNA data in this work, our approach can also be used to analyse time series596

data of allele frequencies from laboratory experiments (e.g., Lang et al., 2013; Wiser et al., 2013;597

Burke et al., 2014; Le Bihan-Duval et al., 2018; Papkou et al., 2019).598

It is worthwhile to note that, unlike earlier studies, where the ancient samples were grouped599

into 6 sampling time points (e.g., Ludwig et al. (2009)) or 9 sampling time points (e.g., Wutke600

et al. (2016)), our analysis is conducted on the raw aDNA data, i.e., 201 ancient horse samples601

from 62 sampling time points. To investigate the effect of grouping samples on the estimates of602
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the selection coefficient and the allele age, we perform an empirical study by random grouping603

the 62 sampling time points into 9 time points like Wutke et al. (2016) and then apply our604

method on 1000 randomly grouped samples. As illustrated in Figure 12, the resulting estimates605

show some variability around the estimates obtained from the raw samples with 62 sampling606

time points. The relative deviations between the selection coefficient estimated from the grouped607

samples and the raw samples are 14.35% for ASIP and 28.75% for MC1R, respectively, and the608

relative deviations between the allele age estimated from the grouped samples and the raw609

samples are 35.45% for ASIP and 7.57% for MC1R, respectively, which implies that grouping610

samples can significantly alter the estimates of the selection coefficient and the allele age.611

Figure 12: Effects of grouping samples on the estimates of the selection coefficient and the allele age. Marginal
histograms of the estimates for 1000 randomly grouped datasets of the temporally spaced samples for (a) ASIP
and (b) MC1R.

Recent findings of Sandoval-Castellanos et al. (2017) suggested that at the end of the Ice612

Age forests started to advance in Europe, and horses became increasingly dark in coat colour613

as they left the plains and adapted to live in forests, where dark-coloured coats would have614

helped them to hide. Our approach does not provide evidence of the onset of natural selection.615

It delivers estimates of the selection coefficient and the allele age. However, one possibility that616
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is consistent with our results is that horse base coat colour variation could be associated with617

their adaptation to the transition from a glacial period to an interglacial period. Polymorphisms618

at the ASIP and MC1R loci are associated with horse base coat colouration, creating a bay,619

black or chestnut coat (Rieder et al., 2001), i.e., ASIP mutations give rise to black-coloured620

horses, whereas MC1R mutations give rise to chestnut-coloured horses. From Section 3.2, our621

95% confidence interval for the allele age of ASIP mutations include the LGM but lies mostly622

before the LGM. This raises the possibility that ASIP mutations, giving dark horses, might have623

been created before the LGM, whereas MC1R mutations, leading to paler horses, were created624

after the LGM. Given the findings of Finch et al. (1984) that dark-coated animals absorb heat625

more rapidly from solar radiation than light-coated ones, we speculate that ASIP mutations626

were favoured in horses living in cold environments during the glacial period, where dark coats627

would have helped them to survive, especially for the LGM. In contrast, MC1R mutations were628

favoured when the climate warmed from the late Pleistocene to the early Holocene since it629

might be then advantageous to be light-coated in warm environments for horses.630

One key limitation of our method is that we infer natural selection and allele age without ac-631

counting for the interactions between the genes. Such interactions can be epistatic interaction,632

genetic linkage or others, e.g., the ASIP and MC1R genes are found with epistatic interac-633

tions (Rieder et al., 2001), which may affect population genetic analyses. With the increasing634

availability of aDNA data across multiple loci, performing accurate estimation on relevant pop-635

ulation genetic quantities of interest while accounting for interactions among loci becomes more636

and more important. To extend our method to allele frequency time series data across multiple637

loci subject to epistatic interaction or genetic linkage, a significant challenge would be to find an638

alternative to calculate transition probabilities by numerically solving the KBE in our likelihood639

computation since it is computationally challenging and prohibitively expensive to numerically640

solve a high-dimensional partial differential equation.641
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