| 1  | Title: A pilot study of behavioral, environmental, and occupational risk factors for chronic                                                                  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | kidney disease of unknown etiology in Sri Lanka                                                                                                               |
| 3  |                                                                                                                                                               |
| 4  | Short Title: Chronic kidney disease of unknown etiology (CKDu) case-control study in Sri                                                                      |
| 5  | Lanka                                                                                                                                                         |
| 6  |                                                                                                                                                               |
| 7  | Jake M. Pry <sup>1,2</sup> ; Wendi Jackson <sup>3</sup> ; Ruwini Rupasinghe <sup>3,4</sup> ; Guneratne Lishanthe <sup>5</sup> ; Zied Badurdeen <sup>6</sup> , |
| 8  | Tilak Abeysekara <sup>6</sup> ; Rohana Chandrajith <sup>7</sup> ; Woutrina Smith <sup>3</sup> , Saumya Wickramasinghe <sup>4</sup>                            |
| 9  |                                                                                                                                                               |
| 10 | <sup>1</sup> Centre for Infectious Disease Research Zambia, Lusaka, Zambia                                                                                    |
| 11 | <sup>2</sup> School of Medicine, Washington University, St. Louis, MO, U.S.A.                                                                                 |
| 12 | <sup>3</sup> School of Veterinary Medicine, University of California, Davis, U.S.A                                                                            |
| 13 | <sup>4</sup> Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Sri Lanka                                                           |
| 14 | <sup>5</sup> Renal Research Centre, District Hospital, Girandurukotte, Sri Lanka                                                                              |
| 15 | <sup>6</sup> Faculty of Medicine, University of Peradeniya, Sri Lanka                                                                                         |
| 16 | <sup>7</sup> Faculty of Science, University of Peradeniya, Sri Lanka                                                                                          |
| 17 |                                                                                                                                                               |
| 18 | Corresponding author: jpry@wustl.edu                                                                                                                          |
| 19 | Jake Michael Pry                                                                                                                                              |
| 20 | Department of Infectious Disease                                                                                                                              |
| 21 | Washington University                                                                                                                                         |
| 22 | 660 S. Euclid Ave. St. Louis, MO 63110                                                                                                                        |

23 Mobile. +260 96 3088750 | +1 936-661-6885

#### 2

# 24 ABSTRACT

25 Chronic kidney disease of unknown etiology (CKDu) was first recognized in Sri Lanka in the early 26 1990s, and since then it has reached epidemic levels in the North Central Province of the country. 27 The prevalence of CKDu is reportedly highest among communities that engage in chena and paddy 28 farming, which is most often practiced in the dry zone including the North Central and East Central 29 Provinces of Sri Lanka. Previous studies have suggested varied hypotheses for the etiology of 30 CKDu; however, there is not yet a consensus on the primary risk factors, possibly due to disparate 31 study designs, sample populations, and methodologies. The goal of this pilot case-control study 32 was to evaluate the relationships between key demographic, cultural, and occupational variables 33 as risk factors for CKDu, with a primary interest in pesticide exposure both occupationally and 34 through its potential use as an ingredient in brewed kasippu alcohol. A total of 56 CKDu cases 35 and 54 control individuals were surveyed using a proctored, self-reported questionnaire. 36 Occupational pesticide exposure and alcohol consumption were not found to be significant risk 37 factors for CKDu. However, a statistically significant association with CKDu was observed with 38 chewing betel (OR: 6.11, 95% CI: 1.93, 19.35), age (OR: 1.07, 95% CI: 1.02, 1.13), owning a pet 39 dog (OR: 3.74, 95% CI: 1.38, 10.11), water treatment (OR: 3.68, 95% CI: 1.09, 12.43) and pests 40 in the house (OR: 5.81, 95% CI: 1.56, 21.60). The findings of this study suggest future research 41 should focus on practices associated with chewing betel, potential animal interactions including 42 pests in the home and pets, and risk factors associated with water.

43

### 44 AUTHOR SUMMARY

45 Since a new variant of chronic kidney disease was acknowledged in the early 1990s among those46 in the agricultural community of Sri Lanka, especially rice farmers, the research community has

3

47 searched for causes of what has become known as chronic kidney disease of unknown etiology or 48 CKDu. Previous studies have focused on heavy metals in the environment as they are known to be 49 toxic to the kidneys however, a proverbial "smoking gun" has yet to be identified. Understanding 50 that the causes is potential multifactorial we implemented a pilot case-control study using a One 51 Health methodology administering a comprehensive interview to assess environmental, animal, 52 and, human exposures that may be contributing to the diagnosis of CKDu. We found statistically 53 significant odds ratio among those that reported having a pet dog, chewing betel (a traditional 54 preparation or various ingredients wrapped in a betel leaf inserted between the teeth and cheek). 55 pests in the home, treating drinking water, and older age. These results serve to guide further 56 hypothesis generation regarding mechanisms behind associated exposures from infectious diseases 57 such as hantavirus and leptospirosis to food preparation through boiling drinking water in 58 aluminum vessels and oral pesticide exposure linked to betel preparation.

59

#### 60 INTRODUCTION

61 There has been a notable increase in the recognized incidence of chronic kidney disease (CKD) around the world [1]. Kidney disease has moved from 27<sup>th</sup> most common cause of death in 62 63 1990, to 18<sup>th</sup> in 2010 and has come to be considered a global public health problem causing high 64 morbidity, mortality, and financial burden [2-4]. Global prevalence of CKD is estimated to range 65 between 8% and 16%, and differs substantially across developed and developing countries [3, 5]. 66 Although diabetes mellitus and hypertension remain the leading causes of CKD, in recent years a 67 different form of CKD has reached epidemic levels, devastating rural communities in the dry zone 68 of Sri Lanka [6, 7]. The recognition of endemic CKD in the dry zone in the 1990s coincided with 69 the development of the rural healthcare system, which improved access to clinics by affected

4

individuals. Since that time, the dry zone has seen a disproportionate increase in cases of CKD
compared to the rest of the country [8]. Existing studies describe the majority of these CKD
patients as not having hypertension or diabetes mellitus, two of the major risk factors for CKD. It
has therefore, been defined as a distinct condition: CKD of unknown or uncertain etiology
(CKDu). Similar chronic kidney disease hotspots have been recognized among farmers in Central
America (Nicaragua and El Salvador) and South Asia [9, 10].

Approximately 2.5 million people live in the subset of Sri Lankan provinces where CKDu is most common [11, 12]. Cases of this disease predominate in the Medawachchiya, Wilgamuwa, Nikawewa, and Girandurukotte regions of the dry zone. Studies have shown the highest prevalence of CKDu among 30-60 year old men engaged in chena or rice farming, and estimate a total of 20,000 (approximately 0.8% population) affected in the North Central Province [8, 13].

81 The epidemic of CKDu in the dry zone is burdening the rural healthcare system and 82 impacting agricultural productivity due to a reduction in the available labor force when CKDu 83 patients are too ill to work [14-16]. Due to the irreversible and progressive nature of CKD, most 84 patients require long-term dialysis since renal transplants are not commonly available. For these 85 reasons, there is a need to determine the risk factors associated with CKDu to control and attenuate 86 the incidence of new CKDu cases. A growing body of evidence suggests that CKDu is multi-87 factorial, making it difficult to identify individual risk factors and potential interactions involved 88 in pathogenesis [7, 12, 17-20]. Recently, various heavy metal agents such as cadmium, arsenic 89 agrochemicals, aluminum, and fluoride, as well as infectious diseases such as leptospirosis have 90 been considered for association with CKDu [21-26].

91 Collaboration between researchers at the University of Peradeniya in Sri Lanka, the
92 University of California, Davis (UCD) in the United States, and Sri Lankan stakeholders in CKDu-

5

endemic areas were involved in this pilot study. The driving hypothesis for this study is that alcohol
consumption and/or pesticide exposure are associated with CKDu as a health outcome. In addition,
it is recognized that relationships between key demographic, cultural, and occupational variables
may play a role in CKDu health outcomes [27-31].

97

# 98 MATERIALS AND METHODS

99 A pilot case-control study was conducted in Sri Lanka from July-October 2015. The study 100 population was comprised of individuals (cases and controls) who resided in the North Central 101 Province (NCP) or Uva Province (UP) and sought medical care at Girandurukotte district hospital 102 (UP) or Medawachchiya clinic (NCP). The population in both the NCP and UP is approximately 103 1.2 million, with women making up the slight majority (51%) [13]. The majority of people in both 104 provinces are Sinhalese-speaking and resides in the rural sector where they engage in farming 105 (chena, rice). The NCP has the highest recorded prevalence of CKDu cases in Sri Lanka and is 106 located in the country's dry zone. Uva Province is in the intermediate zone adjacent to the dry 107 zone, with a lower prevalence of CKDu cases compared to the NCP.

In order to test the hypothesis that there is a relationship between alcohol consumption and CKDu diagnosis, and pesticide exposure and CKDu, in endemic areas of Sri Lanka, a questionnaire survey was developed [See Additional File 1]. The survey tool encompassed a wide range of exposures to capture potential unknown confounders, including exposures suggested by local CKDu working groups at the University of Peradeniya. Individuals meeting the CKDu case definitions as well as a comparison (control) population from the same endemic region were invited for participation in the survey.

115 Case Definition

6

116 Individuals diagnosed with definite or probable CKDu by a nephrologist at the 117 Girandurukotte regional hospital (GRH) or Medawachchiya renal clinic (MRC) made up the 118 population from which study cases were selected. An individual was considered a definite CKDu 119 case if creatinine levels were elevated and in subsequent renal biopsy the finding was predominant 120 tubular interstitial nephritis. A probable CKDu case was defined as persistent renal dysfunction 121 for more than 3 months after excluding known causes including hypertension, diabetes mellitus, 122 any other known renal diseases. This methodology is consistent with clinic/hospital programs and 123 represents the CKDu process of diagnosis in the region. Controls were chosen based on negative 124 results for CKDu from population screening records at GRH or MRC.

## 125 Recruitment

All controls were recruited using CKDu screening results within the past three years. These CKDu negative were invited via post (hard copy letter) to return to the healthcare facility associated with the previous screening to take part in a survey. Participation in the survey was optional. All cases were recruited from Girandurukotte regional hospital or Medawachchiya renal clinic.

#### 131 Sample Size Calculation

The total sample size calculated for this pilot case-control study was 110, comprising 1:1 cases to controls. The target sample size of 110 individuals was calculated based on a power of 80% ( $\beta$ = 0.2), 95% confidence ( $\alpha$ = 0.05), and a minimum effect size of 3.0. This relatively large effect size was considered in the exploratory study in order to identify preliminary exposures strongly associated with the outcome. An estimate of 26% was used for any reported alcohol consumption among controls for the sample size calculation [32, 33].

138 Survey Design

7

Survey questions were designed by the research team in consultation with the resource personnel at the Centre for Research, Education, and Training on Kidney Diseases (CERTkID) in Sri Lanka prior to IRB approval, survey training, and interviews. The survey consisted of 138 questions structured as binary, categorical, ordinal, and open-ended across six categories: 1) agricultural information; 2) animal exposure; 3) water and nutrition; 4) alcohol consumption; 5) respondent demographics; and 6) family and past medical history.

145 The agricultural information section included questions related to farming practices and 146 agrochemical usage. Information on ownership and health of livestock and pets, presence of pest 147 animals and wild life were collected in section two of the survey. In the water and nutrition 148 information section, sources for drinking, cooking, and bathing water were assessed, along with 149 participant practices regarding water treatment prior to use. The alcohol consumption information 150 section contained questions on type of alcohol consumed, betel chewing and smoking status. 151 Alcohol consumption was assessed in two ways: a binary question was asked first on whether the 152 participant had ever consumed alcohol (if yes, what type and frequency) and second, whether the 153 participant believed that alcohol was a problem in their village. The respondent demographics 154 section contained questions pertaining to level of education and family income. To assess a 155 potential genetic component of CKDu, participants were asked whether their spouses were close 156 blood relatives and family history of CKDu, hypertension, and diabetes mellitus was also recorded. 157 Detailed survey and explanation of survey components are given in Supplementary information.

158 Survey data were collected by 12 trained graduate students associated with the University 159 of Peradeniya. In addition, investigators were present at each site during data collection, allowing 160 surveyors the opportunity for clarification as needed in real-time as interviews were conducted. 161 Cases and controls participated voluntarily, and surveys were administered verbally in the mother

162 tongue of the participants (Sinhala) after obtaining consent (see Supplementary Information for 163 the English version of the consent form and survey questions). Survey question responses were 164 recorded on paper copies of the questionnaire by the surveyor. Each interview took approximately 165 one hour to complete.

The research protocol was designed according to the guidelines of the International Compilation of Human Research Standards (2015 edition) and approved by the University of California, Davis Institutional Review Board (#762486-2). Written consent of all study participants was obtained by signature or thumbprint after survey enumerators verbally read the consent statement in the appropriate language. The consent form was translated in both Sinhala and Tamil. The majority of survey interviews took place at medical clinics specializing in renal disease.

## 173 Statistical Analyses

174 Logistic regression was used to evaluate risk factors for CKDu case status. Bivariate 175 analysis was used to identify covariate with p-value  $\leq 0.20$  which was used to restrict consideration 176 for the final model. Pearson's correlation coefficient was used to identify covariate correlation at - $0.5 \le \rho \ge 0.5$ . Data analysis was completed using Stata IC 14 (StataCorp. 2015. Stata Statistical 177 178 Software: Release 14. College Station, TX: StataCorp LP). Age was evaluated as a continuous 179 predictor and others were assessed as binary or categorical. Multiple logistic regression analyses 180 were performed using backwards stepwise selection to model the risk factors associated with the 181 CKDu disease outcome of interest. Adjusted analysis was done to control for possible confounding 182 by measured covariates. Statistical significance was assessed at the  $\alpha = 0.05$ . Any observations 183 missing data were restricted from the analysis dataset. All geospatial illustrations were prepared 184 using QGIS v2.18 (Free Software Foundation Inc., Boston MA, USA) with administrative

boundaries provided by GADM v2.8 (Center for Spatial Statistic, University of California Davis,
USA, accessed November 2015).

187

188 **RESULTS** 

189 A total of 110 participants were included in the analysis; 56 met the case definition and 54 190 satisfied control criteria (Table S1). All participants resided in the CKDu endemic regions in 191 Girandurukotte and Medawachchiya districts in Sri Lanka at the time of diagnosis. No missing 192 data was identified in the analysis dataset. Participants had a mean age of 52.6 years (range = 25-193 80; there was a slight majority of males (60%) to females (40%). Most participants reported to be 194 married, with about half reporting being married to a spouse that was a close blood relative and 195 slightly over half reporting a family member having been diagnosed with CKDu (Table S1). Of 196 the 110 study participants, half reported consuming any type of alcohol and the majority reported 197 using some type of pesticide in their daily lives (insecticide, herbicide, in-home pesticide and/or 198 fungicide) (Table S1).

The majority of participants (74) were residing in the Uva Province. Twenty-two participants resided in the North Central Province, five in the Eastern Province, two in the Central Province and one resided in the Northwestern Province. There were 8 (7.3%) individuals for whom reliable current residence information was not available due to survey legibility and standardization complications. Data regarding province in which the participant was born were collected (Fig 1). No participants reported birth outside of Sri Lanka.

205

# Figure 1. Map of Sri Lanka by district indicating participant's birth district

10

After bivariate and correlational analyses, smoking unfiltered cigarettes and smoking cannabis were found to be highly correlated (correlation coefficient = 0.5141 > 0.5 threshold). Smoking unfiltered cigarettes was dropped from model consideration given a bivariate p-value higher than that of smoking cannabis (p-value = 0.186 and 0.112, respectively).

Sources of drinking water were surveyed and 'dug well' was the most common source (90.9%) of drinking/cooking water, with 'rainwater collection containers' being the second most common source. Drinking water was reported to be treated with routine methods such as boiling or filtering, or traditional methods such as placing igini (*strychnos potatorum*) seeds in the water source/well [34]. A subset of key population characteristics is reported in Table 1.

216 **Table 1: Study Population Characteristics by Case-Control Status** 

| Factor               | Level            | Control     | Case       | p-value |
|----------------------|------------------|-------------|------------|---------|
| Ν                    |                  | 54          | 56         |         |
| Age, mean (SD)*      |                  | 49.5 (11.7) | 57.5 (9.6) | < 0.001 |
|                      | Female           | 27 (51)     | 16 (29)    | 0.017   |
| Gender*              | Male             | 26 (49)     | 40 (71)    | 0.017   |
| Farming as           | No               | 14 (28)     | 3 (6)      | 0.002   |
| Occupation*          | Yes              | 36 (72)     | 51 (94)    | 0.002   |
| Drinking Water       | Dug Well         | 48 (89)     | 52 (93)    | 0.47    |
| Source               | Rain Water       | 6 (11)      | 5 (9)      | 0.7     |
| Treat Drinking Water | Drinking         | 34 (63)     | 41 (75)    | 0.19    |
| Keep Livestock       | Livestock        | 17 (31)     | 19 (34)    | 0.78    |
| Smoking Status       | Tobacco          | 8 (15)      | 14 (25)    | 0.18    |
|                      | Cannabis         | 2 (4)       | 7 (12)     | 0.092   |
| Chew Betel*          | Betel            | 22 (41)     | 40 (71)    | 0.001   |
|                      | Not a Problem    | 13 (27)     | 11 (21)    |         |
| Alcohol a Problem in | Minor Problem    | 17 (35)     | 20 (38)    | 0.05    |
| Village              | Moderate Problem | 10 (20)     | 9 (17)     | 0.85    |
|                      | Major Problem    | 9 (18)      | 12 (23)    |         |
| Alcohol Consumption  | Any Alcohol      | 22 (41)     | 33 (59)    | 0.056   |

|                | Arrack      | 19 (35) | 27 (48) | 0.17  |
|----------------|-------------|---------|---------|-------|
|                | Beer        | 14 (26) | 16 (29) | 0.76  |
|                | Kasippu     | 13 (24) | 18 (32) | 0.35  |
|                | Any         | 42 (78) | 52 (93) | 0.025 |
| D4:-: 1- II*   | Fungicide   | 21 (44) | 29 (55) | 0.27  |
| Pesticide Use* | Herbicide   | 41 (76) | 51 (91) | 0.032 |
|                | Insecticide | 42 (78) | 44 (79) | 0.92  |

217

\*Significance attributed as p-value < 0.05

There is a significant difference between age, gender, occupation, chewing betel, pesticide use at the 95% confidence level. The cases were older, on average, by eight years than the control group with a gender imbalance finding males more often among the cases compared to controls. Cases cited farming as an occupation more often than controls (22% higher among cases), reported chewing betel (30% higher among cases), and used pesticides more often, specifically herbicide, (15% higher among cases).

224 Two multivariable models were constructed, an exposure of interest model and an 225 exploratory model. The exposure of interest model forced inclusion of variables concerning 226 alcohol consumption and pesticide exposure, as neither exposure of interest was found to be 227 significantly associated with CKDu in bivariate analysis (Table 2). The final exposure of interest 228 model included four variables and excluded one variable compared to the stepwise method used 229 for the exploratory model (Table 3). The exploratory model (Table 3) included only risk factors 230 significantly associated with CKDu status (P<0.05). The primary exposures of interest (alcohol 231 consumption and pesticide exposure) were not found to be significant using a backward stepwise 232 selection process. However, age - considered as a continuous variable (OR: 1.08, 95% CI 1.02, 233 1.13), chewing betel (OR 4.01, 95% CI 1.49, 10.81), keeping a pet dog (OR: 4.21, 95% CI 1.55, 234 11.48), and reporting pests in the home (OR: 3.96, 95% CI 1.21, 12.93) were significantly 235 associated with CKDu case status.

#### Table 2. Factors Associated with CKDu including Pesticide and Alcohol Consumption in 236 ri Lanka

| 237 SI               |
|----------------------|
| <i>2J</i> / <b>D</b> |

238

| Factor            | Odds Ratio | <b>P-Value</b> | 95% Confide | ence Interval |
|-------------------|------------|----------------|-------------|---------------|
| Age*              | 1.12       | < 0.01         | 1.04        | 1.21          |
| Sex: Male         | 6.19       | 0.07           | 0.73        | 44.06         |
| Chew betel        | 3.57       | 0.08           | 0.86        | 14.84         |
| Pet dog*          | 4.41       | 0.03           | 1.19        | 16.27         |
| Pests in-home*    | 8.19       | 0.02           | 1.45        | 46.18         |
| Consume Arrack    | 0.64       | 0.62           | 0.11        | 3.86          |
| Consume Beer      | 1.15       | 0.88           | 0.18        | 7.34          |
| Consume Kasippu   | 0.26       | 0.23           | 0.03        | 2.39          |
| Fungicide         | 1.45       | 0.57           | 0.41        | 5.17          |
| Herbicide         | 1.00       | 1.00           | -           | -             |
| In-home pesticide | 0.82       | 0.79           | 0.34        | 4.97          |
| Insecticide       | 1.00       | 1.00           | -           | -             |

# 239 240

Note: Exposures of interest kept in model despite non-significant p-value \*Significance attributed as p-value < 0.05

241 242

# Table 3. Factors Associated with CKDu in Sri Lanka

| Factor         | Odds Ratio | <b>P-Value</b> | 95% Confidence Interv |        |
|----------------|------------|----------------|-----------------------|--------|
| Chew betel*    | 5.95       | 0.002          | 1.878                 | 18.856 |
| Pet dog*       | 3.515      | 0.012          | 1.312                 | 9.42   |
| Treat water*   | 3.944      | 0.026          | 1.175                 | 13.236 |
| Pests in-home* | 5.708      | 0.009          | 1.538                 | 21.182 |
| Age*†          | 1.078      | 0.003          | 1.025                 | 1.133  |

\*Significance attributed as p-value < 0.05; † Odds ratio per one year age increase

Bivariate analyses for specific types of pesticides and fertilizers used are detailed in Table 4. Before adjustment for age, gender, occupation, and alcohol consumption, usage of a fertilizer (muriate of potash) and an herbicide (glyphosate) were significantly associated with confirmed CKDu cases. However, after adjustment, none of the fertilizers, insecticides, or herbicides reported were found to be significantly associated with the outcome of interest, and so were not included in multivariable models (Table 4).

 Table 4. Agrochemical Association with CKDu - Crude and Adjusted Odds Ratios

| Factor                 | Control<br>(N=54)<br>n(%) | Case<br>(N=56)<br>n(%) | Crude Odds<br>Ratio (95% CI) | Adjusted Odds<br>Ratio (95% CI) |
|------------------------|---------------------------|------------------------|------------------------------|---------------------------------|
| Fertilizer             |                           |                        |                              |                                 |
| Urea                   | 38 (70%)                  | 47 (84%)               | 2.20 (0.9, 5.5)              | 0.92 (0.3, 3.2)                 |
| Muriate of Potash*     | 1 (2%)                    | 0 (0%)                 | 3.15 (1.4, 7.4)              | 1.86 (0.7, 5.1)                 |
| Triple Super Phosphate | 11 (20%)                  | 21 (38%)               | 2.35 (1.0, 5.5)              | 1.84 (0.7, 5.2)                 |
| Mud/Manure             | 11 (20%)                  | 5 (9%)                 | 0.38 (0.1, 1.2)              | 0.41 (0.1, 1.5)                 |
| Insecticide            |                           |                        |                              |                                 |
| Carbosulfan            | 5 (9%)                    | 3 (5%)                 | 0.55 (0.13, 2.44)            | 0.48 (0.1, 2.5)                 |
| Carbofuran             | 4 (7%)                    | 4 (7%)                 | 0.96 (0.23, 4.06)            | 0.47 (0.1, 2.4)                 |
| Curateer               | 7 (13%)                   | 6 (11%)                | 0.81 (0.25, 2.57)            | 0.74 (0.2, 2.8)                 |
| Herbicide              |                           |                        |                              |                                 |
| Glyphosate*            | 19 (35%)                  | 32 (57%)               | 2.46 (1.14, 5.30)            | 1.09 (0.4, 2.8)                 |
| МСРА                   | 24 (44%)                  | 28 (50%)               | 1.25 (0.59, 2.65)            | 0.92 (0.4, 2.3)                 |
| DPA                    | 11 (20%)                  | 17 (30%)               | 1.70 (0.71, 4.08)            | 0.88 (0.3, 2.5)                 |

14

|     | Metamifop                            | 8 (15%)        | 8 (14%)        | 0.96 (0.33, 2.77)       | 1.39 (0.4, 4.9)          |
|-----|--------------------------------------|----------------|----------------|-------------------------|--------------------------|
| 250 | * $p \leq 0.05$ ; Adjusted by age, g | gender, farmi  | ing occupation | on and alcohol consu    | mption                   |
| 251 | Figure 2: Proportional Ven           | n Diagrams     | Representi     | ng Reported Alcoho      | l Type Consumed by       |
| 252 | <b>Case-Control Status</b>           |                |                |                         |                          |
| 253 | Figure 2 illustrates the             | e difference   | between case   | es and control by type  | e of alcohol reportedly  |
| 254 | consumed. Cases were more            | likely to repo | ort drinking.  | The overlap between     | all three types of       |
| 255 | alcohol indicates that if one c      | onsumes alc    | ohol it is co  | mmon to drink all thr   | ee types surveyed.       |
| 256 | Arrack was the most common           | nly reported   | alcohol cons   | sumed across cases ar   | nd controls. Overall     |
| 257 | reported alcohol consumption         | n was observ   | ed among 2.    | 3% of women, while      | 81.8% of men             |
| 258 | reported drinking alcohol (tw        | o-sided Fish   | er's exact: <  | 60.001).                |                          |
| 259 | DISCUSSION                           |                |                |                         |                          |
| 260 | There was no signific                | ant associati  | ion detected   | between CKDu and        | pesticide exposure nor   |
| 261 | alcohol consumption. However         | ver, there we  | ere significar | nt associations identif | fied for chewing betel,  |
| 262 | owning a pet dog, treatmen           | t of drinking  | g water, rep   | orting pests in the l   | nome, and age. These     |
| 263 | significant exposures provid         | e insight int  | to previousl   | y unconsidered route    | es and mechanism for     |
| 264 | CKDu in addition to potentia         | l guidance or  | n how to redu  | uce odds of CKDu dia    | agnosis. Chewing betel   |
| 265 | could be a risk directly or inc      | lirectly throu | igh contamii   | nation of the tradition | al chew ingredients or   |
| 266 | through handling and/or prepa        | aration of the | e betel chew.  | The association betw    | veen report of a pet dog |
| 267 | could suggest a zoonotic path        | hway and pe    | sts in the ho  | me could indicate pe    | est extermination agent  |
| 268 | risks or a disease reservoir.        | Treatment o    | f drinking v   | vater, especially boil  | ing, may contribute to   |
| 269 | consumption of aluminum              | with nephro    | otoxic conse   | equences. The wide      | variety of associated    |
| 270 | exposures suggests that the          | re may be r    | nultiple risk  | factors associated      | with CKDu, which is      |
| 271 | consistent with results of prev      | vious studies  | [35, 36].      |                         |                          |

272 It is important to note that those cases reporting ever having been diagnosed with diabetes 273 or hypertension were diagnosed after meeting the CKDu case definition. Prevalence of diabetes 274 among controls was high (24.1%) relative to the 2011 and 2030 national estimates of 7.8% and 275 9.1%, respectively [37]. The questionnaire did not differentiate between type I or type II diabetes 276 mellitus, limiting inferences about reasons for this discrepancy in prevalence. It is possible that 277 changes in meal preparation (bivariate OR = 1.6095% CI 0.74-3.44) and/or food stuffs available 278 in rural Sri Lanka also play a role in the increased prevalence of diabetes in this control sample. 279 Conversely, diagnosis of hypertension is significantly higher (Fisher's exact = 0.002) among the 280 cases. However, this is common sequelae of chronic kidney disease [38-40].

Uses of a variety of agrochemicals are common throughout the farming dry zone regions and are often readily available through government subsidies. In our study, only herbicide use was shown to be significant in the bivariate analysis among all insecticide, fungicide, and in-home pesticide parameters. It is possible that exposure to pesticide occurs among those farmers reporting no use of pesticides on their crops through adjacent farm pesticide use in tandem with dynamic environmental factors, i.e. flooding, water source contamination, and winds.

287 The ingredients used in making kasippu, an illicit locally brewed alcohol, were of special 288 interest in this study, due to prior hypothesis that pesticides are introduced in the brewing process. 289 However, study participants who reported drinking kasippu most often purchased it from other 290 villagers and either did not know the ingredients used or did not want to report drinking kasippu 291 due to it being an illicit form of alcohol in Sri Lanka as well as the perceived cultural stigma for 292 reporting use. Of those that did report drinking kasippu, some reported urea as an ingredient in 293 kasippu production, which could have potentially toxic biologic effects, leading to increased blood 294 urea nitrogen subsequently impacting kidney function [41, 42].

16

295 Previous studies have suggested that drinking water quality and contamination may be 296 associated with CKDu [43-45]. Prior studies have identified cases and controls on the basis of 297 groundwater source and found much larger odds of disease in males who drank water from shallow 298 wells, compared to males who drank from natural springs (OR 5.48 95% CI 3.46-8.66) [46, 47]. 299 Similar findings were found for women drinking from shallow wells (OR 4.40 95% CI 2.23-8.68) 300 [46]. Due to the broad application of pesticides in all aspects of farming, potentially nephrotoxic 301 pesticide agents contaminating the drinking water cannot be ruled out. Our findings differ 302 somewhat from these prior studies in the minor difference between 89% (controls) and 93% (cases) 303 reported source of drinking water as a dug well. We however, were not able to compare other 304 sources of drinking water with high confidence and statistical power.

305 Dug wells are traditional wells often lined with clay brick and may be covered to prevent 306 animals from entering. There were few participants who received water via a tap line, rainwater 307 collectors, or methods other than a dug well. As such, our ability to evaluate drinking water source 308 as a risk factor was limited. In addition, the number of years that participants used different types 309 of drinking water was inconsistently recorded. Treatment of drinking water was found to be a 310 significant risk factor for CKDu. Treatment of water included boiling water (n=41), filtering water 311 (n=59), and traditional methods (n=19). The most common traditional practice for water treatment 312 was the introduction of Strychnos potatorum seeds (Sinhalese - ingini seeds) into the water source, 313 as is customary in Sri Lanka and India [48]. One possible risk for developing CKDu related to 314 treating drinking water could be the boiling (n = 41) of water in aluminum vessels [49]. 315 Information regarding the type of cookware used with relation to boiling water was not collected. 316 Our study found novel risk factors for CKDu in the study region. Results regarding the 317 potential mechanisms of association with CKDu for chewing betel, treatment of drinking water,

17

318 and having pets or pests are inconclusive. For instance, dogs in Sri Lanka are often community 319 pets and as such, ownership can be difficult to ascertain, although 43% of study participants 320 reported having a pet dog. Additionally, dogs may serve as reservoirs of infectious disease that 321 may lead to renal damage in humans. For example, outbreaks of leptospirosis have been reported 322 during the monsoon season in some CKDu endemic regions [50, 51]. Leptospirosis causes acute 323 kidney failure in dogs, with high mortality rates among those that are untreated or without access 324 to dialysis. Consequently, dogs may potentially shed Leptospira spirochetes in their urine. Owners 325 or community individuals may be thus exposed, potentially clearing the infection but suffering 326 renal damage that could later lead to developing CKDu [52]. Current Ministry of Health CKDu 327 diagnosis criteria do not include serology or polymerase chain reaction (PCR) tests for ruling out 328 leptospirosis; patients are asked only to self-report previous history of leptospirosis. As 329 leptospirosis diagnostics continue to improve, future research should consider specimen collection 330 for laboratory confirmation [53-55].

331 Mammalian pests in households may also be carriers of infectious disease that leads to 332 increased susceptibility to CKDu. There is an emerging hypothesis that Hanta virus could be the 333 possible causative agent for CKDu in Sri Lanka's dry zone [26, 56]. Humans infected with Hanta 334 virus show clinical signs similar to those of Leptospirosis, and Hanta virus infection in humans 335 was first described in Sri Lanka in the mid-eighties [57]. Rodents act as the reservoir host for Hanta 336 virus and Leptospirosis. Therefore, our study may provide further evidence for the association 337 between infected rodents and prevalence of CKDu in Sri Lanka. Further research should evaluate 338 the incidence of Hanta virus and Leptospirosis in rodents, pets, livestock, and people in CKDu-339 endemic regions in Sri Lanka.

18

340 To identify other disease risks that might be due to close contact with domestic animals or 341 wildlife, data was collected concerning participant observations of illness among domestic animals 342 in the community. There were very few reported, including three observations of ill cattle (2.7%). 343 one goat (0.9%), and one chicken (0.9%) in the month prior to the survey interview. It is possible 344 that the lifespan of dogs and livestock in the community is short due to environmental hazards 345 (disease, trauma, etc.) and animals go missing or die before disease can be detected or transmitted 346 to humans.

347 Chewing betel was another novel risk factor for CKDu in our study. This practice is quite common among Sri Lankans, and our study found that chewing betel was more common among 348 349 those reporting farming as an occupation (60%) than other occupations (40%). There is evidence 350 that betel preparations include stimulant properties similar to nicotine, and chewing it routinely 351 can lead to enamel erosion and oral cancer [58-60]. The betel preparation commonly chewed in 352 Sri Lanka is comprised of betel, areca nut, tobacco, and lime. However, betel recipes among 353 farmers in Sri Lanka's dry zone may contain differing substances compared to preparations in the 354 remainder of the country, which could be associated with CKDu [58, 61, 62]. Individuals that mix 355 and distribute pesticides may be at greater risk, as betel is inserted in the mouth and may be done 356 in the field where hand washing is not possible. In addition, there is evidence that chewing betel 357 increases exposure to arsenic and cadmium, both of which can be nephrotoxic [63].

358 Additionally, at our sample size (n=110), we do not have the power to detect small 359 differences in effect measure or to generalize to populations outside our study region. Finally, 360 although survey questions were detailed in nature, the question interpretation by the study 361 participant may have varied, leading to inaccurate answers. Due to the condensed nature of the 362 survey timeline, with multiple interviews occurring at one time, investigators could not oversee

ach individual interview. As such, details pertaining to the number of years when specific
pesticides or water sources were used were sometimes incomplete.

365 This case-control study design was useful for having comparable populations with and 366 without the disease in order to efficiently evaluate past risk factors associated with disease status. 367 In the future, a cohort study would be a useful design to evaluate exposure data, exposure timelines, 368 and incidence rates for CKDu, and we recommend that future studies of CKDu in Sri Lanka be 369 cohort-based, despite the longer follow-up period and greater expense. In addition, a nationwide, 370 coordinated CKDu research consortium spanning all major research institutions would make 371 CKDu research more efficient by standardizing study design and methodologies. This would allow 372 more accurate conclusions to be drawn from studies with clear and consistent case/control 373 definitions and study locations.

While our survey was comprehensive, our study had several limitations, primarily relating to case definition, disease progression, and study design characteristics. Temporal bias might have been introduced since the exact date of CKDu diagnosis was not collected however, the impact of bias on alcohol consumption is believed to be minimal due to a non-significant difference in the mean years since first drink (t = -1.89) and frequency of alcohol consumption (t = -0.49). Furthermore, there was not a significant difference in the number of years farming among those reporting a farming occupation (Fisher's exact = 0.07) between cases and control.

The appearance and progression of CKDu can involve non-specific symptoms, making the disease challenging to diagnose in the early, pre-clinical stages limiting the population of cases in this study to those that were in advanced stages of the disease. Studies suggest using more sensitive methods for detecting early CKDu, with measurement of microalbuminuria and functional markers such as Cyst C, creatinine or tubular proteins like RBP4, NGAL or KIM would be beneficial in

20

capturing a greater number of early-stage CKDu cases so that exposures can be better assessed and
 treatment initiated earlier [64-66].

The lack of association between herbicide and CKDu outcome in the adjusted model indicates either that herbicide alone is not responsible for CKDu, or that sufficient detail regarding herbicide use was not captured in the survey. For example, the volume and length of use of pesticides was difficult to assess in an interview setting compared to a household visit, where farmers could reference pesticide receipts or other family members for details they could not recall. More detailed responses regarding usage may have resulted in a difference between cases and controls, which could not be evaluated in this study.

At present, the use of the albumin-creatinine ratio or persistent proteinuria as an initial screening tool is only sensitive at detecting advanced-stage prevalent CKDu cases. This could cause misclassification of the disease outcome if the diagnostic test sensitivity is not high enough to differentiate between early-stage CKDu patients and controls.

399

## 400 CONCLUSION

401 In conclusion, this pilot case-control study showed that chewing betel, reporting of in-home pets 402 and pests, treating drinking water, and age were significantly associated with CKDu. These 403 cultural and environmental factors are likely part of a multi-factorial etiology that is challenging 404 to unravel, and that may take years to understand whether preventive measures are effective. Future 405 studies should be cohort in design and focus on further exploring the identified risk factors and 406 their epidemiologic relationships to CKDu, as well as possible interventions to attenuate the 407 incidence of CKDu in Sri Lanka. Potential interventions to be considered based on these findings 408 might include safe home pest control options, testing and treatment for leptospirosis among

| 2 | 1 |
|---|---|
| 2 | Т |

| 409 | community dogs, routine chronic kidney disease screening among those in CKDu endemic areas,     |
|-----|-------------------------------------------------------------------------------------------------|
| 410 | and education focused on hand hygiene in the field. These findings should be considered as      |
| 411 | research regarding CKDu in other endemic regions continues.                                     |
| 412 |                                                                                                 |
| 413 | DECLARATIONS                                                                                    |
| 414 |                                                                                                 |
| 415 | Ethics approval and consent to participate                                                      |
| 416 | The study was approved by the University of California, Davis, Institutional Review             |
| 417 | Board (#762486-2). All participants voluntarily provided written consent prior to questionnaire |
| 418 | administration in their preferred language (Sinhala or Tamil).                                  |
| 419 |                                                                                                 |
| 420 | Consent for publication                                                                         |
| 421 | No personal, identifiable information is depicted nor represented.                              |
| 422 |                                                                                                 |
| 423 | Availability of Data and Material                                                               |
| 424 | Full questionnaire made available in additional file 1.                                         |
| 425 |                                                                                                 |
| 426 | Competing interests                                                                             |
| 427 | There are no competing nor conflicts of interest to report.                                     |
| 428 | Funding                                                                                         |
| 429 | Funding for this research was made possible through a research PASS grant from the              |
| 430 | Blum Center for Developing Economies at UC Davis, and a summer research fellowship award        |
| 431 | from the University of California Global Health Institute.                                      |

22

| 432 |  |
|-----|--|
|     |  |

## 433 Author's contributions

434 All authors listed in this manuscript meet the International Committee of Journal Editors

- 435 criteria for authorship.
- 436
- 437 Acknowledgements
- 438 Data collection for this study was made possible through the support provided by the
- 439 Centre for Research, Education, and Training on Kidney Diseases (CERTkID), namely by the late
- 440 Mr. Ranjith Mulleriya. Twelve graduate students of University of Peradeniya contributed to the

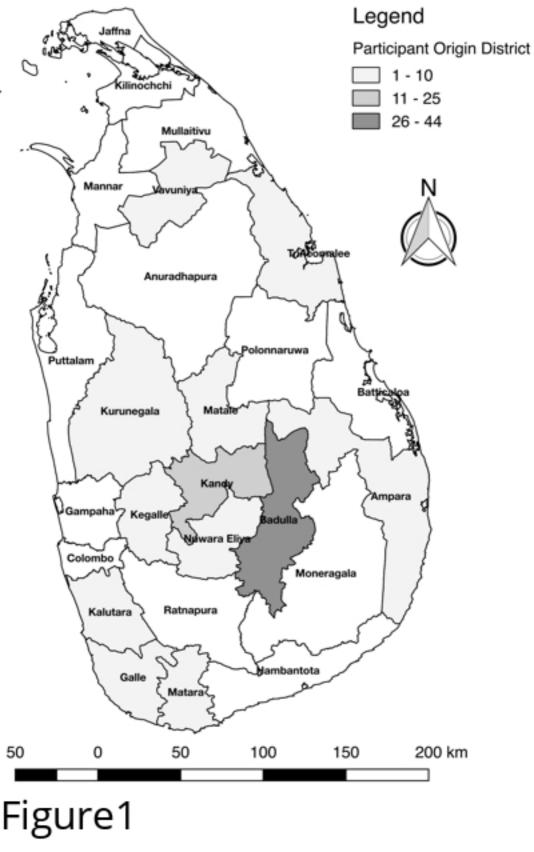
441 study by interviewing the cases and controls. David Bunn, Ph.D. and Michael Wilkes, M.D.

442 contributed to the researchers' understanding of the cultural role of alcohol and pesticide use.

# 443 **REFERENCES**

444 Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, Casey DC, Charlson FJ, 1. 445 Chen AZ, Coates MM et al: Global, regional, and national life expectancy, all-446 cause mortality, and cause-specific mortality for 249 causes of death, 1980-447 2015: a systematic analysis for the Global Burden of Disease Study 2015. The 448 Lancet 2016, 388(10053):1459-1544. 449 2. Athuraliya TN, Abeysekera DT, Amerasinghe PH, Kumarasiri PV, Dissanayake V: 450 Prevalence of chronic kidney disease in two tertiary care hospitals: high proportion of cases with uncertain aetiology. Ceylon Med J 2009, 54(1):23-25. 451 452 3. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, Saran R, Wang AY, Yang 453 CW: Chronic kidney disease: global dimension and perspectives. Lancet 2013, **382**(9888):260-272. 454 455 4. Lunyera J, Mohottige D, Von Isenburg M, Jeuland M, Patel UD, Stanifer JW: CKD of 456 Uncertain Etiology: A Systematic Review. Clin J Am Soc Nephrol 2016, 11(3):379-457 385. 458 5. Couser WG, Remuzzi G, Mendis S, Tonelli M: The contribution of chronic kidney 459 disease to the global burden of major noncommunicable diseases. Kidney Int 460 2011, 80(12):1258-1270. 461 6. Chandrajith R, Nanayakkara S, Itai K, Aturaliya TN, Dissanayake CB, Abeysekera T, 462 Harada K, Watanabe T, Koizumi A: Chronic kidney diseases of uncertain etiology (CKDue) in Sri Lanka: geographic distribution and environmental 463 464 implications. Environ Geochem Health 2011, 33(3):267-278.

| 465 | 7.  | Wanigasuriya K: Update on uncertain etiology of chronic kidney disease in Sri        |
|-----|-----|--------------------------------------------------------------------------------------|
| 466 |     | Lanka's north-central dry zone. MEDICC Rev 2014, 16(2):61-65.                        |
| 467 | 8.  | Elledge MF, Redmon JH, Levine KE, Wickremasinghe RJ, Wanigasariya KP, Peiris-        |
| 468 |     | John RJ: Chronic Kidney Disease of Unknown Etiology in Sri Lanka: Quest for          |
| 469 |     | Understanding and Global Implications. RTI Press 2014.                               |
| 470 | 9.  | Peraza S, Wesseling C, Aragon A, Leiva R, Garcia-Trabanino RA, Torres C, Jakobsson   |
| 471 |     | K, Elinder CG, Hogstedt C: Decreased kidney function among agricultural              |
| 472 |     | workers in El Salvador. Am / Kidney Dis 2012, 59(4):531-540.                         |
| 473 | 10. | Torres C, Aragon A, Gonzalez M, Lopez I, Jakobsson K, Elinder CG, Lundberg I,        |
| 474 |     | Wesseling C: Decreased kidney function of unknown cause in Nicaragua: a              |
| 475 |     | community-based survey. Am J Kidney Dis 2010, 55(3):485-496.                         |
| 476 | 11. | Statistics SLDoCa: Sri Lanka national census data 2012 for each province. In.        |
| 477 |     | Edited by Statistics Ca; 2012.                                                       |
| 478 | 12. | Rajapakse S, Shivanthan MC, Selvarajah M: Chronic kidney disease of unknown          |
| 479 |     | etiology in Sri Lanka. Int J Occup Environ Health 2016:1-6.                          |
| 480 | 13. | Lanka DoCaSS: Census of Population and Housing Sri Lanka 2012. In.:                  |
| 481 |     | Department of Census and Statistics Sri Lanka.                                       |
| 482 | 14. | Chaker L, Falla A, van der Lee SJ, Muka T, Imo D, Jaspers L, Colpani V, Mendis S,    |
| 483 |     | Chowdhury R, Bramer WM et al: The global impact of non-communicable                  |
| 484 |     | diseases on macro-economic productivity: a systematic review. European               |
| 485 |     | Journal of Epidemiology 2015, <b>30</b> (5):357-395.                                 |
| 486 | 15. | Helantera I, Haapio M, Koskinen P, Gronhagen-Riska C, Finne P: Employment of         |
| 487 |     | patients receiving maintenance dialysis and after kidney transplant: a cross-        |
| 488 |     | sectional study from Finland. Am J Kidney Dis 2012, 59(5):700-706.                   |
| 489 | 16. | Klarenbach S, Stafinski T, Longobardi T, Jacobs P: The effect of renal insufficiency |
| 490 |     | on workforce participation in the United States: an analysis using National          |
| 491 |     | Health and Nutrition Examination Survey III data. Am J Kidney Dis 2002,              |
| 492 |     | <b>40</b> (6):1132-1137.                                                             |
| 493 | 17. | Levine KE, Redmon JH, Elledge MF, Wanigasuriya KP, Smith K, Munoz B, Waduge VA,      |
| 494 |     | Periris-John RJ, Sathiakumar N, Harrington JM et al: Quest to identify geochemical   |
| 495 |     | risk factors associated with chronic kidney disease of unknown etiology              |
| 496 |     | (CKDu) in an endemic region of Sri Lanka-a multimedia laboratory analysis of         |
| 497 |     | biological, food, and environmental samples. Environ Monit Assess 2015,              |
| 498 |     | <b>188</b> (10):548.                                                                 |
| 499 | 18. | Samsel A, Seneff S: Glyphosate, pathways to modern diseases II: Celiac sprue         |
| 500 |     | and gluten intolerance. Interdiscip Toxicol 2013, 6(4):159-184.                      |
| 501 | 19. | Wimalawansa SA, Wimalawansa SJ: Environmentally induced, occupational                |
| 502 |     | diseases with emphasis on chronic kidney disease of multifactorial origin            |
| 503 |     | affecting tropical countries. Ann Occup Environ Med 2016, 28:33.                     |
| 504 | 20. | Wimalawansa SJ: The role of ions, heavy metals, fluoride, and agrochemicals:         |
| 505 |     | critical evaluation of potential aetiological factors of chronic kidney disease of   |
| 506 |     | multifactorial origin (CKDmfo/CKDu) and recommendations for its                      |
| 507 | 01  | eradication. Environ Geochem Health 2016, <b>38</b> (3):639-678.                     |
| 508 | 21. | Bandara JMRS, Senevirathna DMAN, Dasanayake DMRSB, Herath V, Bandara JMRP,           |
| 509 |     | Abeysekara T, Rajapaksha KH: <b>Chronic renal failure among farm families in</b>     |
| 510 |     | cascade irrigation systems in Sri Lanka associated with elevated dietary             |


| 511 |     | cadmium levels in rice and freshwater fish (Tilapia). Environmental                                |
|-----|-----|----------------------------------------------------------------------------------------------------|
| 512 |     | Geochemistry and Health 2008, <b>30</b> (5):465-478.                                               |
| 513 | 22. | Bandara JMRS, Wijewardena HVP, Liyanege J, Upul MA, Bandara JMUA: Chronic                          |
| 514 |     | renal failure in Sri Lanka caused by elevated dietary cadmium: Trojan horse of                     |
| 515 |     | the green revolution. Toxicology Letters 2010, <b>198</b> (1):33-39.                               |
| 516 | 23. | Jayasumana C, Gunatilake S, Siribaddana S: Simultaneous exposure to multiple                       |
| 517 |     | heavy metals and glyphosate may contribute to Sri Lankan agricultural                              |
| 518 |     | nephropathy. BMC Nephrol 2015, 16:103.                                                             |
| 519 | 24. | Wasana HM, Aluthpatabendi D, Kularatne WM, Wijekoon P, Weerasooriya R,                             |
| 520 |     | Bandara J: Drinking water quality and chronic kidney disease of unknown                            |
| 521 |     | etiology (CKDu): synergic effects of fluoride, cadmium and hardness of water.                      |
| 522 |     | Environ Geochem Health 2016, <b>38</b> (1):157-168.                                                |
| 523 | 25. | Ileperuma OA, Dharmagunawardhane HA, Herath KPRP: <b>Dissolution of aluminium</b>                  |
| 524 |     | from sub-standard utensils under high fluoride stress: a possible risk factor                      |
| 525 |     | for chronic renal failure in the North-Central Province. J Natl Sci Found Sri 2009,                |
| 526 |     | <b>37</b> (3):219-222.                                                                             |
| 527 | 26. | Gamage CD, Sarathkumara YD: <b>Chronic kidney disease of uncertain etiology in</b>                 |
| 528 | _0. | Sri Lanka: Are leptospirosis and Hantaviral infection likely causes? <i>Med</i>                    |
| 529 |     | <i>Hypotheses</i> 2016, <b>91</b> :16-19.                                                          |
| 530 | 27. | Brand RM, Jendrzejewski JL, Charron AR: <b>Potential mechanisms by which a single</b>              |
| 531 |     | drink of alcohol can increase transdermal absorption of topically applied                          |
| 532 |     | chemicals. Toxicology 2007, 235(3):141-149.                                                        |
| 533 | 28. | Brand RM, McMahon L, Jendrzejewski JL, Charron AR: <b>Transdermal absorption of</b>                |
| 534 | _0. | the herbicide 2,4-dichlorophenoxyacetic acid is enhanced by both ethanol                           |
| 535 |     | consumption and sunscreen application. Food and Chemical Toxicology 2007,                          |
| 536 |     | <b>45</b> (1):93-97.                                                                               |
| 537 | 29. | Peiris-John RJ, Wanigasuriya JK, Wickremasinghe AR, Dissanayake WP, Hittarage A:                   |
| 538 |     | Exposure to acetylcholinesterase-inhibiting pesticides and chronic renal                           |
| 539 |     | failure. Ceylon Med J 2006, <b>51</b> (1):42-43.                                                   |
| 540 | 30. | Valcke M, Levasseur ME, Soares da Silva A, Wesseling C: <b>Pesticide exposures and</b>             |
| 541 |     | chronic kidney disease of unknown etiology: an epidemiologic review. Environ                       |
| 542 |     | <i>Health</i> 2017, <b>16</b> (1):49.                                                              |
| 543 | 31. | Wanigasuriya KP, Peiris-John RJ, Wickremasinghe R, Hittarage A: Chronic renal                      |
| 544 |     | failure in North Central Province of Sri Lanka: an environmentally induced                         |
| 545 |     | disease. Transactions of the Royal Society of Tropical Medicine and Hygiene 2007,                  |
| 546 |     | <b>101</b> (10):1013-1017.                                                                         |
| 547 | 32. | Epitools Epidemiological Calculators                                                               |
| 548 | 33. | Somatunga LC, Ratnayake LR, Wijesinghe WMDNK, Yapa YMMM, Cooray MPNS:                              |
| 549 |     | <b>National alcohol use prevalence survey in Sri Lanka</b> . Journal of the Postgraduate           |
| 550 |     | Institute of Medicine 20114:1-12.                                                                  |
| 551 | 34. | Šćiban M, Klašnja M, Antov M, Škrbić B: <b>Removal of water turbidity by natural</b>               |
| 552 |     | coagulants obtained from chestnut and acorn. Bioresource Technology 2009,                          |
| 553 |     | <b>100</b> (24):6639-6643.                                                                         |
| 554 | 35. | Nanayakkara S, Senevirathna ST, Abeysekera T, Chandrajith R, Ratnatunga N,                         |
| 555 |     | Gunarathne ED, Yan J, Hitomi T, Muso E, Komiya T <i>et al</i> : <b>An integrative study of the</b> |
| 556 |     | genetic, social and environmental determinants of chronic kidney disease                           |
|     |     |                                                                                                    |

| 557        |     | characterized by tubulainterctitial damages in the North Control Degion of Sri                                                                                       |
|------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 557<br>558 |     | characterized by tubulointerstitial damages in the North Central Region of Sri<br>Lanka. J Occup Health 2014, 56(1):28-38.                                           |
| 559        | 36. | Weaver VM, Fadrowski JJ, Jaar BG: Global dimensions of chronic kidney disease                                                                                        |
| 560        | 50. | of unknown etiology (CKDu): a modern era environmental and/or                                                                                                        |
| 561        |     | occupational nephropathy? BMC Nephrol 2015, <b>16</b> :145.                                                                                                          |
| 562        | 37. | Whiting DR, Guariguata L, Weil C, Shaw J: <b>IDF diabetes atlas: global estimates of</b>                                                                             |
| 563        |     | the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 2011,                                                                                          |
| 564        |     | <b>94</b> (3):311-321.                                                                                                                                               |
| 565        | 38. | Neumann J, Ligtenberg G, Klein, II, Koomans HA, Blankestijn PJ: <b>Sympathetic</b>                                                                                   |
| 566        |     | hyperactivity in chronic kidney disease: pathogenesis, clinical relevance, and                                                                                       |
| 567        |     | treatment. Kidney Int 2004, 65(5):1568-1576.                                                                                                                         |
| 568        | 39. | Hall JE: The kidney, hypertension, and obesity. <i>Hypertension</i> 2003, 41(3 Pt                                                                                    |
| 569        |     | 2):625-633.                                                                                                                                                          |
| 570        | 40. | Anderson AH, Yang W, Townsend RR, Pan Q, Chertow GM, Kusek JW, Charleston J,                                                                                         |
| 571        |     | He J, Kallem R, Lash JP <i>et al</i> : <b>Time-updated systolic blood pressure and the</b>                                                                           |
| 572        |     | progression of chronic kidney disease: a cohort study. Ann Intern Med 2015,                                                                                          |
| 573        |     | <b>162</b> (4):258-265.                                                                                                                                              |
| 574        | 41. | Van Vleet TR, Schnellmann RG: <b>Toxic nephropathy: environmental chemicals</b> .                                                                                    |
| 575        | 10  | Seminars in Nephrology 2003, <b>23</b> (5):500-508.                                                                                                                  |
| 576        | 42. | Lock EA: Mechanism of Nephrotoxic Action Due to Organohalogenated                                                                                                    |
| 577        | 40  | <b>Compounds</b> . <i>Toxicology Letters</i> 1989, <b>46</b> (1-3):93-106.                                                                                           |
| 578        | 43. | Chandrajith R, Dissanayake CB, Ariyarathna T, Herath HM, Padmasiri JP: <b>Dose</b> -                                                                                 |
| 579<br>580 |     | dependent Na and Ca in fluoride-rich drinking wateranother major cause of chronic renal failure in tropical arid regions. <i>Sci Total Environ</i> 2011, 409(4):671- |
| 580<br>581 |     | 675.                                                                                                                                                                 |
| 582        | 44. | Jayasumana C, Gunatilake S, Senanayake P: <b>Glyphosate, hard water and</b>                                                                                          |
| 583        |     | nephrotoxic metals: are they the culprits behind the epidemic of chronic                                                                                             |
| 584        |     | kidney disease of unknown etiology in Sri Lanka? Int J Environ Res Public Health                                                                                     |
| 585        |     | 2014, <b>11</b> (2):2125-2147.                                                                                                                                       |
| 586        | 45. | Jayasumana C, Paranagama P, Agampodi S, Wijewardane C, Gunatilake S,                                                                                                 |
| 587        |     | Siribaddana S: Drinking well water and occupational exposure to Herbicides is                                                                                        |
| 588        |     | associated with chronic kidney disease, in Padavi-Sripura, Sri Lanka. Environ                                                                                        |
| 589        |     | Health-Glob 2015, <b>14</b> (6).                                                                                                                                     |
| 590        | 46. | Jayasekara KB, Dissanayake DM, Sivakanesan R, Ranasinghe A, Karunarathna RH,                                                                                         |
| 591        |     | Priyantha Kumara GW: Epidemiology of chronic kidney disease, with special                                                                                            |
| 592        |     | emphasis on chronic kidney disease of uncertain etiology, in the north central                                                                                       |
| 593        |     | <b>region of Sri Lanka</b> . J Epidemiol 2015, <b>25</b> (4):275-280.                                                                                                |
| 594        | 47. | Rango T, Jeuland M, Manthrithilake H, McCornick P: Nephrotoxic contaminants in                                                                                       |
| 595        |     | drinking water and urine, and chronic kidney disease in rural Sri Lanka.                                                                                             |
| 596        |     | <i>Science of the Total Environment</i> 2015, <b>518-519</b> :574-585.                                                                                               |
| 597        | 48. | Adinolfi M, Corsaro MM, Lanzetta R, Parrilli M, Folkard G, Grant W, Sutherland J:                                                                                    |
| 598        |     | Composition of the coagulant polysaccharide fraction from Strychnos                                                                                                  |
| 599        | 40  | potatorum seeds. Carbohydr Res 1994, <b>263</b> (1):103-110.                                                                                                         |
| 600        | 49. | Gitelman H: <b>Aluminum in Health A Critical Review</b> : Marcel Dekker; 1989.                                                                                       |
| 601        | 50. | Agampodi SB, Dahanayaka NJ, Bandaranayaka AK, Perera M, Priyankara S,                                                                                                |
| 602        |     | Weerawansa P, Matthias MA, Vinetz JM: Regional differences of leptospirosis in                                                                                       |

| 603        |            | Sri Lanka: observations from a flood-associated outbreak in 2011. PLoS Negl                                                                                                      |
|------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 604        | <b>F</b> 4 | <i>Trop Dis</i> 2014, <b>8</b> (1):e2626.                                                                                                                                        |
| 605        | 51.        | Rojas P, Monahan AM, Schuller S, Miller IS, Markey BK, Nally JE: <b>Detection and</b>                                                                                            |
| 606        |            | quantification of leptospires in urine of dogs: a maintenance host for the                                                                                                       |
| 607        |            | zoonotic disease leptospirosis. European Journal of Clinical Microbiology &                                                                                                      |
| 608        | <b>F</b> 2 | Infectious Diseases 2010, <b>29</b> (10):1305-1309.                                                                                                                              |
| 609        | 52.        | Daher EDF, Abreu KLSd, Junior GBdS: <b>Leptospirosis-associated acute kidney</b>                                                                                                 |
| 610        | E 2        | injury. Jornal Brasileiro de Nefrologia 2010, <b>32</b> (4):400-407.                                                                                                             |
| 611<br>612 | 53.        | Guerra MA: <b>Leptospirosis: public health perspectives</b> . <i>Biologicals</i> 2013,                                                                                           |
| 613        | 54.        | <b>41</b> (5):295-297.<br>Musso D, La Scola B: <b>Laboratory diagnosis of leptospirosis: a challenge</b> . <i>J</i>                                                              |
| 614        | 54.        | Musso D, La scola D. Laborator y diagnosis of leptosphosis. a chanenge. J<br>Microbiol Immunol Infect 2013, <b>46</b> (4):245-252.                                               |
| 615        | 55.        | Picardeau M, Bertherat E, Jancloes M, Skouloudis AN, Durski K, Hartskeerl RA:                                                                                                    |
| 616        | 55.        | Rapid tests for diagnosis of leptospirosis: current tools and emerging                                                                                                           |
| 617        |            | technologies. Diagn Microbiol Infect Dis 2014, <b>78</b> (1):1-8.                                                                                                                |
| 618        | 56.        | Gamage CD, Yoshimatsu K, Sarathkumara YD, Kulendiran T, Nanayakkara N,                                                                                                           |
| 619        | 50.        | Arikawa J: Serological evidence of hantavirus infection in Girandurukotte, an                                                                                                    |
| 620        |            | area endemic for chronic kidney disease of unknown aetiology (CKDu) in Sri                                                                                                       |
| 621        |            | Lanka. Int / Infect Dis 2017, <b>57</b> :77-78.                                                                                                                                  |
| 622        | 57.        | Vitarana S: Feasibility of biological control of the low-country live wood                                                                                                       |
| 623        | -          | termite (Glyptotermes dilatatus) of tea (Camellia sinensis) in Sri Lanka. In:                                                                                                    |
| 624        |            | Proceedings of the regional tea conference Colombo, Sri Lanka: 1988; 1988: 99-112.                                                                                               |
| 625        | 58.        | Gupta PC, Ray CS: Epidemiology of betel quid usage. Annals of the Academy of                                                                                                     |
| 626        |            | Medicine, Singapore 2004, <b>33</b> (4 Suppl):31-36.                                                                                                                             |
| 627        | 59.        | Amarasinghe HK, Usgodaarachchi US, Johnson NW, Lalloo R, Warnakulasuriya S:                                                                                                      |
| 628        |            | Betel-quid chewing with or without tobacco is a major risk factor for oral                                                                                                       |
| 629        |            | potentially malignant disorders in Sri Lanka: a case-control study. Oral Oncol                                                                                                   |
| 630        |            | 2010, <b>46</b> (4):297-301.                                                                                                                                                     |
| 631        | 60.        | Gupta PC, Warnakulasuriya S: Global epidemiology of areca nut usage. Addict Biol                                                                                                 |
| 632        |            | 2002, <b>7</b> (1):77-83.                                                                                                                                                        |
| 633        | 61.        | Ariyawardana A, Athukorala AD, Arulanandam A: Effect of betel chewing, tobacco                                                                                                   |
| 634        |            | smoking and alcohol consumption on oral submucous fibrosis: a case-control                                                                                                       |
| 635        |            | study in Sri Lanka. J Oral Pathol Med 2006, 35(4):197-201.                                                                                                                       |
| 636        | 62.        | Jacob BJ, Straif K, Thomas G, Ramadas K, Mathew B, Zhang ZF, Sankaranarayanan R,                                                                                                 |
| 637        |            | Hashibe M: Betel quid without tobacco as a risk factor for oral precancers. Oral                                                                                                 |
| 638        | <b>()</b>  | <i>Oncol</i> 2004, <b>40</b> (7):697-704.                                                                                                                                        |
| 639        | 63.        | Al-Rmalli SW, Jenkins RO, Haris PI: <b>Betel quid chewing elevates human exposure</b>                                                                                            |
| 640        |            | to arsenic, cadmium and lead. Journal of Hazardous Materials 2011, <b>190</b> (1–3):69-                                                                                          |
| 641        | ()         | 74.<br>Long Marin L. Chause V. Carsis VA. Flores MM. Carsis VM. Harrare D. Almaguer M.                                                                                           |
| 642        | 64.        | Lopez-Marin L, Chavez Y, Garcia XA, Flores WM, Garcia YM, Herrera R, Almaguer M,                                                                                                 |
| 643<br>644 |            | Orantes CM, Calero D, Bayarre HD <i>et al</i> : <b>Histopathology of chronic kidney disease</b><br>of unknown etiology in Salvadoran agricultural communities. <i>MEDICC Rev</i> |
| 644<br>645 |            | 2014, <b>16</b> (2):49-54.                                                                                                                                                       |
| 646        | 65.        | Redmon JH, Elledge MF, Womack DS, Wickremashinghe R, Wanigasuriya KP, Peiris-                                                                                                    |
| 640<br>647 | 05.        | John RJ, Lunyera J, Smith K, Raymer JH, Levine KE: Additional perspectives on                                                                                                    |
| 648        |            | chronic kidney disease of unknown aetiology (CKDu) in Sri Lankalessons                                                                                                           |
| 0-0        |            | en onte muney alsease of anniown actiology (ChDu) in 511 Lanka-10350115                                                                                                          |

| 649        |          | learned from the WHO CKDu population prevalence study. BMC Nephrol 2014,                                |
|------------|----------|---------------------------------------------------------------------------------------------------------|
| 650        |          | <b>15</b> :125.                                                                                         |
| 651        | 66.      | Ratnayake S, Badurdeen Z, Nanayakkara N, Abeysekara T, Ratnatunga N, Kumarasiri                         |
| 652        |          | R: Screening for chronic kidney disease of uncertain aetiology in Sri Lanka:                            |
| 653        |          | usability of surrogate biomarkers over dipstick proteinuria. <i>BMC Nephrol</i> 2017, <b>19</b> (1) 100 |
| 654<br>655 |          | <b>18</b> (1):199.                                                                                      |
| 656        |          |                                                                                                         |
| 657        | APPE     | NDIX:                                                                                                   |
| 658        | Table S  | 51: Comprehensive Participant Characteristics by Exposure Category                                      |
| 659        |          |                                                                                                         |
| 660        | SUPPO    | ORTING INFORMATION LEGENDS                                                                              |
| 661        |          | Figure 1: Map of Sri Lanka by district identifying jurisdiction in which survey                         |
| 662        | particip | pant was born. Map produced using QGIS v2.18 (Free Software Foundation Inc. Boston,                     |
| 663        | MA). J   | urisdiction boundaries as specified by GADM v2.8, Center for Spatial Statistic,                         |
| 664        | Univer   | sity of California, Davis, California, USA, accessed November 2015.                                     |
| 665        | https:// | gadm.org/data.html.                                                                                     |
| 666        |          | Figure 2: Proportional Venn Diagram produced using Stata IC 14 (Stata Corp., College                    |
| 667        | Station  | , TX).                                                                                                  |
| 668        |          | Table S1: Characteristics of Population Surveyed: exhaustive list of characteristics                    |
|            |          |                                                                                                         |

among survey participants by exposure category.



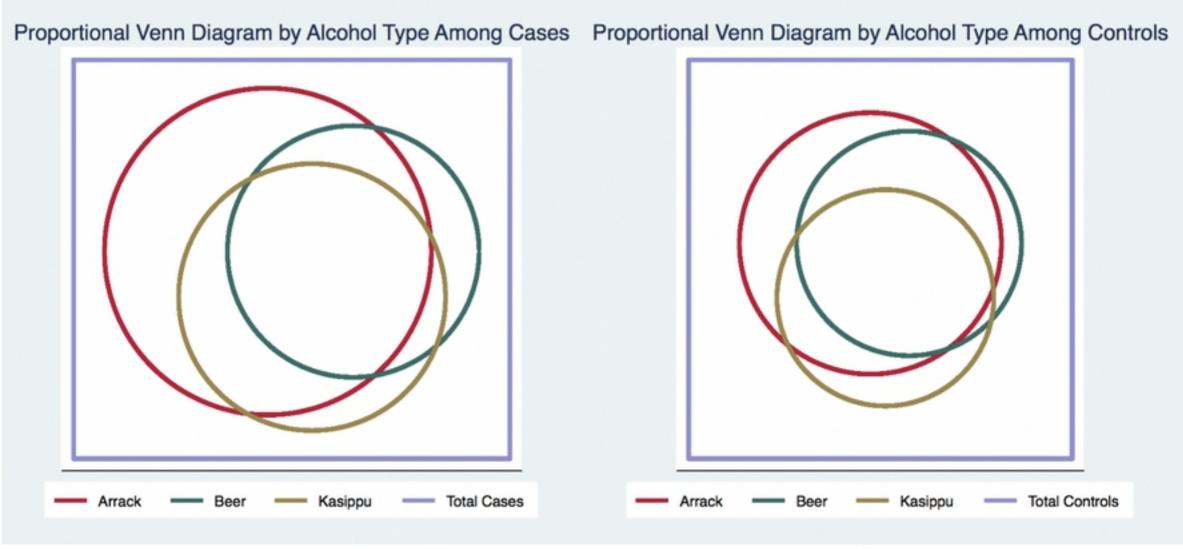



Figure2